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ABSTRACT 

There are several ways in which a matrix can be factorized as a product of two 
special matrices. These factorizations are often used in numerical analysis, and many 
perturbation bounds useful in such analysis have been proved by various authors. In 
this paper a simple method which leads to these results and several new ones is 
discussed. In the last section related results on the Lipschitz continuity of the matrix 

absolute value are surveyed. 

1. INTRODUCTION 

A matrix factorization theorem is an assertion that a matrix A can be 
factorized into a product A = A,A, of two special matrices A,, A,. Some 
conditions may be necessary for such a decomposition to exist, and some 
further conditions may ensure the uniqueness of the factorization. 

Among the better-known examples of such factorizations are the polar 
decomposition into unitary and positive factors, the QR decomposition into 
unitary and upper triangular factors, and the LR decomposition into lower 
triangular and upper triangular factors. 

Such factorizations are pleasing to the theorist and useful in a variety of 
applications. Thus, for instance, the LR decomposition is related to Gaussian 
elimination and the QR decomposition to the QR algorithm in numerical 
analysis [see, for example, Golub and Van Loan (1989) or Stewart and Sun 
(199011. Th e o ar p 1 d ecomposition is related to the Liiwdin orthogonalization 
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in quantum chemistry [see Goldstein and Levy (1991) or Bhatia and 
Mukherjea (1986)]. 

A problem that has been studied in considerable detail over the last 
fifteen years in several papers, mainly by numerical analysts, is that of finding 
perturbation bounds for these factorizations. Such results tell us how much a 
given change in A might affect its factors in these decompositions. 

Many of these diverse results, and several new ones, can be derived in a 
unified way following ideas introduced in Bhatia and Mukherjea (1992). The 
aim of the present paper is to explain this method and to use it to derive 
many new results for the decompositions mentioned above and also for some 
others for which such an analysis has not been made before. This approach 
has three virtues. It provides a unification of earlier results, sometimes 
obtained by methods which seem ad hoc; the results obtained are comparable 
to or stronger than the ones obtained by earlier authors; new problems can be 
tackled together with the old ones. 

The paper is organized as follows. In Section 2 we outline the general 
features of the method. In Section 3 we list the matrix decompositions to 
which the method will be applied. Each of these multiplicative decomposi- 
tions gives rise to an additive decomposition of the space of matrices. In this 
section we will also write down the projection operators corresponding to 
these additive decompositions and evaluate their norms. In Section 4 we 
obtain perturbation bounds and compare them with those of earlier authors. 
Section 5 is purely expository. Mathematical physicists have obtained several 
interesting results about the perturbation of the positive factor in the polar 
decomposition. These seem to have escaped the attention of numerical 
analysts working on the same question. We give a brief summary of these 
results in this section. 

2. THE GENERAL METHOD 

We will use some elementary facts from calculus on manifolds and matrix 
Lie groups. A good reference for the former is Dieudonne (1960, Chapter 81, 
and for the latter Chevalley (1946, Chapter 1). 

Let M denote the space of all n X n matrices. These matrices will have 
complex entries, except that they will be real when we talk of the SR 
decomposition. The class of matrices A to be factorized will be an open 
subset of M; sometimes it will be a Lie group. The factors will come from two 
special subsets A, and A, of M. These will either be Lie groups or open 
subsets of a linear space in M. A matrix factorization theorem will tell us that 
each element A of A has a unique factorization 
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A = A,A, where A, E A,, A, E A,. (2.1) 

Thus, for example, in the polar decomposition theorem A = GL is the 
general linear group consisting of all nonsingular matrices. This is a Lie group 
and an open dense subset of M. The factors U and P in the decomposition 
A = UP come from the set U consisting of all unitary matrices and the set P 
consisting of all positive definite matrices. The first is a Lie group, the second 
is an open subset of the space Herm consisting of all Hermitian matrices. 
This is a real linear subspace of M. 

The decomposition (2.1) thus gives a map 

A:A, xA, (2.2) 

between manifolds. We will write 

@(A) = (@dA)A(A)) = (A,, 4). (2.3) 

To study the variation of A, and A, with A it is most natural to study the 
derivatives of the maps Qi and @a. However, this is not easy, because these 
maps are complicated to describe. This difficulty can be circumvented by 
studying instead the inverse map 

defined as 

‘P( A,, A,) = A,A, = A. (2.4 

The map q is simpler, being just a product. Its derivative can be computed 
easily. By the implicit function theorem we can then obtain the derivative of 
Cp. This simple idea is crucial for the success of this method. 

The derivative of @ at A, denoted as D@(A), is a linear map 

T,A = T,,A, + TA2A,, (2.5) 

where T,A is the tangent space to the manifold A at the point A. When A is 
an open set in a linear space X, then T,A = X for every A E A. When A is a 
Lie group, then the tangent space at the identity is the Lie algebra corre- 
sponding to this Lie group. The tangent space at any other point is then 
A . T,A. Thus, for example, the tangent space to GL at any point is the space 
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M; that to P is Herm. The tangent space to U at Z is the Lie algebra Sherm 

consisting of all skew-Hermitian matrices; the tangent space at any other 
point U is U * Sherm = {US : S E Sherm). The derivative of 1I’ at (A,, A,) 
is a linear map D1Ir( A,, A,) which is inverse to (2.5). 

The two tangent spaces to A, and A, provide an additive decomposition 
of the tangent space to A. Thus, in the above special example, M = Sherm 

+ Herm is the familiar decomposition into skew-Hermitian and Hermitian 
parts. 

Our method has four steps: 

Step 1. Evaluate D*(A,, A,). Th’ is is easy. In case A, is an open set in 
a linear space X, all tangential vectors at A, are of the form A, + tB, 
B E X. In case A, is not an open set but a Lie group, then using the 
correspondence between Lie algebras and Lie groups via the exponential 
map, tangent vectors at A, are written as A,etB where B is from the Lie 
algebra. The derivative Dq\Ir( A,, A,) is just the directional derivative in these 
tangential directions. Thus, for example, in the case of the polar decomposi- 
tion 

D*( U, P)( US, H) = P+tH) 1 t=o 

$Uets(P + tH) 
I t=o 

= USP + UH (2.6) 

for each S E Sherm, H E Hex-m. 

Step 2. Use this to find D*(A) in a convenient form. This leads to a 
matrix equation. Thus, in the case of the polar decomposition, for any X E M 

we want to find the value of D@(A) at the tangent vector X. We have 
D@(A)(UX) = (UM, N) for some M E Sherm, N E Herm. Since @ = 
V’, we get from (2.6) 

UX = UMP + UN. 

Hence, DQ( A)(UX) will be known if we can determine M and N from the 
equation 

X=MP+N. (2-Y) 

We will see that in this special case M, N can be found explicitly. In other 
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cases we may not be able to find equally explicit expressions. 
Step 3. Whether or not we are able to solve the equation arising in step 

2, we will find the above information adequate to get bounds for the 
derivatives D@i(A) and D@,(A). The addit’ ional ingredient required is an 
estimate of the norms of the projection operators in M corresponding to the 
additive decomposition into the two tangent spaces. We are able to get this in 
all cases for the Frobenius norm and in some cases for all unitarily invariant 
norms. This is done in Section 3. 

Step 4. These bounds on the norms of the derivatives then lead to 
perturbation bounds when we use standard theorems of calculus like Taylor’s 
theorem or the mean value theorem. 

We should point out that in several papers [Barrlund (1989) Higham 
(1986) Sun (1991) and especially Kenny and Laub (1991) and Mathias 
(I99I)] the idea of estimating the derivative is very much to be found. It is 
the simplification achieved by going to the map q and the generality and the 
flexibility this allows which are new. 

Let us fix some notation. The symbol I] A]1 will denote the operator bound 

norm (the spectral nom) of A, the symbol ]I A]]r the Frobenius rzorrn of A, 
and I]]A(\I any unitarily inmriant nom of A. If A has matrix entries uij and 
singular values s,(A) 2 ~a( A) > *** 2 s,,(A), then 

11 All = sl( A) = sup{ 11 AxI1 : x E c”, llxll = l} > 

IIAIIF = ( ~luijiz)“’ = ( Es;(A))“~. i,j .i 
Unitary invariance means the property 

IIIAlll = IIIUAVlll for all A E M and U, V E U. 

Properties of such norms may be found in Bhatia (1987) Horn and Johnson 
(1985) or Stewart and Sun (1990). Both ]I. II and II * IIF are unitarily invariant 
norms. Each unitarily invariant norm is a function only of the singular values 
of A. Hence if A* denotes the Hermitian conjugate of A, AT its transpose, 
and x its complex conjugate, then 

IIIAIII = IIIA*lll = IIIATIII = lll~ll. (2.8) 

Another property we will use is 

III ABC111 < II All 111~111 llcll (2.9) 
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for all A, B, C. Finally if f is a linear map on M, we will put 

llblll = sup{lll2Tll: X E M, IIIXIII = I}. (2.10) 

3. SOME MATRIX FACTORIZATIONS 

In most of the decompositions of interest in numerical analysis one of the 
factors is a triangular matrix. Let us fix some notation for classes of triangular 
matrices which will occur often. 

We will denote by A the set of all upper triangular matrices and by A* the 
set of all lower triangular matrices. A subscript will usually indicate the nature 
of the diagonal entries. Thus, A,,, A+, A,, and A,, will stand for the set of 
upper triangular matrices whose diagonal entries are all real, positive, one, 
and zero, respectively. The symbol A,, will be used for upper triangular 
matrices which are nonsingular, i.e., those which have no zero on the 
diagonal. 

It is worth noting here that A is a linear space; A re and A o are linear 
subspaces of it. The set A,,,, is a subgroup of GL; so are its subsets A+ and 
A,. The Lie algebras corresponding to the Lie groups A ,,b, A +, and A, are 

A, A rca, and A ,, , respectively. Also note that A ,,\ and A+ are open subsets 
of A and A r(, , respectively. 

3.1. The P&r Deconaposition 

Most of the facts about this decomposition have already been recalled. In 
particular, we have noted that the tangent spaces to U and P give a 
decomposition 

M = Sherm + Herm. (3.1) 

If 9’i and Paz are the complementary projection operators in M correspond- 
ing to (3.Q then 

A - A* A + A* 
g,(A) = 2, Paz(A) = 2. 

Using (2.8) we can see that 

111~~111 = Ill~~lll = 1. (3.2) 
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3.2. The QR Decomposition 

Every matrix A can be factorized as A = QR, where Q E U and R E A. 
If A is nonsingular, so must be R. Now if we restrict R to lie in A+, then 
the decomposition A = QR is unique for every A E GL. We have thus an 
invertible map @ : GL + U X A+. The tangent spaces to U and A+ give a 
direct sum decomposition 

M = Sherm + A,. (3.3) 

The projection operators pr, TZ with respect to this decomposition can be 
written down explicitly, and we have for the Frobenius norm 

Details of this may be found in Bhatia and Mukherjea (1992). It is also 
explained there why for the operator bound norm ll~ill and Ilgaell grow as 
log n. The cause of the different behavior is that for the triangular truncation 
operator 7 on M (7 takes a matrix to its upper triangular part), IIIflIl grows 
with n for some unitarily invariant norms. Unitarily invariant norms for which 
llmll does not depend on IZ have been studied by operator theorists. See, 
e.g., Gohberg and Krein (19701, Kwapien and Pelczynski (19701, and Arazy 
(1978). For such norms Ill~illl and ~~~~02~~~ can also be bounded indepen- 
dently of n. However, these norms may not be of interest in numerical 
analysis. 

3.3. The LR Decomposition 
Let SNS denote the set of all strongly nonsingular matrices (Fiedler, 

1986). These are matrices all whose leading principal minors are nonzero. 
Then SNS is a dense subset of M; it is not a group, however. Every element 
A of SNS has a unique factorization 

A = LR, where L E AT, R E A,, . 

We thus have an invertible map @ from SNS to AT X An,. The tangent 
spaces to these two manifolds give a direct sum decomposition 

M=A*,+A. (3-5) 

Obviously, for th e projection operators pi and pD2 for this decomposition we 
have 

ll9IllF = II92llF = 1. (3.6) 
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As explained earlier, in this case too, Il9ill and 11P211 will grow as log n. 
However, it is worth noting here that in this case the equality (3.6) will hold 
for several other norms which are not unitarily invariant but which are of 
much use in numerical analysis. For example, it will hold for the maximum 
row sum norm and the maximum column sum norm. 

3.4. The SR Decomposition 

In this subsection n is an even integer n = 2r and all matrices are real. 
We will be considering matrices of order n and of order r. To distinguish 
between them we will use symbols such as M(n) to denote all n X n matrices 
and A(r) to denote all r X r upper triangular matrices. Let I, be the 
identity matrix of size r, and let 

A matrix S E GL(n) is called symplectic if 

STJS =J. (3.7) 

The set of all such matrices forms a group called the (real) symplectic group. 

We will denote this group as Symp(n). Consider also all matrices G of the 
following special form: 

in which 

G,,,G,, E Am(r); G,,,G,, E Ad’); dag(G) = d%(G). 

(3.8) 

Such matrices form another subgroup of GL(n), which we will denote as 
Cosymp(n). Let P E M(n) be the matrix of the per&d shujjle, i.e., the 
permutation which permutes the rows by sending the kth row to the 
(2k - I)th one if k < r and to the (2k - 2r)th one if k > r. Let A be the 
subset of GL(n) consisting of all matrices A for which all even principal 
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minors of PATJPAT are nonzero. Then A is a dense open set in M(n). It can 
be shown that every element A of A can be factorized uniquely as 

A = SR, where s E Symp(n), R E Cosymp(n). (3.9) 

This is called the SR decomposition. For more details see Bunse-Gerstner 
(1986) and Watkins and Elsner (1988). 

From (3.7) we can see, using standard arguments of Lie theory, that the 
Lie algebra corresponding to the symplectic group consists of all those 
matrices X for which 

(JX)’ =JX. (3.10) 

This condition gives the following special block decomposition for X: 

‘= [; _;T], B E M(r), C, D E Symm(r), (3.11) 

where Symm stands for the set of all symmetric matrices. Such matrices X 
are called Hamiltonian, and we will denote their collection by Ham(n). 

From (3.8) one can see that the Lie algebra for the group Cosymp(n) 
consists of all matrices of the form 

y= lc L 
[ 1 M N 

in which 

K, N E A(r); L, M E A,,(r); diag( K) = diag( N). (3.12) 

This Lie algebra will be denoted as Cohamcn). Note that this set is closed 
under matrix multiplication. 

Thus the tangent spaces to the two spaces involved in the SR factorization 
give a vector space decomposition 

M(n) = Ham(n) + Coham( n). (3.13) 

We will now determine the projection operators corresponding to this 
decomposition. Let A E M(n) have the block decomposition 
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and let A = X + Y, where X, Y are as in (3.11) and (3.12). Let lowel(E) and 
upped E) denote the parts of E below the main diagonal and above the main 
diagonal, respectively. Then we must have 

B = f diag( E - Q) + lower( E) - upper( Q’), 

K = i diag( E + Q) + upper( E) + upper( Q’), 

N = i diag( E + Q) + upper( E?‘) + upper(Q). 

Then entries of the matrices C and L are obtained from those of F as 
follows: 

cii =fii, zij = 0 for all i , 

cij =&, zij =fij -& for j>i, 

cij =fij, lij = 0 for j<i. 

In the same way, the entries of D and M are obtained from those of P as 

djj = pjj, mji = 0 for all i, 

djj = p., 
.I’ ’ mtj = Pij - Pji for j>i, 

dij=pij, mij=O for j<i. 

From these relations we obtain 

llBll”F + ll~‘ll; G llEll”F + IlQlli, 

IlKlIt + llNl”F G llEll”F + IIPII”,, 

IICII”, =G 2llFll”,, IILII; =G 2llFllk 

llDll”F < .Wl1;, II M II; < 2llPIl”,. 

Hence, 

IIXII; < 2llAll;, IIY II: < 2llAll;. (3.14) 
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Both these inequalities are sharp. For example, for r = 2, the first one is 
seen to be an equality for the choice 

E=P=Q=O, 

the second one is an equality for the choice 

E=P=Q=O, F=; il. 
[ 1 

Thus, we conclude that for the complementary projections PD,, 9s for the 
decomposition (3.13) we have 

l19’111F = Il9~llF = ti. (3.15) 

The SR decomposition is related to the SR algorithm for computing the 
eigenvalues of Hamiltonian matrices. Such eigenvalue problems arise in 
solving the algebraic Riccati equation in control theory (see Bunse-Gerstner 
and Mehrmann, 1986) and in some economics problems (see Medio, 1987). 
Finally we remark that though these are complex analogues of the groups 
Symp(n) and Cosymp(n), there is no complex version of the SR decomposi- 
tion. 

3.5. The HR Decomposition 

Let J be a given diagonal matrix whose diagonal entries are & 1. A matrix 
H is called J-unitary if 

H*JH =J, (3.16) 

The set of all such matrices is a subgroup of GL; we will denote it by JU. Let 
A be the set of all those matrices A for which the leading principal minors of 
A*JA have the same signs as the corresponding minors of J. Such matrices 
form a neighborhood of Z in M. Every element A of A has a decomposition 

A = HR, where HEJU, REA,. (3.17) 

See Bunse-Gerstner (1981) and Watkins and Elsner (1988). This is called the 
HR decomposition. 
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From (3.16) one can see that the Lie algebra corresponding to the group 
JU consists of all matrices X such that 

(lx)* = -JX. (3.18) 

Such matrices are called J-skew-Hermitian, and we denote their collection by 

JS * 
These matrices can also be characterized as follows. Partition the set 

0,2,. . . n} into 9 and y’ such = if i jii 
if i ~2’. Then X E JS iff all its diagonal entries are purely imaginary, 
Xij = xji if only one of i j is in 3, Xij -xji otherwise. Corre- 
sponding to the HR decomposition we thus have a vector space decomposi- 
tion 

M = JS + Are. (3.19) 

If a matrix A splits as A = X + Y in this decomposition, then we have 

xii = Im aii, yii = Re aii for all i, 

xij = aij, yij = 0 for i >j, 

xij = a.. - 
,,’ Yij = aij - aji if i < j and only one of i and j is in 3, 

Xij = --a.. ,,, yij = ajj + a.. I’ otherwise. 

It is clear then that l/X11”, Q 211A11: and llY 11°F < 211Alli and that these 
inequalities are sharp. Hence, we have 

ll9IllF = ll9d,llF = fi (3.20) 

for the complementary projection operators corresponding to the decomposi- 
tion (3.19). 

3.6. The Second Polar Decomposition 
A complex matrix A is called orthogonal if ATA = I, and skew-symmet- 

ric if AT = -A. We will denote the collections of such matrices as Orth and 
Ssym, respectively. The set Orth is a Lie group, and its Lie algebra is Ssym. 
If A E GL, then A can be factorized as A = A, A, where A, is orthogonal 
and A, is symmetric; see Gantmacher (1959, Chapter XI). The factor A, is a 
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square root of the matrix ATA. We can choose A, so that the argument of 
each of its eigenvalues lies in the interval (- n/2, r/2]. With this restriction 
the above factorization is unique; see de Bruijn and Szekeres (1955). For our 
analysis we will restrict A a little more. Let A be the class of all matrices A 
such that no eigenvalue of ATA is on the negative real axis (-m, 01. Then 
ArA has a unique square root all whose eigenvalues are in the open right half 
plane. Let Symm+ be the set of all symmetric matrices whose eigenvalues 
are in the open right half plane. Then for each A E A we have a unique 
decomposition 

A = A,A, where A, E Or& A, E Symm+. (3.21) 

We will call this the second polar decomposition. The set Symm+ is an open 
subset of the linear space Symm, and so the tangent space at any point of 

Symm + is the space Symm. Thus corresponding to the decomposition (3.21) 
we have the vector space decomposition 

M = Ssym + Symm. (3.22) 

If g1 and Ye are the complementary projection operators for the above 
decomposition then it follows from (2.8) that 

Ill9~lll = 1119~111 = 1 (3.23) 

for every unitarily invariant norm. 

3.7. The Third Polar Decomposition 
Let A be the matrix obtained from A by replacing each entry with its 

complex conjugate. A matrix A is called circular if a = I. Let Circ be the 
collection of all such matrices. Let M,,, Mi,, and GL,, denote the sets of all 
real matrices, all imaginary matrices, and all nonsingular real matrices, 
respectively. Each matrix A E GL can be factorized as A = RC where R is 
a real matrix and C is a circular matrix. See de Bruijn and Szekeres (1955), 
where this decomposition seems to have been discovered, Mehta (1989, p. 
90>, or Horn andJohnson (1991, p. 481). The matrix C is a square root of the 
circular matrix ( A)-lA. If we restrict C so that all its eigenvalues have their 
arguments in the interval (- rr/2,7r/2], then the above factorization is 
unique. Let A be the set of all matrices A such that (x)-‘A has no 
eigenvalue on ( - 00, 01, and let Circ+ be the set of all circular matrices whose 
eigenvalues are in the open right half plane. Then for each A E A we have a 
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unique decomposition 

A = RC where R E GL,,, C E Circ+. (3.24) 

We will call this the third polar decomposition. 

Note that the set Circ is not a subgroup of GL. However, it is a 
differentiable manifold, and Circ+ is an open subset in it. To determine the 
tangent space to Circ at the point I, consider a-smooth curve X(t) in Circ 

with X(0) = I. Then differentiate the product X( t)X(t> at t = 0 to see that 
the matrix X’(0) must be in Mi,. This space, therefore, is the tangent space 
to Circ at the point I. This is related to the fact that if / is an imaginary 
matrix then exp J is circular. To calculate the tangent space at any other 
point, consider a curve X(t) in Circ with X(O) = C. The same argument 
shows that if Y = X’(O) then Y must satisfy the equation 

Yc + cr = 0. (3.25) 

Let C1j2 be the circular matrix which is a square root of C and whose 
eigenvalues have arguments in the interval ( - ~/2,7r/2]. Then for every J in 
Mi, the matrix Y = C1/zJC1/2 satisfies the equation (3.25). A count of the 
dimensions then shows that the tangent space to Circ at C is the real linear 
space C 1/2MimC1/2. The same is true for the open subset Circ+. 

Corresponding to this decomposition we have the vector space decompo- 
sition 

M = M, + M,,. (3.26) 

In this decomposition a matrix A splits as A = A, + A,, , where A,, = i( A 

+fiand A,,=i(A-fi.If9, and p2 are the complementary projec- 
tion operators with respect to this decomposition, then it follows from (2.8) 
that 

ll190,111 = lll9Jl = 1 (3.27) 

for every unitarily invariant norm. 

3.6. The Cholesky Decomposition 
Every positive definite matrix A can be factorized uniquely as A = R*R 

where R is upper triangular with positive entries. We thus have an invertible 
map @ : P + A+, where @(A) = R. Th is situation is different from the 
earlier ones. First, P is not an open subset of M. However, it is an open 
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subset of the linear space Herm. 

: A+ + P. The derivative 
D@( A) is a linear map from Herm to Are. To study this it is easier to study 
the map D?(R). 

4. PERTURBATION BOUNDS 

Following Stewart and Sun (1990), we will adopt the following notation. 
The matrix A will represent a_ perturbation of A. If A = A,A, is a 
fa_ctorization of A, then A = A, A,, will be the corresponding factorization of 
A. In the numerical analysis literature several first order perturbation bountls 
are expressed in the form 

Iii, - AllI 11 i - All 

II AllI ~f(llN llAll ’ (4.1) 

which is a symbolic notation for the inequality 

llA;;$‘ll <f(llAll) “;,;,;‘l + 0(11/i - All”), (4.2) 
1 

valid for A in a neighborhood of A. 
The function f is to be determined explicitly. We will do this for the 

decompositions listed in Section 3. 
We will reserve the notation cond( A) for the condition number 

cond( A) = II AlI II A-'Il. (4.3) 

4.1. The Polar Decomposition 

THEOREM 4.1. Let @ : GL + U X P be the map (P(A) = 

(@,,(A), Q2(A)) = (U, P) dejned b y th p 1 e o ar d ecomposition. Then for every 
unitarily invariant norm the o?eriuatiues D@,( A) and DQ,( A) are bounded 

as 

lllD@l( A)111 = IIA-lI1, 

Ill DQ2( A)lll < 1 + cond( A). 

(4.4) 

(4.5) 
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Proof. The first part was proved in Bhatia and Mukherjea (1992). For 
the reader’s convenience we indicate the proof. We have noted in Section 2 
that if for X E M one has D@( AXUX) = (UM, N) where M E Sherm and 
N E Herm, then the equation (2.7) must be satisfied. Subtracting from this 
equation its adjoint, we get 

MP+PM=X-X*=:2iImX. (4.6) 

This equation has an explicit solution 

M = 2i,/me-‘p Im XeetP dt. (4.7) 

F rom 

< IIA-llI IllIm XIII lIA-lll IIIXIII. 

By definition, 

A)lll = A)( X)111: = 1) II A-ill. 

It is shown in the paper mentioned above that equality holds here. 
From (2.7) we also obtain 

IllNlll < IllXlll + IllMPlll G IllXlll + lllMlll llpll 

< IllXlll + ilA-‘h IiIXlll IlPIi 

= [l + cond( A)]lIIXIII. 

This proves (4.5). W 

COROLLARY 4.1. For each A = UP in GL we have the first order 

perturbation bounds 

IIIG - Ulll < IIA-‘II Illi - All1 = con4 A) 
111 A - AllI 

II All ’ (4.9) 

Ill@ - Plll Ill A - AIll 
ll,plll 5 [1 + co441 Ill Alli ’ 

(4.10) 
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Proof. By Taylor’s formula 

ti= U+D@,(A)( A - A) + higher order terms. 

So (4.9) is a consequence of (4.4); and by the same argument (4.10) follows 
from (4.5). n 

From (2.7) we have N = Re X + i(MP - PM). We have an explicit 
expression for M in (4.7). Hence we can also write an explicit expression 
for N. 

For the Frobenius norm (4.4) was proved also in Kenny and Laub (1991, 
Theorem 2.2), and for all unitarily invariant norms in Mathias (199Ib, 
Corollary 3.4). A weaker result was proved in Barrlund (1989). For real 
matrices a little stronger results have been obtained by these authors. 

Also, for the Frobenius norm the factor 1 + cond( A) occurring in (4.10) 
can be replaced by the smaller quantity fi. This has been observed in 
Higham (1986, Th eorem 2.5), Barrlund (1989, Theorem 2.6), and Mathias 
(199Ib, Theorem 5.1). We will discuss this again in Section 5. For other 
unitarily invariant norms the bound (4.10) seems to be new. 

4.2. The QR Decomposition 

THEOREM 4.2. Let @:GL+UxA+ be the map @,(A) = 
(@,,(A), Qz(A)) = (Q, R) defined by the QR decomposition. Then 

llDDl( A)IIF G fill A-‘II, 

IID@,( A)ll~ < 6 cond( A). 

(4.11) 

(4.12) 

Proof. As in the proof of Theorem 4.1, one finds that if for X E M one 
has D@(A)(QX) = (QM, N), where M E Sherm and N E A,,, then we 
must have 

X=MR+N. 

This equation is similar to (2.7). The fact that Ar, is closed under multiplica- 
tion allows us to estimate M and N from this equation. Write this as 

XR-’ = M + NR-’ 
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Then note that M E Sherm and NR-l E A,. So we have from (3.4) 

IlMll~ < J;zllXR-‘11 F < IIXIIFIIR-ill = ~llXlI~lIA-~ll> 

IINR-‘IIF < dkYR-% G d%$IIR-‘II, 

and hence, 

llNllF G IINK’IIFIIRII G ~IIXIIFIIR-lll IIHI = ficond( A). 

These inequalities lead to (4.11) and (4.12). 

COROLLARY 4.2. For each A = QR in GL we have 

n 

Ilo - QIIF 5 tiIIAp’ll [lx - &> (4.13) 

lli - RIIF 5 v5-i cond( A) II K - AlIF. (4.14) 

The inequality (4.11) was proved in Bhatia and Mukherjea (1992). The 
first work on the perturbation analysis of the QR decomposition is Stewart 
(1977). Two recent papers are Sun (1991) and Stewart (1992). For a compari- 
son with results of these authors write (4.13) as 

II@ - QIIF 5 d? co4 A) 
II A - Ally 

l/All * 
(4.15) 

This is stronger than the bounds (3.2) of Stewart (1992) and (1.14) of Sun 
(1991). The bound (4.14) is exactly the same as obtained in Sun (1991, 
Theorem 1.5) and in Stewart (1992). However, both Stewart and Sun 
consider rectangular matrices, and thus their results are more generally 
applicable. 

4.3. The LR Decomposition 

THEOREM 4.3. Let @ : SNS + AT X A,, be the map @(A) = 
(Ol(A), Q2( A)) = (L, A) given by the LR decomposition. Then 

llD@,,( A)ll~ G con4 L) IIR-lIl, (4.16) 

II Da2( A)ll~ G cond( R) II L-‘Il. (4.17) 
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Proof. There are two little differences between this and the earlier 
situations. First, none of the factors is unitary, and so there are fewer 
cancellations while calculating norms. Second, the tangent space to AT at any 
point L is L.A*, =A%. Thus the derivative of the inverse map * is 
calculated as 

DW(L,R)(K,T) = -&L+tK,R+tT) 1 =LT+zCR 
t=o 

for all K E A:, T E A. So if for X E M we have 

D@(A)(X) = (M,N), where ME A*, 

then we must have 

X = LN + MR. 

Write this as 

L-‘XR-r = NE-l + L-‘M; 

NEA, 

(4.18) 

then note that NR-’ E A and L-‘M E A*,. Hence, by (X6), 

~~L-‘MIIF < IIL-lXR-lII~ < llL-‘ll IIXIIFIIR-‘II 

and hence 

IIMIIF < IlLll IIL-1I1 IIXIIdIR-‘II. 

This gives (4.16). The inequality (4.17) has the same proof. 

COROLLARY 4.3. For each A = LR in SNS we have 

lli - LIIF < cond( L) IIR-lll IIA - AIF, 

llfi - RllF < cond( R) IILp’II Ilk - NF. 

We could also write (4.19) as 

(4.19) 

(4.20) 

16 - LIIF 
II LII 

,< IIL-‘11 IIR-‘11 llA,ll’Al;;“F. 
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If instead of (2.9) we had used the inequality 11 XY II F < II X II FIIY II F, valid for 

any X, Y, we would have obtained instead 

Iii - LllF II A - AIIF 

ilLilF 
s Il~~‘lI~ll~~~ll~Il~ll~ llA,l . 

F 

The same would hold for any norm which is submultiplicative and for which 
(3.6) holds. This is exactly the result in Stewart [1992, (3.111. 

4.4. The SR Decomposition 

THEOREM 4.4. Let @ : A 4 Symp x Cosymp be the map @(A) = 

(@J A), @,(A)) defined by the SR decomposition. Then 

llDQI( A)IIF < 6 cond( S) IIR-ill, (4.21) 

((D+,( A)llF < &IS-‘llcond(R). (4.22) 

Proof. The derivative D@(A) maps M into S * Ham + Coham. If 

D@( A)( X> = (SM, N) where M E Ham, N E Coham, then one can see, 
as in the proof of Theorem 4.1, that 

X=SMR+SN. 

So we have 

S-‘XR-’ = M + NR-I, MEHam, NR-’ E Coham. 

Hence, by (3.15) 

IIMIIF < fiIIS-lXR-'II F < L~?IIS-~II IIXIIFIIR-~~~. 

Hence 

IlSMll F Q tkfcond(S) IIR-‘II IIXIIF, 

which gives (4.21). In the same way, we obtain (4.22). n 
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COROLLARY 4.4. For each A = SR in A we have 

IIS - SllF 5 ti cond( S) IIR-lll IIA - AIIF, 

Ilfi - RIIF < &IIS-lllcond( R) Ilk - AlIp. 

(4.23) 

(4.24) 

4.5. The HR Decomposition 

THEOREM 4.5. Let Q : A -+ JU X A+ be the map @(A) = 
(al(A), az( A)) = (H, R) defined by the HR decomposition. Then 

llDQ1( A)ll~ < fi cond( H) IIR-‘II, 

llD@‘,( A)ll, G fiIIH-lIlcond(R). 

(4.25) 

(4.26) 

COROLLARY 4.5. Let A = HR be any element of A. Then 

IIg - HIIF 5 ti cond( H) IIR-lll Ilk - AIIF, 

IIE - RIIF < h?IIH-‘llcond( R) Ilk - AlIF. 

(4.27) 

(4.28) 

The proofs are exactly the same as those for the SR decomposition. 

4.6. The Second Polar Decomposition 

THEOREM 4.6. Let @ : A + Orth X Symm’ be the map @(A) = 
(@,(A), Qz( A)) = (A,, A,) defined by the second polar decomposition. Let 

y( A,) = ~mlle~tA2~12 dt. (4.29) 

Then for every unitarily invariant norm, 

lllD@~( A>lll =G 2 cond( Al) Y(A,), 

lllD@~( A)lll G IIA,lll[l + W( A,)L%Il]. 

(4.30) 

(4.31) 
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Proof. The derivative D@( A) is a linear map from M into A, * Ssym + 
Symm. Let D@(A)(X) = (A, M, N), where M E Ssym, N E Symm. Then 
one can see, as in earlier proofs, that 

X = A,MA, + A,N. (4.32) 

From this equation one obtains 

A,‘X - (A;lX)r = MA, + A,M. 

Since the eigenvalues of A, are all in the open right half plane, this equation 
can be solved for M. The solution is unique and is given by 

M = [j”e-tA2[ A,rX - (A, ‘X)r]e+ dt. 

See Lancaster and Tismenetsky (1985, p. 414). From this, using (2.8) and 
(2.91, we get 

lllMlll < 2llA,‘Il IIIXIIly(A,), (4.33) 

and hence. 

lIlAMIll =s 2cond( A,) Y( Ae)lllXIII. 

Taking the supremum over all X with 111 X 111 = 1, one obtains (4.30). From 
(4.32) and (4.33) we also get 

lllNlll < IlA,‘ll[l + 234 A,)lIA,II]IIIXIII. 

This leads to (4.31). n 

COROLLARY 4.6. Let A = A, A, be the second polar decomposition of 

any matrix A E A. Then 

IIlk, - AlIll ,< 2cond( A,) Y( &)lllk - AllI, (4.34) 

III& - A2111 5 IIA,llI[l + ZY( A,)lIA,Il]lil~ - All. (4.35) 
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Convenient bounds for y( A,) are known under additional conditions. For 
example, if the quantity S( A,) defined as the minimum eigenvalue of 
i( A, + A: ) is positive, then 

See, e.g., Bhatia, Davis, and McIntosh (1983, p. 53). Hence in this case 

The condition 6(A,) > 0 says that not only the spectrum but also the 
numerical range of A, lies in the open right half plane. The matrix A, is 
then called accretive. 

4.7. The Third Polar Decomposition 

THEOREM 4.7. Let @ : A + GL,, X Circ+ be the map @(A) = 
(al( A), Q2( A)) = RC given by the third polar decomposition. Let 

y(C) = ~ml~e-“:~~’ dt. 
0 

Then for every unitarily invariant norm 

IIPD1( A)III G IIC-lll[l + 2cond(R) r(~)ll~ll]~ (4.36) 

lllD@2( A)lll < 211R-‘11 llCll~(C). (4.37) 

Proof. The derivative D@,(A) is a linear map from M into M,, + 
Ci”M. ml Cl”. Let ‘P = a-‘, ‘I’(R, C) = RC = A. Then for any E E M,, 
and J E Mi, we have 

Dq( RC)( E, C1/2JC1/2) = zY’( R + tE, C1/zet~C1/z )I t=0 
= EC + RC”2JC1’2. 
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Hence, if 

D@(A)(X) = (N, C1’2MC1’2) where N E M,,, M E Mi,, 

then 

X = NC + RC"2MC"2. (4.38) 

Rewrite this as 

R-‘XC-’ = R-IN + Cl/zMC-1/2 

Subtract from this equation its complex conjugate, remembering that R and 
N are real, M is imaginary, and C is circular. This gives 

R-‘XC-1 _ R-‘FC = C’/2MC1/2C-’ + C-lC’/“MC1/2. 

This is the same kind of equation as in Section 4.6, and we have from this 

R-'XC-1 -R-ljfC]e~'c& 

From this we get 

lllC1'2MC"2111 < 211R-111 ilCliy(C)lllXill, (4.39) 

using (2.81, (2.91, and the fact that C is circular. This gives the inequality 
(4.37). From (4.38) and (4.39) we get 

lllNClll < [l + 2 cod(R) Y(C)IICII]IIIXII~. 

This leads to (4.36). W 

COROLLARY 4.7. Let A = RC be the third polar decomposition of any 

matrix A E A. Then 

lllti - Rlll 5 llC-‘li[l + 2 cond( R) y( C)llCll] Ill A - All, (4.40) 

llld - Clll 5 2llR-‘II IlClly(C)lll~ - All/. (4.41) 
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As observed in Section 4.6, y(C) can be estimated conveniently when C 
is accretive. 

4.8. The Cholesky Decomposition 

In Bhatia and Mukherjea (1992) we proved the following result using the 
same ideas as above: 

THEOREM 4.8. Let Q, : P + A+ be the map @(A) = R where A = R*R 

is the Cholesky factorization of A, and let V!(R) = A be the inverse map. 

Then 

1 
llD@( A)ll, G ~IIAlI”‘IIA-‘II, (4.42) 

lllD*( R)lll < 211 RII. (4.43) 

So we have the following 

COROLLARY 4.8. For any A = R*R in P we have 

IIg - RIIF 5 ~ll~lll~zll~-lll Iii - AIIF, (4.44) 

llli - AllI < 2llRll lllti - RIII. (4.45) 

Let us compare these bounds with those of other authors. Since IIAll = 

II Rll’, we obtain from (4.44) 

llfi - RIIF 1 11 i - AIIF 
IIRII s F cond( A) ll All ’ 

This is the same as the bound in Sun [1991, (1.9>] and in Stewart (1992). 
Since IIA~/F < IlRll IIRIIF, we also get from (4.44) 

IIg - RIIF 1 11 k - AIIF 
IIRIIF s E cond( A) IIAIIF ’ 

which is the same as the bound in Sun, [1991, (1.90)]. From (4.45) we obtain 

llli - AllI < 2 lIlti - Rlll 
IIAII - IIRII . 
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The Frobenius norm case of this is proved in Sun [1991, (1.9)]. Since 
R* = AR-‘, we have lllR/ll < IlIAIlJ llR_‘II. Using this, we get from (4.45) 

Ill i - All1 Ilk - Rlll 

III All 5 2b4 AY lllRlll . 

The Frobenius norm case of this is proved in Sun [1991, (l.lO>]. 

5. MORE ON THE POLAR DECOMPOSITION 

In this section we will use the symbol I Al to denote the P part in the 
polar decomposition of any matrix A. Thus 

IAl = ( A*A)“’ = P. 

This matrix absolute value has several interesting properties much different 
from the absolute value of a complex number. See Thompson (1992, Section 
7) for one such instance. Our interest here is in the Lipschitz continuity of 
the map A + I Al, i.e. in inequalities of the type 

111 IAl - IBl Ill < clllA - Bill, (5.1) 

where c is a constant which may depend on the norm l~l*~~~ but should not 
depend on the dimension n. 

No such inequality can exist for the operator bound norm. There exist 
n X n Hermitian matrices A, B such that 

11 IAl - IBI 11 2 +(log, n)1’211A - BII. (5.2) 

Examples of such matrices were constructed in McIntosh (1971). This 
question was studied by Kato (1975), who obtained a different kind of 
inequality for the operator bound norm: 

II IA1 - IBI 11 < %A - RI1 
n- 

In this paper Kato attributes to W. Kahan a theorem saying that the map 
A + I Al is Lipschitz continuous in the Frobenius norm. No reference is 
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provided by Kato, nor is the constant c occurring in (5.1) specified. Araki and 
Yamagami proved that 

II IAl - IBI IIF Q fill A - BIIF, (5.3) 

that the constant fi occurring in (5.3) is best possible, and that when A, B 
are self-adjoint this could be improved to 1. Another proof of this result was 
given by Kittaneh, who obtained stronger statements as well. See Araki and 
Yamagami (1981), Kittaneh (1985), and Kittaneh (1986). These results are 
valid in infinite dimensions as well. 

Numerical analysts have also proved (5.31, but sometimes as an asymp- 
totic bound and sometimes under restrictions. See Higham (1986, Theorem 
2.5>, Barrlund (1989, Theorem 2.6). Following the ideas of Kittaneh. let us 
outline a simple proof of (5.3). 

LEMMA 5.1. Let f be a Lipschitz continuous function 
plane satisfying the inequality 

If( z> - f(w)1 =G klz - WI forall 2,~. 

Then for all X E M and for all normal matrices A we have 

llf( A)X - Xf( A)ll~ Q kllAX - XAIIF. 

on the complex 

(5.4) 

(5.5) 

Proof. Without loss of generality we can assume A = diag(A,, . . . , A,). 
Then if X = (xij), we have 

Ilf(A)X-Xf(A)ll~= Cl[f(‘i) -f(Aj)]Xij12 

i,j 

< k2Clhi - Ajl”lXijl” 

i,j 

= k21/ AX - X&. n 

Now, using what is called “Berberian’s trick”, we can extend this lemma 
to the case of two normal matrices: 

LEMMA 5.2. Let f be a function satisfying (5.4). Let A, B be any two 
normal matrices. The for every X E M 

llf( A)X - Xf( B)ll, < kll AX - XBIIF. (5.6) 
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Proof. Put 
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and apply Lemma 5.1 to these two operators instead of A and X. 

If we choose X = Z and f(.z> = 1 zI in the above lemma, we obtain 

COROLLARY 5.3. ZfA and B are normal matrices, then 

II IA1 - IBI IIF Q IIA - HF. (5.7) 

This result is due to Kittaneh (1985). Araki and Yamagami had proved it 
when A, B are Hermitian. Using another trick involving 2 X 2 block matri- 
ces, we can now prove a result stronger than (5.3). 

THEOREM 5.4 (Kittaneh’s generalization of the Araki-Yamagami inequal- 

ity). Let A, B be any two matrices. Then 

II IAl - IBI II; + ll IA*1 - IB*l 11°F G f&4 - Bll;. (5.8) 

Proof. Let 

T=[;* ;‘I> S=[;* f]. 

Then note that T and S are Hermitian and 

IA*1 0 
ITI = o IAl . 

[ 1 

So the inequality (5.8) follows from (5.7). W 

Some remarks are in order here. First, the above inequalities are all valid 
in infinite dimensions. For example, it is clear that Lemma 5.1 can be 
extended to operators with pure point spectrum. Then to extend it to 
arbitrary operators one can appeal to a theorem of Voiculescu which says 
every normal operator can be expressed as a diagonal operator plus a 
Hilbert-Schmidt operator with an arbitrarily small Hilbert-Schmidt 
(Frobenius) norm. See Kittaneh (1985). S econd, these results have other very 
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interesting consequences. Thus for example, one famous theorem of operator 
theory is the Putnam-Fuglede theorem. According to this, if A, B are 
normal, then for any X we have AX - XB = 0 iff A*X - XB* = 0. Lemma 
5.2 with f(z) = Z gi ‘ves the much stronger result 11 AX - XBllF = I)A*X - 
XB*IIF. For infinite dimensional spaces this result is proved in Weiss (1981). 
Third, inequalities like (5.8) would be useful in obtaining perturbation results 
for singular vectors. See Bhatia and Kittaneh (1988). 

Now let us return to the question whether an inequality like (5.1) is true 
for some other unitarily invariant norms. For 1 < p < w consider the 
Schatten p-norms defined as 

)IAll, = (&f’(A))““. i 
In this notation IIAlIF = IIAllz. It is also customary to put 

II Allrr = II All = si( A). 

It has been proved in Davies (1988) that for each p, 1 < p < a, there exists 
a constant 7, independent of n such that 

11 IAl - IBI Ilp < @A - Blip. (5.9) 

We have already noted that no such inequality can hold for p = 00. By a 
duality argument none can hold for p = 1 either. However, in the same 
paper Davies has shown that there exists a constant c, which is O(log n) 
such that for all n X n matrices A, B, 

11 IAl - IBI lip < c,,llA - &, p = l,a. (5.10) 

Further, the best constant occurring in this inequality must grow as log n. 
Good estimates for the value of this constant, accurate to a factor 2, have 
been obtained in Mathias (1991a). 

In a recent paper (Kosaki, 1992) those norms for which estimates like 
(5.1) are valid have been characterized. It turns out that these norms are 
precisely the ones for which the triangular truncation operator .7 on M has 
norm Ilmll, which can be bounded independently of n. (See Section 3.2 
above.) 

Finally, let us mention another kind of results. It was shown by Kosaki 
that 

II IA1 - IBI 111 < &(llA + BllillA - Bll$” (5.11) 
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and by Kittaneh and Kosaki that 
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II IAl - IBI II p < (lb + Bll,llA - Bllp)l’e, p a 2. (5.12) 

See Kosaki (1984), Kittaneh and Kosaki (1986). The picture was completed in 
Bhatia (1988), where it was shown that 

11 IAl - IBt 111’ < 2 “@“([IA + B11,11A - Bl&)l”, 1 <p =G 2, (5.13) 

and that 

111 IAl - IBI 111 < fi(lllA + Bill IllA - Blll)1’2 (5.14) 

for every unitarily invariant norm. All the inequalities (5.11)-(5.14) are sharp. 

One of the key ideas of this paper was developed in collaboration with 

Kalyan Mukherjea in 1985. Stimulus to carry out this detailed analysis came 

from preprints I received from Roy Mathias and G. W. Stewart, which made 

me aware of the work of several numerical analysts on these problems. This 

work uxs facilitated by the support I received from the DAE India and the 

SFB 343 at the University of Bielefeld and was accelerated by an invitation to 

talk at the ILAS Conference in Lisbon in August 1992. It is a pleasure to 

record my thanks to all of them. 

REFERENCES 

Araki, H. and Yamagami, S. 1981. An inequality for the Hilbert-Schmidt norm, Comm. 
Math. Phys. 81:89-98. 

Arazy, J. 1978. Some remarks on interpolation theorems and the boundedness of the 
triangular projection in unitary matrix spaces, Integral Equations Operator Theory 

1:453-495. 

Barrlund, A. 1989. Perturbation bounds on the polar decomposition, BIT 30:101-113. 
Bhatia, R. 1987. Perturbation Bounds for Matrix Eigenualues, Longman, Essex. 
Bhatia, R. 1988. Perturbation inequalities for the absolute value map in norm ideals of 

operators, J. +erator Theory 19:129-136. 
Bhatia, R., Davis, C., and McIntosh, A. 1983. Perturbation of spectral subspaces and 

solution of linear operator equations, Linear Algebra Appl. 52/53:45-67. 

Bhatia, R. and Kittaneh F. 1988. On some perturbation inequalities for operators, 
Linear Algebra Appl. 106:271-279. 

Bhatia, R. and Mukherjea, K. 1986. On weighted Lijwdin orthogonalization, Inter-nut. 
J. Qtm. Chem. 29:1775-1778. 



MATRIX FACTORIZATIONS 275 

Bhatia, R. and Mukherjea, K. 1992. Variation of the unitary part of a matrix, S’IAMJ. 

Matrix Appl., to appear. 
Bunse-Gerstner, A. 1981. An analysis of the HR algorithm for computing the 

eigenvalues of a matrix, Linear AZgebru Appl. 35:155-178. 

Bunse-Gerstner, A. 1986. Matrix factorizations for symplectic QR-like methods, 

Linear Algebra Appl. 83:49-77. 

Bunse-Gerstner, A. and Mehrmann, V. 1986. A symplectic QR like algorithm for the 

solution of the real algebraic Riccati equation, IEEE Trans. Automat. Control 

31:1004-113. 

Chevalley, C. 1946. Theory of Lie Groups, Princeton U.P., Princeton. 

Davies, E. B. 1988. Lipschitz continuity of operators in the Schatten classes, J. 

London Math. Sot. 37:148-157. 

de Bruijn, N. G. and Szekeres, G. 1955. On some exponential and polar representa- 

tions of matrices, Nieuu Arch. Wisk. 3:20-32. 

Dieudonne, J. 1960. Foundations of Modern Analysis, Academic, New York. 

Fiedler, M. 1986. Special Matrices and Their Applications in Numerical Mathematics, 

Martinus Nijhoff, Dordrecht. 

Gantmacher, F. R. 1959. The Theory of Matrices, Chelsea, New York. 

Gohberg, I. C. and Krein, M. G. 1970. Theory and Applications of Voherra Operators 

in Hilbert Space, Amer. Math. Society, Providence. 

Goldstein, J. A. and Levy, M. 1991. Linear algebra and quantum chemistry, Amer. 

Math. Monthly 78:710-718. 

Golub, G. and Van Loan, C. 1989. Matrix Computations, 2nd ed., Johns Hopkins 
U.P., Baltimore. 

Higham, N. J. 1986. Computing the polar decomposition-with applications, SIAM J. 

Sci. Statist. Comput. 7:1160-1174. 

Horn, R. A. and Johnson, C. R. 1985. Matrix Analysis, Cambridge U.P., Cambridge. 

Horn, R. A. and Johnson, C. R. 1991. Topics in Matrix Analysis, Cambridge U.P., 
Cambridge. 

Kato, T. 1973. Continuity of the map S 4 IS 1 for linear operators, Proc. Japan Acad. 

Sci. 49:157-160. 

Kenny, C. and Laub, A. J. 1991. Polar decomposition and matrix sign function 
condition estimates, SIAM J. Sci. Statist. Comput. 12:488-504. 

Kittaneh, F. 1985. On Lipschitz functions of normal operators, Proc. Amer. Math. 

Sot. 94:416-418. 

Kittaneh, F. 1986. Inequalities for the Schatten p-norm IV, Comm. Math. Phys. 

106:581-585. 

Kittaneh, F. and Kosaki, H. 1986. Inequalities for the Schatten p-norm V, Publ. Res. 

Inst. Math. Sci. 23:433-443. 

Kosaki, H. 1984. On the continuity of the map 4 + 141 from the predual of a 
W *-algebra, J. Funct. Anal. 59:123-131. 

Kosaki, H. 1992. Unitarily invariant norms under which the map A + (Al is Lipschitz 
continuous, Publ. Res. Inst. Math. Sci. 28:299-313. 

Kwapien, S. and Pelczynski, A. 1970. Th e main triangle projection in matrix spaces 
and its applications, Studia Math. 34:43-68. 



276 RAJENDRA BHATIA 

Lancaster, P. and Tismenetsky, M. 1985. The Theory of Matrices with Applications, 
Academic, New York. 

Mathias, R. 1991a. The Hadamard operator norm of a circulant and applications, 
preprint. 

Mathias, R. 1991b. Perturbation bounds for the polar decomposition, preprint. 
McIntosh, A. R. 1971. Counterexample to a question on commutators, Proc. Amer. 

Math. Sot. 29:337-340. 

Medio, A. 1987. Oscillations in optimal growth models, I. Econom. Theory 
11:201-206. 

Mehta, M. L. 1989. Matrix Theory, Hindustan, Delhi. 
Stewart, G. W. 1977. Perturbation bounds for the QR factorization of a matrix, SIAM 

J. Numer. Anal. 14:509-518. 

Stewart, G. W. 1992. On the Perturbation of LU, Cholesky and QR Factorizations, 
TR-92-24, Univ. of Maryland, College Park. 

Stewart, G. W. and Sun, J.-G. 1990. Matrix Perturbation Theory, Academic, New 

York. 
Sun, J.-G. 1991. Perturbation bounds for the Cholesky and QR factorizations, BIT 

31:341-353. 

Thompson, R. C. 1992. High, low, and quantitative roads in linear algebra, Linear 

Algebra Appl. 162-164:23-64. 

Watkins, D. S. and Elsner, L. 1988. Self-similar flows, Linear Algebra Appl. 

110:213-242. 

Weiss, G. 1981. The Fuglede commutativity theorem modulo the Hilbert-Schmidt 

class and generating functions for matrix operators II, J. Operator Theory 5:3-16. 

Received 4 September 1982; final manuscript accepted 15 April 1993 


