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Biotechnology at Low Reynolds Numbers
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ABSTRACT The shrinking of liquid handling systems to the micron and submicron size range entails moving into the area

of small Reynolds numbers. The fluid dynamics in this regime are very different from the macroscale. We present an intuitive
explanation of how the different physics of small Reynolds numbers flow, along with microscopic sizes, can influence device
design, and give examples from our own work using fluid flow in microfabricated devices designed for biological processing.

INTRODUCTION

It has recently become possible, using the power of micro-
fabrication, to construct fluid systems with feature sizes as
small as a few microns. There has been a surge of interest
in the "lab-on-a-chip" concept, which involves the minia-
turization of many chemical processes onto a single silicon
chip (Ramsey et al., 1995). Because these systems allow one
to manipulate single cells, and even single macromolecules,
there is great interest in the biotechnology community in
using microfluid systems for analytical tests. For example,
in the polymerase chain reaction, amplification of DNA in
a microenvironment is attractive both because the temper-
ature can be rapidly cycled and because the sample volume
is extremely small (Wilding et al., 1994; Northrup et al.,
1995). Other examples of uses for micromachining in biol-
ogy would be the construction of arrays for the filtration and
fractionation of DNA and cells (Volkmuth and Austin,
1992; Brody et al., 1995), where the precise machinability
of silicon and control over the size of the structures is very
important. There have been a number of other microfabri-
cated devices constructed for simple analytical tests (Ram-
sey et al., 1995). Many of these use electrokinetic forces to
induce flow, and the physics of this is in some cases
different from the pressure-driven flow discussed here. See
Manz et al., 1993, for a detailed discussion of electrokineti-
cally driven devices. We have chosen in this article to
concentrate on hydrodynamic flow issues. There are four
microfabricated devices used as examples in this paper: a
percolating lattice through which DNA molecules move, a
hydrodynamically focused fast mixing device to study pro-
tein folding reactions, a virtual valve used to direct flow at
the intersection of multiple channels, and a diffusion-based
extraction device.
As fluid transport systems get smaller and smaller, they

inevitably move to the regime of viscous dominated flow, as
the characteristic length scale of the flow shrinks with the
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size of the device. There is a fundamental change in hydro-
dynamics that occurs here, which can act as a barrier to the
operation of the device. This barrier occurs when the Reyn-
olds number is of order unity. For practical purposes, with
water as the working fluid, one enters the low Reynolds
number regime when the channel size is smaller than about
100 ptm with fluid velocities on the order of ,um/s. The fluid
dynamics at this size scale are somewhat different from
what one finds in everyday experience. An informal, intu-
itive explanation of many of these effects is found in a
classic paper (Purcell, 1977). At these scales, viscous forces
dominate over inertial forces, turbulence is nonexistent,
surface tension can be a powerful force, diffusion becomes
the basic method for mixing, and evaporation acts quickly
on exposed liquid surfaces. This paper outlines the laws that
govern fluid phenomena at small scales, explores the effect
of diffusion and surface tension on these fluid flows, and
presents results from a few basic experiments.

MICROMACHINING AND FLOW VISUALIZATION

Micromachining involves the use of either energetic ion
plasmas or wet chemical etches to selectively remove and
undercut material from objects, typically silicon wafers with
deposited or thermally grown surface layers. An extensive
review of these techniques can be found in Peterson, 1982.
Here, patterns are constructed on silicon wafers using pho-
tolithography, then etched using either chlorine-based reac-
tive ion etching or anisotropic wet etches, and finally an-
odically bonded to Pyrex windows (Wallis and Pomerantz,
1969; Volkmuth, 1994; Brody et al., 1995). This process
can be used to form arbitrary shapes of microfluid flow
channels, as we show in Fig. 1. This complicated network of
flow channels (a percolating lattice) can be created with
ease using microfabrication. The algorithm used to con-
struct pseudorandom structures begins with a square grid of
points. For each line between two adjacent grid points a
random number between 0 and 1 is chosen. If the number is
larger than some predetermined limit, in this case 0.4, a line
is drawn, otherwise the line is left blank. As long as the
filling probability is kept less than the percolation limit,
there exists a path through the structure. A standard process
was used at the Cornell Nanofabrication Facility (CNF) in
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FIGURE 1 A scanning electron micrograph of a percolating lattice, in
this case etched into a conducting doped poly-silicon layer. A piece of
Pyrex glass was anodically bonded to the tops of these rectangular blocks
to hermetically seal the flow chamber. (SEM by Rich Tiberio, NNF).

Ithaca, NY (Brody et al., 1995) and an alternative wet
chemical process was used at the Washington Technology
Center (Brody and Yager, 1996).
To provide a fluid entrance to the device, a small hole

was carefully ground through a piece of Pyrex glass. The
glass was then anodically bonded to the tops of the silicon
blocks, and a glass tube was epoxied over the hole, as
shown in Fig. 2. An alternative is to etch a hole completely
through the silicon and make fluid connections on the back
side of the device. The fluid flow was driven by a pressure
gradient. Large pressure differences (greater than 5 psi)
were set and controlled by using either a compressed gas
source behind a liquid reservoir or a syringe with manually
applied pressure. Smaller, easily controllable, pressure
heads can be produced by a column of water.

Fluorescent microscopy is an ideal tool for flow visual-
ization in microfluidic systems. Submicron diameter neutral
buoyant spheres impregnated with fluorescent dyes are
commercially available (Duke Scientific, Palo Alto, CA;
Polysciences, Warrington, PA). We have used these
spheres, DNA molecules, free fluorescent dye, and fluores-
cent-tagged protein to visualize both flow patterns and
diffusion in microfabricated structures. In a typical experi-
ment a 0.01% solution of 0.5-,um diameter fluorescing
beads was used to visualize the flow. These beads were
imaged either on a Nikon Optiphot compound microscope
or on an inverted Zeiss microscope. Depending on the size
of the signal, a Hamamatsu 2400 SIT camera, Dage silicon-
intensified target (SIT) video-rate camera, or a GBC CCD
(CCTV Video, Inc.) camera, in order of decreasing sensi-
tivity and increasing frame rates, was used to image the
objects. The video data were recorded on S-VHS video tape
and analyzed later on a Silicon Graphics Indy computer and
a Macintosh 636 Performa computer.

FIGURE 2 Top (a) and side (b) views of the experimental setup. The
thickness of the materials is not drawn to scale.

FLUID DYNAMICS

The basic equation governing incompressible fluid dynam-
ics is the Navier-Stokes equation,

p[ + (u * V)u] = -VP++iiV2u. (1)

where u is the fluid velocity, P is the pressure, and 7r is the
fluid viscosity. The Navier-Stokes equation is just Newton's
law for a fluid, with forces per unit volume on the right-
hand side due to a pressure gradient, (-VP), and viscosity,
(_qV2u). The left-hand side gives the mass per unit volume,
p, times the acceleration of the fluid, expressed in terms of
the convective derivative in a Eulerian representation. Ad-
ditional body forces acting on the fluid add to the right-hand
side (e.g., gravity as a term pg).
The Reynolds number serves to measure the ratio of the

inertial forces to the viscous forces. This ratio may be
written as

ult + u2/1
Re= p U/1 (2)
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where u, 1, p, and 'q are, respectively, a characteristic fluid
speed, length scale (e.g., channel diameter over which
changes in the fluid velocity occur), density, viscosity, and
where t is a characteristic time of the flow over which the
velocity vector of the fluid flow changes appreciably in
amplitude or direction. Inasmuch as t X u - 1, equation 2
can be rewritten as:

pul
Re= . (3)

At low Reynolds numbers, the fluid dynamics are dom-
inated by viscous drag rather than by inertia, and because of
this, devices that rely on inertial effects for their operation
will no longer work. This leads to a limit to the extent to
which one can scale down a design that works at high
Reynolds numbers. If, however, a device is designed prop-
erly, it can work better as it gets smaller. The approxima-
tions made in viewing the system as dominated by viscous
forces will be valid as long as the Reynolds number is <1
and the time scale ("switching time"), Ts, on which the
pressure driving the flow varies is longer than the time
pl2/h. Note that the smaller the diameter of a fluid channel,
the faster such changes can be made.
Flow patterns are usually classified into one of two kinds,

turbulent and laminar flow. Laminar flow is smooth pre-
dictable flow, which always occurs at Re << 1, where any
induced vortices die away. Turbulent flow, which can only
occur at high Reynolds numbers (typically Re > 103), is a
situation in which inertial forces are much larger than vis-
cous forces. It is characterized by a rich and complicated
flow structure of interacting vortices. By carefully avoiding
any instabilities, however, laminar flow conditions have
been observed at Re higher than 105. The region of Re from
102 to 104 is generally regarded as the transition region
between laminar and turbulent flow inside a channel. There
is never any turbulence in low Reynolds numberflow.

For fluid flow through microstructures studied in this
work, some typical values for flowing water are, u = 1-100
pLm/s and 1 = 10 ,tm. (See Table 1 for the physical constants
related to water.) This gives a typical Re = 10-3 to 10-5. At
low Re, like these, the Navier-Stokes equation is particu-
larly simple, as we can effectively ignore the left-hand side
of Eq. 1, which gives the inertial terms. This transforms a
nonlinear partial differential equation into a simple linear
one. The fluid flow is determined entirely by the pressure

TABLE 1 Scaling behavior of parameters for a constant-time
micro-fluid device

Volume 13

Reynolds number 12
Length I'
Applied pressure P
Fluid velocity 1-I
Pressure due to surface tension 1-'
Evaporation rate 1-'
Diffusion time 1-2

distribution, the incompressibility constraint V X u = 0,
and, of course, the boundary conditions (u = 0 at the walls).
This type of flow is known by various names: "Stokes
Flow," "Creeping Flow," "Potential Flow," or most simply
and clearly, "Low Reynolds Number Flow." The governing
law is the Stokes equation:

'IV2u = VP, (4)

a well-studied differential equation in mathematical physics.
Unlike the Navier-Stokes equation (Eq. 1), eq. 4 contains

no time derivatives. Because of this, under low-Reynolds-
number conditions, all motion is symmetric in time. Thus, if
the pressures or forces exerted on the fluid are reversed, the
motion in the fluid is completely reversed (Purcell, 1977).
At high Reynolds numbers, it is virtually impossible to
move a fluid and then return it to its original state, but this
is easily done at low Reynolds numbers.
An important consideration in the design of any micro-

fabricated structure is the influence that the boundaries of a
flow chamber have on the flow profile. Such effects deter-
mine the relationship between pressure gradients and volu-
metric flow rates, the uniformity of velocity profiles trans-
verse to the mean flow direction, as well as aspects of
advection-enhanced diffusion (that is, enhancement of mix-
ing by shearing flow-Taylor diffusion). In this section we
consider the two basic flow geometries, pipe and channel
flow, and study the solutions to the Stokes equation for
steady flow. The standard boundary conditions that we will
assume throughout this text are "no-slip" boundary condi-
tions, meaning that at the surface of an object there is no
fluid flow. [These conditions are well established even at
the submicron level (Bocquet and Barrat, 1993).] Using
fluorescent beads as tracer particles in the flow, we present
the results of a visualization of the boundary layers that
form near walls in wide-aspect ratio channels due to the
no-slip boundary conditions.
The most important physical situation encountered is

flow down a channel, and surprising predictions for the flow
profile are easy to obtain. For both pipe and channel flow,
we consider a conduit of infinite extent in the z-direction,
with a (fixed) pressure gradient:

(5)-- G,

with G > 0. The velocity field is u(x, y) = u(x, y),e, and
is automatically divergence-free for any scalar function
u(x, y).

In the case of pipe flow (cylindrical symmetry), the
azimuthal symmetry yields

I rau = G
r ar ar q'

with boundary condition u(R) = 0. This is solved by

4,q

(6)

(7)
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This is the usual parabolic flow profile.
Next we consider flow in a channel of width w and height

h, with the origin of coordinates on the centerline. Fig. 3
shows schematically the dimensions of the channel. The
Stokes equation is

( a2 a2 G
ax2+ a2)U -,

(8)

with boundary conditions u(-w/2, y) = u(w/2, y) =
u(x, -h/2) = u(x, h/2) = 0. When the aspect ratio

h
E=- (9)

w

tends to zero, we obtain the classic Hele-Shaw geometry,
and expect the flow to be described by Darcy's law (Ben-
simon et al., 1986), with a parabolic flow profile in the
y-direction between the walls.

However, typically E is finite. Mindful of the no-slip
boundary conditions on the top and bottom walls, we obtain
the solution to finite E as a Fourier series

oo

u(x, y) = I A(t)(x) cos[(2e + 1) 7y/h].
1=0

(10)

By direct substitution one finds that the coefficients A(e)
satisfy the differential equations

a2A(t) (2f + 1)2Wr2 4G(-1)f
ax2 h 'A - 2e+1- (11)

The particular solutions are just constants, while the
general homogeneous solutions are of the form cosh[(2e +
l)irx/h]. Enforcing the boundary conditions then leads to
the final result

A useful check on this result is the limit h -> 0 at fixed
x (with lxi < w/2), in which one finds

G (h2 -4y2)limu(x, y) =8qh
E-0O

(13)

Thus at any fixed point x away from the walls the flow
profile becomes the familiar parabolic one as the depth of
the channel tends to zero. For finite E, the averaged flow has
a boundary-layer character, varying rapidly near the walls
on a scale of order h, but approaching a very flat, low
gradient profile in the center of the channel.

It is natural to define a y-averaged velocity

( h/2

ui(x)=h- dy u(x, y),
_-h/2

(14)

which takes the simple form

"-iGh ) 96 E I

[ cosh((2? + 1)irx/h)1
. 1- cosh((2f + 1) 7rwl2h) . (15)

It is easily verified that this averaged velocity tends to the
Darcy law result a = Gh2/12'q as the aspect ratio tends to
zero.

Fig. 4 shows the expected y-averaged velocity u(x) for
flow in a rectangular channel as a function of E. The velocity
values have been normalized. Note that while along the
narrow aspect of the channel the flow remains parabolic, for

lGh2\ 32 X (_ Ofu(x,Y)= 8g Jr E (2I + 1)3

f cosh[(2( + I)rxlh]
I cosh[(2( + 1)7rw/2h]J

*cos[(2( + 1)iry/h]

h

Id

FIGURE 3 Geometry of channel flow. Quantities are defined in the text.

The channel is assumed to be infinite in length.

1.0 _ _

0.0
-0.4 -0.2 0.0 0.2 0.4

i/L
FIGURE 4 Maximum fluid velocity as a function of the transverse
dimension across the channel x and the aspect ratio of the channel E, as
predicted by Eq. 15. The velocities have been normalized.
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decreasing E the average velocity as a function of x is
increasingly plug-like. The distance over which the flow
changes from the constant value to the stick boundary
condition is approximately the narrow dimension h.

Written in terms of both the maximum velocity, Umax, and
the volumetric flow rate, Q, Hele-Shaw flow and Poiseuille
flow are governed by the relations

8G ..=ma 12(qQ
G = h2= h3w (Hele-Shaw)

and

16Tlumax 12871Q
G = d2 = -Td 4 ' (Poiseuille) (17)

where d is the diameter of the tube. The mean velocity is 2/3
of the maximum in Hele-Shaw flow, and 1/2 of the maxi-
mum in Poiseuille flow. Equation 17 is sketched graphically
in Fig. 5, as it sets important constraints on the pressures
needed to achieve given volumetric flow rates and velocities
in microstructures. The maximum velocity for Hele-Shaw
flow can also be read off of the figure by associating the
diameter with the spacing between the plates, h, and dou-
bling the associate velocity.

It is very important to point out that parabolic flow
profiles pose serious problems for transport of solutes, be-
cause the effect of this gradient is to spread out, or dilute, a
pulse of solute inserted into a solvent as a plug at some point
in the flow (Taylor, 1953). Plug transport is the term used
for the diffusive averaging of solute transport in which the
averaged velocity of the transport of solute is constant
across the face of the channel. Ideally, one would want plug

transport profiles for many applications. However, although
the local velocity of the fluid is zero at the walls and a
maximum in the center, particles can move through a cy-
lindrical tube with a plug profile. If the time, r2/D, for the
particles to diffuse across the radius r of the tube is less than
riumax (where Umax is the maximum velocity), the particles
will flow with effectively a plug profile at Umax/2. Thus, we
have two regimes of flow,

(16) D >> rumaX, (plug transport) (18)

and

Dpara<< rumax (parabolic transport). (19)
In other words, if the solute molecules are small, such as

the water solvent, and thus have a relatively large diffusion
coefficient, they move with a plug profile. The above rela-
tions can be related to the Reynolds number, Eq. 3. For
instance, typical small molecules in water (D = 10-5 cm2/s)
move in a plug profile whenever Re < 10-3.
The essential phenomenon in chemistry of mixing can

also influence the pattern and flow of solvents in micron-
size devices. Mixing consists of uniformly distributing all
molecules in the solution throughout the vessel. It can occur
essentially by two means: through fluid transport, which
occurs at large geometries, or through diffusion, which
dominates at micron scales. Each process has a character-
istic time associated with it. The time it takes for a molecule
to diffuse a distance D varies as the square of the distance,
so that while relying on diffusion alone to mix things over
a few centimeters is impractical, it is a quick and efficient
process at the micron scale (Fig. 6).

Mixing Times
Poulselle Flow

102 X =10

10-

~0.

1007 1o1 10 1320

Velocity (microns/sec)

FIGURE 5 Pressure gradient needed for a particular mean velocity of
water flowing through tubes of different radii. Lines of constant Reynolds
number are also shown.

l0

104

.34 10-10
102

aS 101

lo-l
100

10-1

10-2

100 101 102 103
Velocity (microns/sec)

Diffiusion Time Stirring Tume

FIGURE 6 The characteristic time for mixing by stirring and diffusion.
The time to diffuse is independent of the velocity, to first order. The
velocity is the stirring velocity, for instance with a stir bar it would be (r,
the angular velocity times the length of the stir bar.
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At some scale, all mixing is done by diffusion, but by
stirring a binary mixture one can disperse the two fluids
throughout the container so that the diffusion length for the
system to become completely mixed is much smaller than it
originally was. If we just ignore diffusion, the time required
to mix two fluids together by stirring can be characterized
by tS = l]v5, where 1i is the characteristic size and v5 is the
characteristic stirring velocity (Purcell, 1977). At sizes
above a few hundred microns, diffusion is so slow it can

effectively be ignored. Inasmuch as at low Reynolds num-

bers any fluid velocity introduces shear, and shear will
disperse the fluid, any stirring will help mixing. But there
can be a huge difference between a good stirring strategy
and a bad one. A good stirring strategy is one that is
asymmetric in time (Purcell, 1977), for instance a stir bar
spinning continuously in one direction. A bad stirring strat-
egy is one that is symmetric in time. A piston moving in and
out of the fluid is symmetric in time. This will not work well
because after one cycle the fluid will return to exactly the
original state (in the limit of Re = 0). In effect there has
been no stirring at all.
To quantify the very efficient mixing by diffusion at

small-size scales, recall that most small molecules in water
have a diffusion coefficient of about D = 10-5 cm2/s. The
time to mix by diffusion is

12
tD =D (20)

where 1 is the largest size of the container. See Table 2 for
the time required to diffuse a certain distance. Since the
mixing time scales lineary with length scale, while the
diffusion time is quadratic, we see that simply by reducing
the length scales (and hence the Reynolds number), we go

from the regime where the diffusion time is negligible
compared with mixing and convection times to one where
diffusion can be extremely important.
The diffusion coefficient for any particle,

kT
D= 6 ,rra' (21)

depends on the effective size of the particle a, the viscosity
of the fluid the particle is in, 71, and the absolute tempera-
ture, T. The linear size, a, of a molecule generally varies as

the cube root of the molecular weight (a - (MW) 1/3), so the
diffusion coefficient for a large protein is only about 10
times smaller than for a water molecule. For particles like
cells (10 gm diameter) the diffusion constant could easily

TABLE 2 Diffusion time in water at room temperature

Small
Distance Heat Molecule Protein Cell

I Jim 10-4 S 10-3 S 10-2 10' S

lOj,m 10M2s 10- Is 10° s 103 S
100 ,um 10°s 10' s 102s 105s
1000 Jim 102 s 103 s 104 s 107 s

be 1000 times smaller than for a large protein. See Table 3
for a listing of characteristic times for various objects and
length scales.
As an example of where these issues are important,

consider microscale electrophoresis. The basic idea here is
to shrink everything down to very small-length scales and
volumes and use precisely designed confining lattices to
optimize length fractionation. It is very easy to actually
launch narrow (5 ,um wide) bands of DNA in such struc-
tures using gold wires and electrostatic hold-down. How-
ever, at such small length scales diffusion begins to become
very important (Tables 4-6).

Surface tension can be a powerful force at the micrometer
scale. The equivalent pressure due to surface tension is
given by the Laplace law,

2,y cos 0
r (22)

where 0 is the contact angle between the liquid and the
surface and r is the radius of curvature of the interface. This
is the pressure one needs to overcome the surface tension.
For instance, if a device is treated to be hydrophilic, water
will naturally fill the channel, but stop at the exit. A pressure

of at least 2-y cos 0/r (where r is the radius of the channel)
will be needed to break through the surface tension and
provide continuous flow. The contact angle between water
and the silicon depends on the specific surface treatment,
but if cos 0 = 1, a hydrophilic surface, the equivalent
pressure generated in a 3-,um diameter tube is about one

atmosphere, a handy number to remember. Table 3 summa-

rizes the pressure one must overcome due to surface tension.
(Note that if the surface is hydrophobic, then this is the
pressure one needs to just begin to force water into the
channel.)
The surface energy can be used to drive liquid through

the device. By treating the surface to be hydrophilic, water
will penetrate through any size gap without any applied
pressure. This penetration is driven by the attractive energy

between the water and the surface. Fluid systems can be
driven by this force. Plants, for instance, have a large
evaporating surface (the leaf) and as water evaporates from
the surface, more water is drawn up through the plant. Air
bubbles pose a big problem in microfluid systems because
of the small radius of curvature and hence large pressure

required to overcome them. Air bubbles can form through
two different ways. In the initial wetting of a hydrophilic
device, air can become trapped where a wide channel necks

TABLE 3 Pressure due to surface tension inside a tube, for
water

Radius & Pressure (dynes/cm2)
0.15 ,im 107
1.5 ,im 106 (1 atmosphere)

15lim 104
150 ,um 103

1500 ,im 102
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TABLE 4 Water contact angle on surfaces treated in various
ways

Surface Treatment Contact Angle

SiO2-untreated 430
RCA-treated 502 50
Si-untreated 700
Silanated Si02 950

down to a smaller one (Lanzillotto et al., 1995). This is
caused by the thin wetting layer jumping across the small
opening before the air passes through. Air bubbles can also
form after the device is wet, if air spontaneously comes out
of solution. This often occurs when a cold solution warms
up inside a device, lowering the solubility of gases dissolved
in the liquid.

Water has one of the highest surface tensions of any
common liquid, about three times higher than most others.
Given this, a strategy to reduce air bubbles upon wetting is
to wet the channel initially with a liquid that has a lower
surface tension (such as isopropyl alcohol). Then water can
be fed in behind the other liquid without exposing any
air/water interface. This reduces by a factor of three the
force due to surface tension that must be overcome to push
air bubbles through a constriction. See Tables 4-6 for a
summary of these results.

EXPERIMENTAL RESULTS

Some of the basic features of the above discussion are easily
shown by observation of particles moving in microfabri-
cated structures. Perhaps the most important aspect to flow
at low Reynolds numbers is the profile of the velocity across
the cross section of a channel, as a dispersion in velocity
results in a dilution of the material being transported.

Verification of the predictions of Eq. 15 can be dramat-
ically seen in Fig. 7. To obtain this result, 0.9-,um diameter
fluorescent beads were passed along a channel etched into
silicon of depth 11- and 72-gm width. The average bead
velocity in the channel was approximately 20 ,um/s. A trick
was used to quickly get all the velocities of the beads: the
electronic shutter of the CCD camera was set at 1/30th of a
second so that the images of the beads consisted of elliptical
streaks-the major axis of the ellipse is proportional to the
bead speed. Approximately 100 beads/frame could be seen,
and 10 frames were grabbed to get 1000 bead velocities.
The software package NIH Image was used to create a table
of ellipsoid ratios and the software package Kleidograph
was used to produce an initial scatter plot of the measured
velocities versus bead position in the channel. Because of

TABLE 5 Fluid properties at 200C

Surface Vapor
Density Viscosity Tension Pressure

Water 1.0 g/Cm3 1.0 cP 72 dynes/cm 32.4 mm Hg
Isopropyl alcohol 0.8 g/cm3 2.5 cP 21 dynes/cm 17.5 mm Hg

TABLE 6 Dimensionless fluid resistance for different
geometries. The 2D sparse rectangles geometry is the one
used in this paper. To calculate the required pressure drop
for a certain fluid velocity, d, multiply the dimensionless fluid
resistance by (h1IP.

Dimensionless
Geometry Fluid Resistance

2D dense random packed spheres (He et al., 1992) 500
2D sparse rectangles (blood cell) 25
Pouiselle (circular tube) 2 r2 19.7
Hele-Shaw (two-dimensional sheet flow) 12

the relative thinness of the channel depth h, we did not
attempt to ascertain the depth of each bead in the channel.
Because of this, there is a scatter in the bead velocities due
to the parabolic profile velocity along the thin h direction.
The prediction of Eq. 15 is shown in Fig. 7 as a solid line.
The excellent agreement between the predicted and mea-
sured values shows both how well you can understand flow
at low Re and the interesting dispersion in fluid velocity in
such high-aspect ratio rectangular channels.

Darcy's law can also be easily tested with microlithog-
raphy. To do this experiment we used the variable-width
blood cell array used in Brody et al., 1995. The rectangular
blocks of dimension 4 X 13 ,um were etched into silicon.
Devices were fabricated with 2.5-, 3.0-, 3.5-, and 4.0-,um
spacings between the rectangular blocks, and the fluid re-
sistance was measured for these different structures. The
measured flows through these devices was determined by
tracking fluorescent beads through the structures as de

1.0

a

0.6

0.0
0 20 40 sO

x (Am)
FIGURE 7 Data on flow velocities in a channel. Beads velocities were
measured as describe in the text and a scatterplot of velocities versus
transverse position (x) in a 1 1-,um deep by 72-p.m wide channel are plotted.
The theoretical y-averaged velocity expected for an E = 11/72 is shown by
the solid line.
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scribed above and measuring the average velocities. The
linearity between pressure head and average velocity shown
in Fig. 8 confirms Darcy's Law.
The diffusion constant of objects at the micron scale, as

we have mentioned, is important. In Fig. 9 a line of A phage
DNA 5 ,um long is launched approximately 30 ,um into a
lattice of posts, which are 1 ,um in diameter and 2 ,um
center-to-center spaced. The driving electric field is then
removed and the approximately Gaussian distribution of
molecules is tracked in time. In this case we once again
work with A phage DNA molecules that have been fluores-
cently labeled. The center of mass diffusion constant Dg of
a flexible polymer is a very important quantity for many
applications of biotechnology, and also is of interest be-
cause the same hydrodynamic considerations that modify
the fluid flow profiles from the expected simple parabola
also give an unexpected mass dependence to the diffusion
constant of a polymer. In the absence of internal hydrody-
namic coupling the diffusion constant of a polymer consist-
ing ofN links of effective radius b should simply scale with
N. However, hydrodynamic coupling of the links as ex-
pressed by the Oseen-Burgers tensor approximation (Doi
and Edwards, 1989) gives rise to a much weaker depen-
dence of the translational diffusion constant with link num-
ber. Although the expression varies to some extent with the
goodness of the solvent, to a reasonable approximation the
diffusion constant is:

Dg~ 8kBT
g 3(6 ff3)1/2nbNI/2 (23)

,um, which it is. The lesson here is that even large molecules
like A phage DNA diffuse rapidly enough in micrometer-
sized structures that fluid flow rates must be kept suffi-
ciently high to prevent dilution of the material.

Fig. 10 illustrates the flow pattern through a complex
structure with many dead ends. Lambda phage DNA mol-
ecules of total length about 20 ,tm were used as test "par-
ticles." However, because the DNA molecule has a very
short persistence length, (=60 nm), the DNA forms a Gaus-
sian coil with a radius of gyration Rg of approximately 1
,um. These curious particles are used here both to show the
flow of biological molecules in these structures and because
the Gaussian coil is sensitive to shear fields, which can
unravel the Gaussian coil into a long continuous string. The
polymer acts as a probe of highly shearing fields (Volk-
muth, 1994). To visualize them, the DNA molecules are
stained with ethidium bromide, a fluorescent dye, and im-
aged with epi-fluorescence microscopy. The velocity vec-
tors of the flow pattern in the structure are evident as lines,
and the intensity of the lines is a measure of the speed of the
local flow. Rapidly moving particles leave a faint trace
while slowly moving particles leave a bright trace. The
increased velocity of the particles in the center of the
channels is evident, and the slowly moving particles near
the walls are also clear. Note also how the diffusion constant
of the DNA molecules is small enough and the average
velocity flow speed of approximately 10 ,um/s is large
enough that no penetration of the molecules into the numer-
ous dead ends of the lattice are seen.

where b is twice the persistence length of the polymer. For
double-stranded DNA b - 300 bp - 0.1 ,um (Hogan and
Austin, 1987). Thus, for A phage DNA of size 47 kb N -

150 and Dg - 4 X 10-9 cm2/s. We would then predict that
in the elapsed time of 100 s shown in Fig. 9 that the FWHM
of the initial 5-,um wide band should be approximately 20
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0
0 1 2 3 4

Pressure (PSI)

FIGURE 8 Darcy's Law measured in four different geometries. Each
geometry had identical blocks, but different spacing. The permeability, k,
is a function of the spacing, and in this figure is equal to the slope of the
line.

v 2.5 micron spacing
* 3.0 ricronspacing
* 3.5 micron spacing
A 4.0 micron spacing

EXAMPLES OF DEVICES

Once the principles that govern fluid flow at the microscale
are understood, they can be applied to construct useful
devices. This section gives three examples of devices that
have been constructed with these principles in mind.
We first consider how to make valves with no moving

parts. Any complicated network of channels will require
some means of switching between them. In macroscopic
plumbing, this is accomplished by activating valves. In
microscopic fluidic systems, this can be done by controlling
the pressures to affect the flow streams-just as the voltages
control the current in a network of resistors. We define the
characteristic time, T, as given by the condition that the first
term of Eq. 2 is equal to unity. Pressure jumps over time
scales longer than ,

= (24)

can be considered quasi-static.
For water (p = 1 g/cm3, i1 = 10-2 P), in a channel 10 gm

wide the characteristic time, T, is equal to 100 ,us. This
allows one to use pressure controls to rapidly stop or change
the direction of a liquid inside a microfluidic system while
still retaining the simplifying assumptions of steady flow.
The device shown in Fig. 11 is an intersection of four
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5 mhcronsl

FIGURE 9 Self-diffusion of a
launched DNA band. Ethidium bro-
mide was used to stain a sample of A
phage DNA molecules of length 47
kbp. The DNA molecules were held
by electrostatic fields against a gold
wire and then launched from the wire
into the array. After traveling approx-
imately 30 ,um the electric field was
removed and the band was monitored
versus time. The frames shown are
10 s apart.

i)Sc' 2? 5 se t'4) SE( J :> sec 1 41i) S,6-

channels. By controlling the pressure behind each of the
four channels the flow can be directed from one channel to
another, demonstrating a near zero dead volume valve. Fig.
11 demonstrates that the switching can take place on mil-
lisecond time scales.

Next, we consider how particles can be extracted from a
flow by using diffusion. Extraction is a common laboratory
process. Conventionally, it can be done in a number of

FIGURE 10 Ethidium bromide stained A phage molecules moving by
hydrodynamic flow in a percolating lattice. The DNA is imaged by
epi-fluorescence. The average fluid velocity is approximately 10 ,um/s, and

the image was integrated for 20 s.

ways, for example by sedimentation or filtration. In a
microfluidic system it can be done by diffusion-based
extraction.

Diffusion can be used for extraction in a microfluid
system-one in which the dimensions of the channels are
sufficiently small that only low-Reynolds-number (Re <<
1) flow can occur. Initially two separate flow streams (a
carrier stream and a dilutant stream) are brought together
into a central channel in which particles can diffuse between
the two nonmixing streams. At higher Reynolds numbers
(Re >> 10), mixing independent of diffusion would occur
between the two fluids in the central channel, but when the
channels are small enough in size, the two adjacent streams
flow in parallel without turbulence for the length of the
channel. Only diffusive mixing will occur-even in low-
viscosity fluids. At the end of the parallel flow channel a
fraction of the carrier flow stream is split off into an output
channel. The time for diffusive exchange between the two
fluids, t = llv, is controlled by the velocity, v, of fluid in the
central channel and the length, 1, of the channel.
A typical image allowing one to monitor the flow in such

a device is shown in Fig. 12. A mixture of particles sus-
pended in a carrier fluid enters a central channel from the
bottom left and a diluting fluid enters from the top left. The
ratio of carrier fluid to diluting fluid in the central channel
is controlled by the pressure behind each of the two entrance
channels. At the exit of the central channel, the fluid is split
into two separate flow streams. Since the flow is in the
low-Reynolds-number regime, this splitting can be done
without any gross mixing. In this example, we extract
fluorescent dye from a mixture of 0.5-,um beads and fluo-
rescent dye.

Finally, we consider how to enhance mixing by an ap-
propriately designed microfluidic device. An important ex-
ample of the changes in device physics as dimensions shrink
is the mixing chamber used in rapid reaction monitoring
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FIGURE 11 A virtual valve in a microfabricated fluidic system. This "valve" directs the flow at the intersection of the four channels. In this fluorescent
image, O.5-,um beads are used as flow tracers. The horizontal channel on the right is 10 ,um wide. The flow is from right to left in the horizontal channel
and then down (a) or up (b) the vertical channel. Note that the beads appear as streaks where the flow is occurring and as points where they are stationary.
The direction of flow is controlled by the pressures behind each channel. The pressure behind the stopped channel are held at the pressure at the intersection
of the channels. Because there is no pressure drop, there is no flow. In this case, the average flow velocity was about 100 ,um/s, achieved with a pressure
drop of about 1 psi. (c) The measured response time of the valve. Videotape was analyzed frame-by-frame to measure the fraction of flow.
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in the device design are made. Many microfluidic devices
are near or at the regime where their design physics is
limited by the decreasing Reynolds number-they can not
be further scaled down without a basic change in the design.
Comprehensive reviews of these devices have recently ap-
peared (Gravesen et al., 1993; Northrup et al., 1995).

In a mixing chip design the essential feature is for two
flows to come together and flow in close juxtaposition at
high speed in a channel of decreased radius from the sum of
the initial channels. When a fluid enters a narrow cylindrical
channel from a wider one the flow profile is not immedi-
ately parabolic (Batchelor, 1967). After some distance ld
from the entrance of the channel, the flow is parabolic and
the flow is referred to as fully developed. The distance, ld,
for flow to become 99% fully developed is only a function
of the channel diameter, d, and the Reynolds number, Re
(Duncan et al., 1970)

ld (0.5 + 0.065Re)d. (25)

FIGURE 12 (a) A schematic diagram of a low Reynolds number "filter."
Because of the unique properties of low Reynolds number flow (no mixing,
laminar flow) a microfabricated fluidic filter can work like this. Two flow
streams are brought into contact, one containing the sample and the other
a dilutant (a buffer, for example). The flow streams move along a central
channel where diffusion can occur between the two. At the end of the
channel, the stream re-splits into two more streams, a waste stream and an

output stream. Particles small enough to diffuse across the central channel
will be found in the filter output, while larger (cell-sized) particles will not.
(b) An optical image of the device used. The cross-hair is 100 p.m X 100
,um. (c) A green fluorescent image of fluorescein flowing through the
structure shown in (b). Fluorescein (D - 500 pm2/s) was added to a 0.01%

mnixture of 0.2 p.m red fluorescing balls (D -1 .m2/s). This green image

shows the fluorescein flowing and diffusing across the central channel. The
average velocity in the central channel was about 200 p.m/s. Note that the
output of this device the fluorescein is diluted by about a factor of two. (d)
A red fluorescent image from the same experiment. The red fluoresence
shows the slowly diffusing 0.2 p.m balls. In this case they do not diffuse
across the central channel and virtually all end up in the waste stream. The
balls are too small and concentrated to be individually seen.

devices such as the stopped-flow apparatus. These devices
rely on high Reynolds numbers to create turbulence, which
can act as an efficient mixer of two streams of fluid. It
would seem natural to shrink these devices beyond the
typical millimeter length scale achievable by standard ma-

chining techniques. However, as the length of the mixing
chamber shrinks and the Reynolds number decreases, one

can pass from a region where turbulence provides effective
mixing to one where turbulence ceases, the flow becomes
laminar, and diffusion over possibly 10-100 gm becomes
the primary mixing method. Unfortunately, diffusion can be
a very slow process, and paradoxically, mixing times can

increase with decreasing length scale unless basic changes

For low-Reynolds-number flow this distance is effectively
d/2, so that this type of flow is almost immediately fully
developed.
The idea behind this device is to have a large molecule

(for instance, a protein) in the central channel and the
smaller molecules with which it will be mixed in the side
channels. Liquid from the central channel is squeezed down
to a submicron wide lamina using hydrodynamic focusing
(Sobek et al., 1994). Figure 13 presents some data from a
micromachined device using four-port flow. The stream of
protein should be completely mixed with the outer fluid in
approximately t = 12/D where 1 is width of the lamina and
D is the diffusion coefficient of the mixing species. For
example, pH (D = 104 ,um2/s) jumps can be made in about
10 As with a 0. l-,um wide lamina. As we show in the figure,
by appropriate choosing of side jet and center jet pressures,
focused streams of diameter -0.1 ,um can be achieved.

CONCLUSIONS

The physical effects that dominate in microfluid devices
have been explored. It is perfectly feasible to construct and
operate microfluid systems with dimensions as small as
current technology allows (about 1 ,um), although these
devices behave in a manner quite different from experience
at macroscopic scales. The fluid dynamics in microdevices
is under low-Reynolds-number conditions, where turbu-
lence and inertial effects are nonexistent. Mixing must be
chiefly done by diffusion, and in fact diffusion cannot be
neglected in the design of these devices. Forces due to
surface tension at liquid/air interfaces are much stronger at
this scale. Because the magnitude of these physical effects
are different from what occurs at macroscopic scale, fluid-
integrated microdevices must be designed from first princi-
ples, and not simply by miniaturizing macroscopic devices.

JPB thanks F. Forster for critical comments on an early draft of this paper,
RHA thanks W. Parce and M. Knapp of Caliper Inc. for several useful

3440 Biophysical Journal

7

i
i

0 JD 0 0 a0 & * a

11



Brody et al. Biotechnology at Low Reynolds Numbers 3441

FIGURE 13 Hydrodynamic focusing in a four-channel port. (a) Config-
uration of the completed device. Fluorescein in pH 3.0 buffer, 1 mM was
injected from below at approximately 20 psi. pH 9.0 1 M buffer was
injected from the two sides and the combination of the three streams was
exited up the top channel. (b) When the side channel pressure is approx-
imately equal to the center channel pressure little focusing occurs. This is
an epi-fluorescence view of the dye stream. Note that diffusion of the pH
9 buffer into the pH 3 buffer stream results in enhancement of the
fluorescein buffer in a sheath governed by the diffusion of the buffer
components. (c) The low-focusing sheath viewed downstream from the
original 10-glm wide sheath. The channel has widened to 100 ,um width.
(d) A highly focused beam. The side jet pressure is approximately twice the
center jet pressure. (d) The highly focused jet seen downstream in a 100
,um widened stream. Extrapolation of the jet stream back to the original jet
implies an initial width of -0.1 ,um.

discussions. Acquisition and analysis of the rectangular flow velocity and
hydrodynamic focusing profiles was done by Amulya Vamsi Madhav at
Princeton. Microfabrication work was done both at the Washington Tech-
nology Center and the Cornell Nanofabrication Facility.
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