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a b s t r a c t

In this paper, we first present an impulsive version of the Filippov–Ważewski theorem and
a continuous version of the Filippov theorem for fractional differential inclusions of the
form

Dα
∗
y(t) ∈ F(t, y(t)), a.e. t ∈ J \ {t1, . . . , tm}, α ∈ (1, 2],

y(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m,
y′(t+k ) = Ik(y(t

−

k )), k = 1, . . . ,m,
y(0) = a, y′(0) = c,

where J = [0, b],Dα
∗
denotes the Caputo fractional derivative, and F is a set-valued map.

The functions Ik, Ik characterize the jump of the solutions at impulse points tk (k =
1, . . . ,m). Additional existence results are obtained under both convexity and noncon-
vexity conditions on the multivalued right-hand side. The proofs rely on the nonlinear al-
ternative of Leray–Schauder type, a Bressan–Colombo selection theorem, and Covitz and
Nadler’s fixed point theorem for multivalued contractions. The compactness of the solu-
tion set is also investigated. Finally, some geometric properties of solution sets, Rδ sets,
acyclicity and contractibility, corresponding to Aronszajn–Browder–Gupta type results, are
obtained. We also consider the impulsive fractional differential equations

Dα
∗
y(t) = f (t, y(t)), a.e. t ∈ J \ {t1, . . . , tm}, α ∈ (1, 2],

y(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m,
y′(t+k ) = Īk(y(t

−

k )), k = 1, . . . ,m,
y(0) = a, y′(0) = c,

and

Dα
∗
y(t) = f (t, y(t)), a.e. t ∈ J \ {t1, . . . , tm}, α ∈ (0, 1],

y(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m,
y(0) = a,

where f : J × R→ R is a single map. Finally, we extend the existence result for impulsive
fractional differential inclusions with periodic conditions,

Dα
∗
y(t) ∈ ϕ(t, y(t)), a.e. t ∈ J \ {t1, . . . , tm}, α ∈ (1, 2],

y(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m,
y′(t+k ) = Ik(y(t

−

k )), k = 1, . . . ,m,
y(0) = y(b), y′(0) = y′(b),

where ϕ : J × R → P (R) is a multivalued map. The study of the above problems use an
approach based on the topological degree combined with a Poincaré operator.

© 2009 Elsevier Ltd. All rights reserved.

∗ Corresponding author. Tel.: +1 254 710 6562.
E-mail addresses: Johnny_Henderson@baylor.edu (J. Henderson), agh_ouahab@yahoo.fr (A. Ouahab).

0898-1221/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2009.05.011

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82615285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:Johnny_Henderson@baylor.edu
mailto:agh_ouahab@yahoo.fr
http://dx.doi.org/10.1016/j.camwa.2009.05.011


1192 J. Henderson, A. Ouahab / Computers and Mathematics with Applications 59 (2010) 1191–1226

1. Introduction

Differential equations with impulses were considered for the first time in the 1960’s by Milman and Myshkis [1,2]. A
period of active research, primarily in Eastern Europe from 1960–1970, culminated with the monograph by Halanay and
Wexler [3].
The dynamics ofmany evolving processes are subject to abrupt changes, such as shocks, harvesting and natural disasters.

These phenomena involve short-term perturbations from continuous and smooth dynamics, whose duration is negligible
in comparison with the duration of an entire evolution. In models involving such perturbations, it is natural to assume that
these perturbations act instantaneously or in the form of ‘‘impulses’’. As a consequence, impulsive differential equations
have been developed in modeling impulsive problems in physics, population dynamics, ecology, biotechnology, industrial
robotics, pharmacokinetics, optimal control, and so forth. Again, associated with this development, a theory of impulsive
differential equations has been given extensive attention. Works recognized as landmark contributions include [4–7]. There
are also many different studies in biology andmedicine for which impulsive differential equations are goodmodels (see, for
example, [8–10] and the references therein).
In recent years, many examples of differential equations with impulses with fixed moments have flourished in several

contexts. In the periodic treatment of some diseases, impulses correspond to administration of a drug treatment or amissing
product. In environmental sciences, impulses correspond to seasonal changes of the water level of artificial reservoirs.
During the last ten years, impulsive ordinary differential inclusions and functional differential inclusions with different

conditions have been intensely studied by many mathematicians. At present the foundations of the general theory are
already laid, and many of them are investigated in detail in the book of Aubin [11], Benchohra et al. [12], and in the papers
of Henderson and Ouahab [13], Graef et al. [14–16], Graef and Ouahab [17–20] and the references therein.
Differential equations with fractional order have recently proved valuable tools in the modeling of many physical

phenomena [21–25]. There has also been a significant theoretical development in fractional differential equations in recent
years; see the monographs of Kilbas et al. [26], Miller and Ross [27], Podlubny [28], Samako et al. [29], and the papers of Bai
and Lu [30], Diethelm et al. [21,31,32], El-Sayed [33–35], El-Sayed and Ibrahim [36], Kilbas and Trujillo [37], Mainardi [24],
Momani and Hadid [38], Momani et al. [39], Nakhushev [40], Podlubny et al. [41], and Yu and Gao [42].
Very recently, some basic theory for initial-value problems for fractional differential equations and inclusions

involving the Riemann–Liouville differential operator was discussed by Benchohra et al. [43], Lakshmikantham [44], and
Lakshmikantham and Vastala [45–47]. El-Sayed and Ibrahim [36] initiated the study of fractional multivalued differential
inclusions.
Applied problems requiring definitions of fractional derivatives are those that are physically interpretable for initial

conditions containing y(0), y′(0), etc. The same requirements are true for boundary conditions. Caputo’s fractional derivative
satisfies these demands. For more details on the geometric and physical interpretation for fractional derivatives of both the
Riemann–Liouville type and the Caputo type, see Podlubny [28].
Recently, fractional functional differential equations and inclusions with standard Riemann–Liouville and Caputo

derivatives with differences conditions were studied by Benchohra et al. [48,43,49], Henderson and Ouahab [50], and
Ouahab [51].
Impulsive differential equations and inclusions with Captuo fractional derivatives when α ∈ (0, 2] were studied by

Agarwal et al. [52,53] and Henderson and Ouahab [54].
In this paper, we shall be concerned with the existence of solutions, Filippov’s theorem and the relaxation theorem of

impulsive fractional value problems (IVP’s for short) for differential inclusions.More precisely,wewill consider the following
problem,

Dα
∗
y(t) ∈ F(t, y(t)), a.e. t ∈ J = [0, b], 1 < α ≤ 2 (1)

y(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m, (2)

y′(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m, (3)

y(0) = a, y′(0) = c, (4)

where Dα
∗
is the Caputo fractional derivatives, F : J × R → P (R) is a multivalued map with compact values (P (R) is the

family of all nonempty subsets of R), 0 = t0 < t1 < · · · < tm < tm+1 = b, Ik, Ik ∈ C(R,R) (k = 1, . . . ,m),1y|t=tk =
y(t+k ) − y(t

−

k ), and y(t
+

k ) = limh→0+ y(tk + h) and y(t
−

k ) = limh→0+ y(tk − h) stand for the right and the left limits of y(t)
at t = tk, respectively.
The paper is organized as follows. We first collect some backgroundmaterial and basic results frommultivalued analysis

and fractional calculus in Sections 2 and 3 respectively. Then, we shall be concerned with Filippov’s theorem for first-order
impulsive differential inclusionswith fractional order. This is the aimof Section 4. Section 5 is devoted to the relaxedproblem
associated with Problem (1)–(4), that is, the problemwhere we consider the convex hull of the right-hand side. In Section 6,
we prove the existence of solutions under both convexity and nonconvexity conditions on the multivalued right-hand side.
The proofs rely on the nonlinear alternative of Leray–Schauder type, a Bressan–Colombo selection theorem and Covitz and
Nadler’s fixed point theorem for multivalued contractions. The compactness of the sets of solutions is also established. In
Section 6.4, we present some existence and uniqueness results for impulsive differential equations with fractional order.
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Finally, Section 7 is devoted to proving some geometric properties of solution sets such as acyclicity, Rδ , and contractibility.
Then, existence results for impulsive differential inclusions with fractional inclusions and periodic conditions are provided
in Section 8.
We end the paper with some conclusions and remarks.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will be used in the remainder of this paper.
Let AC i([0, b],Rn) be the space of functions y : [0, b] → Rn, i-differentiable and whose ith derivative, y(i), is absolutely
continuous.
We take C(J,R) to be the Banach space of all continuous functions from J into Rwith the norm

‖y‖∞ = sup{|y(t)| : 0 ≤ t ≤ b}.

L1(J,R) refers to the Banach space of measurable functions y : J −→ Rwhich are Lebesgue integrable; it is normed by

|y|1 =
∫ b

0
|y(s)|ds.

Let (X, ‖ · ‖) be a separable Banach space, and denote

P (X) = {Y ⊂ X : Y 6= ∅},
Pcv(X) = {Y ∈ P (X) : Y convex},
Pcl(X) = {Y ∈ P (X) : Y closed},
Pb(X) = {Y ∈ P (X) : Y bounded},
Pcp(X) = {Y ∈ P (X) : Y compact},
Pcv,cp(X) = Pcv(X) ∩ Pcp(X).

A multivalued map G : X −→ P (X) has convex (closed) values if G(x) is convex (closed) for all x ∈ X . We say that G is
bounded on bounded sets if G(B) is bounded in X for each bounded set B of X (i.e., supx∈B{sup{‖y‖ : y ∈ G(x)}} < ∞). The
map G is upper semi-continuous (u.s.c.) on X if for each x0 ∈ X the set G(x0) is a nonempty, closed subset of X , and if, for each
open set N of X containing G(x0), there exists an open neighborhood M of x0 such that G(M) ⊆ N . Finally, we say that G is
completely continuous if G(B) is relatively compact for every bounded subset B ⊆ X .
If the multivalued map G is completely continuous with nonempty compact values, then G is u.s.c. if and only if G has a

closed graph (i.e., xn −→ x∗, yn −→ y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). We say that G has a fixed point if there exists x ∈ X
such that x ∈ G(x).
A multivalued map G : J −→ Pcl(X) is said to bemeasurable if for each x ∈ X the function Y : J −→ R+ defined by

Y (t) = d(x,G(t)) = inf{‖x− z‖ : z ∈ G(t)}

is measurable.

Lemma 2.1 (See [55], Thm 19.7). Let E be a separable metric space and G a multivalued map with nonempty closed values. Then
G has a measurable selection.

Lemma 2.2 (See [56], Lemma 3.2). Let G : [0, b] → P (E) be a measurable multifunction and u : [0, b] → E a measurable
function. Then for any measurable v : [0, b] → R+ there exists a measurable selection g of G such that, for a.e. t ∈ [0, b],

|u(t)− g(t)| ≤ d(u(t),G(t))+ v(t).

Corollary 2.3. Let G : [0, b] → Pcp(E) be a measurable multifunction and g : [0, b] → E be a measurable function. Then there
exists a measurable selection u of G such that

|u(t)− g(t)| ≤ d(g(t),G(t)).

Proof. Let vε : [0, b] → R+ be defined by vε(t) = ε > 0. Then from Lemma 2.2 there exists a measurable selection uε of G
such that

|uε(t)− g(t)| ≤ d(g(t),G(t))+ ε.

We take ε = 1
n , n ∈ N; hence, for every n ∈ N, we have

|un(t)− g(t)| ≤ d(g(t),G(t))+
1
n
.
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Using the fact thatGhas compact values,wemaypass to a subsequence if necessary to get that un(.) converges tomeasurable
function u in E. Then

|u(t)− g(t)| ≤ d(g(t),G(t)). �

Definition 2.4. The multivalued map F : J × X −→ P (X) is L1-Carathéodory if

(i) t 7−→ F(t, y) is measurable for each y ∈ X;
(ii) y 7−→ F(t, y) is upper semi-continuous for almost all t ∈ J;
(iii) For each q > 0, there exists φq ∈ L1(J,R+) such that

‖F(t, y)‖P = sup{‖v‖ : v ∈ F(t, y) ≤ φq(t) for all ‖y‖ ≤ q and for almost all t ∈ J}.

Lemma 2.5 ([57]). Let X be a Banach space. Let F : [0, b] × X −→ Pcp,c(X) be an L1-Carathéodory multivalued map, and let 0
be a linear continuous mapping from L1([0, b], X) to C([0, b], X). Then, the operator

0 ◦ SF : C([0, b], X) −→ Pcp,c(C([0, b], X)), y 7−→ (0 ◦ SF )(y) := 0(SF ,y)

is a closed graph operator in C([0, b], X)× C([0, b], X).

Let (X, d) be ametric space induced from the normed space (X, | · |). ConsiderHd : P (X)×P (X) −→ R+∪{∞} given by

Hd(A, B) = max
{
sup
a∈A
d(a, B), sup

b∈B
d(A, b)

}
,

where d(A, b) = infa∈A d(a, b), d(a, B) = infb∈B d(a, b). Then (Pb,cl(X),Hd) is ametric space and (Pcl(X),Hd) is a generalized
metric space; see [58].

Definition 2.6. A multivalued operator N : X → Pcl(X) is called

(a) γ -Lipschitz if and only if there exists γ > 0 such that

Hd(N(x),N(y)) ≤ γ d(x, y), for each x, y ∈ X;

(b) a contraction if and only if it is γ -Lipschitz with γ < 1.

For more details on multivalued maps we refer to the books by Aubin et al. [59,60], Deimling [61], Gorniewicz [55], Hu
and Papageorgiou [62], Kamenskii [63], Kisielewicz [58] and Tolstonogov [64].

3. Fractional calculus

According to the Riemann–Liouville approach to fractional calculus the notation of fractional integral of order α (α > 0)
is a natural consequence of thewell-known formula (usually attributed to Cauchy), that reduces the calculation of the n-fold
primitive of a formulion f (t) to a single integral of convolution type. In our notation the Cauchy formula reads

Inf (t) :=
1

(n− 1)!

∫ t

0
(t − s)α−1f (s)ds, t > 0, n ∈ N.

Definition 3.1. The fractional integral of order α > 0 of a function f ∈ L1([a, b],R) is defined by

Iαa+ f (t) =
∫ t

a

(t − s)α−1

0(α)
f (s)ds,

where 0 is the gamma function. When a = 0, we write Iα f (t) = f (t) ∗ φα(t), where φα(t) = tα−1
0(α)

for t > 0, and for t ≤ 0,
φα → δ(t) as α→ 0, where δ is the delta function and 0 is the Euler gamma function defined by

0(α) =

∫
∞

0
tα−1e−tdt, α > 0.

For consistency, I0 = Id (Identity operator), i.e., I0f (t) = f (t). Furthermore, by Iα f (0+) we mean the limit (if it exists) of
Iα f (t) for t → 0+; this limit may be infinite.
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After the notion of fractional integral, that of fractional derivative of order α (α > 0) becomes a natural requirement
and one is tempted to substitute α with −α in the above formulas. However, this generalization needs some care in order
to guarantee the convergence of the integral and preserve the well-known properties of the ordinary derivative of integer
order. Denoting by Dn, with n ∈ N, the operator of the derivative of order n, we first note that

DnIn = Id, InDn 6= Id, n ∈ N,

i.e., Dn is the left-inverse (and not the right-inverse) to the corresponding integral operator Jn. We can easily prove that

InDnf (t) = f (t)−
n−1∑
k=0

f (k)(a+)
(t − a)k

k!
, t > 0.

As consequence we expect that Dα is defined as the left-inverse to Iα . For this purpose, introducing the positive integer n
such that n− 1 < α ≤ n, one defines the fractional derivative of order α > 0:

Definition 3.2. For a function f given on interval [a, b], the αth Riemann–Liouville fractional-order derivative of f is defined
by

Dα f (t) =
1

0(n− α)

(
d
dt

)n ∫ t

a
(t − s)−α+n−1f (s)ds,

where n = [α] + 1 and [α] is the integer part of α.

Defining, for consistency, D0 = I0 = Id, then we easily recognize that

Dα Iα = Id, α ≥ 0, (5)

and

Dαtγ =
0(γ + 1)

0(γ + 1− α)
tγ−α, α > 0, γ − 1, t > 0. (6)

Of course, the properties (5) and (6) are a natural generalization of those known when the order is a positive integer.
Note the remarkable fact that the fractional derivative Dα f is not zero for the constant function f (t) = 1, if α 6∈ N. In fact,

(6) with γ = 0 illustrates that

Dα1 =
(t − a)−α

0(1− α)
, α > 0, t > 0. (7)

It is clear that Dα1 = 0, for α ∈ N, due to the poles of the gamma function at the points 0,−1,−2, . . . .
We now observe an alternative definition of fractional derivative, originally introduced by Caputo [65,66] in the late

1960’s and adopted by Caputo and Mainardi [67] in the framework of the theory of Linear Viscoelasticity (see a review
in [24]).

Definition 3.3. Let f ∈ ACn([a, b]). The Caputo fractional-order derivative of f is defined by

(Dα
∗
f )(t) :=

1
0(n− α)

∫ t

a
(t − s)n−α−1f n(s)ds.

This definition is of course more restrictive than the Riemann–Liouville definition, in that it requires the absolute
integrability of the derivative of order m. Whenever we use the operator Dα

∗
we (tacitly) assume that this condition is met.

We easily recognize that in general

Dα f (t) := DmIm−α f (t) 6= Jm−αDmf (t) := Dα
∗
f (t), (8)

unless the function f (t), along with its first n − 1 derivatives, vanishes at t = a+. In fact, assuming that the passage of the
m-derivative under the integral is legitimate, we recognize that, form− 1 < α < m and t > 0,

Dα f (t) = Dα
∗
f (t)+

m−1∑
k=0

(t − a)k−α

0(k− α + 1)
f (k)(a+), (9)

and therefore, recalling the fractional derivative of the power function (6),

Dα
(
f (t)−

m−1∑
k=0

(t − a)k−α

0(k− α + 1)
f (k)(a+)

)
= Dα

∗
f (t). (10)

The alternative definition, that is, Definition 3.3, for the fractional derivative thus incorporates the initial values of the
function and of lower order. The subtraction of the Taylor polynomial of degree n − 1 at t = a+ from f (t) means a sort
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of regularization of the fractional derivative. In particular, according to this definition, the relevant property for which the
fractional derivative of a constant is still zero, i.e.,

Dα
∗
1 = 0, α > 0. (11)

We now explore the most relevant differences between the two fractional derivatives given in Definitions 3.2 and 3.3. From
Riemann–Liouville fractional derivatives, we have

Dα(t − a)α−j = 0, for j = 1, 2, . . . , [α] + 1. (12)

From (11) and (12) we thus recognize the following statements about functions about functions which, for t > 0, admit the
same fractional derivative of order α, with n− 1 < α ≤ n, n ∈ N,

Dα f (t) = Dαg(t)⇔ f (t) = g(t)+
m∑
j=1

cj(t − a)α−j, (13)

and

Dα
∗
f (t) = Dα

∗
g(t)⇔ f (t) = g(t)+

m∑
j=1

cj(t − a)n−j. (14)

In these formulas the coefficients cj are arbitrary constants. For proving all main results we present the following auxiliary
lemmas.

Lemma 3.4 ([26]). Let α > 0 and let y ∈ L∞(a, b) or C([a, b]). Then

(Dα
∗
Iαy)(t) = y(t).

Lemma 3.5 ([26]). Let α > 0 and n = [α] + 1. If y ∈ ACn[a, b] or y ∈ Cn[a, b], then

(IαDα
∗
y)(t) = y(t)−

n−1∑
k=0

y(k)(a)
k!

(t − a)k.

For further reading and details on fractional calculus, we refer to the books and papers by Kilbas [26], Podlubny [28],
Samko [29], Caputo [65–67].

4. The Filippov–Ważewski theorem

Let J0 = [0, t1], Jk = (tk, tk+1], k = 1, . . . ,m, and let yk be the restriction of a function y to Jk. In order to define mild
solutions for Problem (1)–(4), consider the space

PC = {y: J → R | yk ∈ C(Jk,R), k = 0, . . . ,m, and y(t−k ) and y(t
+

k ) exist and satisfy y(t
−

k )

= y(tk) for k = 1, . . . ,m}.

Endowed with the norm

‖y‖PC = max{‖yk‖∞ : k = 0, . . . ,m},

this is a Banach space.

Definition 4.1. A function y ∈ PC ∩
⋃m
k=0 AC(Jk,R) is said to be a solution of (1)–(4) if there exists v ∈ L

1(J,R), with
v(t) ∈ F(t, y(t)) for a.e. t ∈ J , such that y satisfies the fractional differential equation Dα

∗
y(t) = v(t) a.e. on J , and the

conditions (2)–(4).

5. Relaxation theorem

In this section we examine to what extent the convexification of the right-hand side of the inclusion introduces new
solutions.More precisely, wewant to find out if the solutions of the nonconvex problem are dense in those of the convex one.
Such a result is known in the literature as a relaxation theorem and it has important implications in optimal control theory.
It is well known that in order to have optimal state–control pairs, the system has to satisfy certain convexity requirements.
If these conditions are not present, then in order to guarantee the existence of optimal solutions we need to pass to
an augmented system with convex structure by introducing the so-called relaxed (generalized, chattering) controls. The
resulting relaxed problem has a solution. The relaxation theorems tell us that the relaxed optimal state can be approximated
by original states, which are generated by a more economical set of controls that are much simpler to build. In particular,
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‘‘strong relaxation’’ theorems imply that this approximation can be achieved using states generated by bang–bang controls.
For the problem for first-order differential inclusions, fractional differential inclusions and impulsive functional differential
inclusions, we refer to [59] (Thm. 2, p. 124) or [60] (Thm. 10.4.4, p. 402), Hu and Papageorgiou [62], Djabli et al. [68], Graef
and Ouahab [19], Henderson and Ouahab [102,50] and Ouahab [51]. More precisely, we compare trajectories of (1)–(4) and
of the relaxation impulsive differential inclusion

Dα
∗
y(t) ∈ coF(t, y(t)), a.e. t ∈ J =: [0, b] \ {t1, . . . , tm}, (15)

y(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m, (16)

y′(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m, (17)

y(0) = a y′(0) = c, (18)

where co A refers to the closure of the convex hull of the set A. We will need the following auxiliary results in order to prove
our main relaxation theorem. The first two are concerned with measurability of multivalued mappings. The third one is due
to Mazur, while the last one is a classical fixed point theorem.

Lemma 5.1 ([69]). Let U: [0, b] → Pcl(E) be a measurable, integrably bounded set-valued map and let t 7→ d(0,U(t)) be
an integrable map. Then the integral

∫ b
0 U(t)dt is convex, the map t 7→ co U(t) is measurable and, for every ε > 0, and every

measurable selection u of co U(t), there exists a measurable selection u of U such that

sup
t∈[0,b]

∣∣∣∣∫ t

0
u(s)ds−

∫ t

0
u(s)ds

∣∣∣∣ ≤ ε
and ∫ b

0
co U(t)dt =

∫ b

0
U(t)dt =

∫ b

0
co U(t)dt.

Lemma 5.2 (Mazur’s Lemma, [70], Theorem 21.4). Let E be a normed space and {xk}k∈N ⊂ E a sequence weakly converging to a
limit x ∈ E. Then there exists a sequence of convex combinations ym =

∑m
k=1 αmkxk, where αmk > 0 for k = 1, 2, . . . ,m, and∑m

k=1 αmk = 1, which converges strongly to x.

Lemma 5.3 (Covitz–Nadler, [71]). Let (X, d) be a complete metric space. If N : X → Pcl(X) is a contraction, then Fix N 6= ∅.

The following hypotheses will be assumed for the remainder of this section. Let a, c ∈ R and g ∈ L1(J,R), and let
x ∈ PC ∩

⋃m
k=0 AC(Jk,R) be a solution of the impulsive differential problem with fractional order:

Dα
∗
x(t) = g(t), a.e. t ∈ J \ {t1, . . . , tm}, α ∈ (1, 2],

x(t+k ) = Ik(x(t
−

k )), k = 1, . . . ,m,
x′(t+k ) = Ik(x(t

−

k )), k = 1, . . . ,m,
x(0) = a, x′(0) = c.

(19)

We will make use of the following pairs of two assumptions:

(H1) The function F : J × R→ Pcl(R) is such that
(a) for all y ∈ R, the map t 7→ F(t, y) is measurable,
(b) the map γ : t 7→ d(g(t), F(t, x(t))) is integrable.

(H2) There exists a function p ∈ L1(J,R+) such that

Hd(F(t, z1), F(t, z2)) ≤ p(t)|z1 − z2|, for all z1, z2 ∈ R.

(H1) The function F : J × R→ Pcl(R) satisfies
(a) for all y ∈ R, the map t 7→ F(t, y) is measurable,
(b) the map t 7→ d(0, F(t, 0)) is integrable.

(H2) There exist constants ck, ck ≥ 0 such that

|Ik(u1)− Ik(u2)| ≤ ck|u1 − u2|, |Ik(u1)− Ik(u2)| ≤ ck|u1 − u2|, for each u1, u2 ∈ R.

Remark 5.4. From Assumptions (H1(a)) and (H2), it follows that the multifunction t 7→ F(t, xt) is measurable, and by two
lemmas in [72] (Lemmas 1.4 and 1.5) we deduce that γ (t) = d(g(t), F(t, x(t))) is measurable (see also the Remark on p. 400
in [60]).
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Let P(t) =
∫ t
0 p(s)ds, and define the functions η0 and H0 by

η0(t) = Mδ0 +M
∫ t

0
[H0(s)p(s)+ γ (s)] ds, t ∈ [0, t1],

where

H0(t) = δ0M exp
(
MeP(t)

)
+M

∫ t

0
γ (s) exp

(
MeP(t)−P(s)

)
ds,

and whereM = max
(
1, b, b

α−1

0(α)

)
and δ0 = |a− a| + |c − c|.

Theorem 5.5 ([73]). Suppose that hypotheses (H1)–(H2) are satisfied. Problem (1)–(4) has at least one solution y satisfying, for
a.e. t ∈ [0, b], the estimates

|y(t)− x(t)| ≤ M
∑
0≤k<i

δk +M
∑
0≤tk<t

ηk(t)

and

|Dα
∗
y(t)− g(t)| ≤ Mp(t)

∑
0<tk<t

Hk(t)+
∑
0<tk<t

γk(t),

where, for k = 1, . . . ,m,

ηk(t) = M
∫ t

tk

[Hk(s)p(s)+ γ (s)] ds, t ∈ (tk, tk+1],

Hk(t) = δk exp
(
MePk(t)

)
+

∫ t

tk
γ (s) exp

(
MePk(t)−Pk(s)

)
ds,

and

δk := |I1(y(tk))− Ik(x(tk))| + |Ī1(y(tk))− Ī1(x(tk))|.

Then our main contribution is the following.

Theorem 5.6. Assume that (H2), (H1), (H2) hold. Then Problem (15) has at least one solution. In addition, for all ε > 0 and
every solution x of Problem (15), Problem (1)–(4) has a solution y defined on [0, b] satisfying

‖x− y‖PC ≤ ε.

In particular, Sco
[0,b](a, c) = S[0,b](a, c), where

Sco
[0,b](a, c) = {y: y is a solution to (1)–(4) on [0, b]}.

Remark 5.7. Notice that the multivalued map t 7→ co F(t, ·) also satisfies (H2).

Proof. The proof consists of two parts, with each part involving multiple steps.

Part 1. Sco
[0,b] 6= ∅: For this, we first transform Problem (15) into a fixed point problem and then make use of Lemma 5.3.
Consider the problem on the interval [−r, t1], that is,{

Dα
∗
y(t) ∈ co F(t, y(t)), a.e. t ∈ [0, t1],

y(0) = a, y′(0) = c. (20)

It is clear that all solutions of Problem (20) are fixed points of the multivalued operator N : PC1 → P (PC1) defined
by

N(y) :=
{
h ∈ PC1 : h(t) = a+ tc +

1
0(α)

∫ t

0
(t − s)α−1g(s)ds, t ∈ [0, t1]

}
where

g ∈ ScoF ,y =
{
g ∈ L1([0, t1],R) : g(t) ∈ co F(t, y(t)) for a.e. t ∈ (0, t1]

}
and PC1 = C([0, t1],R). To show that N satisfies the assumptions of Lemma 5.3, the proof will be given in two steps.
In Steps 3, 4, we study the problem on the intervals (tk, tk+1] for k = 1, . . . ,m− 1.
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Step 1. N(y) ∈ Pcl(PC1) for each y ∈ PC1: Indeed, let {yn} ∈ N(y) be such that yn → ỹ in PC1, as n → +∞. Then ỹ ∈ PC1
and there exists a sequence gn ∈ Sco F ,y such that

yn(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1gn(s)ds, t ∈ [0, t1].

Then {gn} is integrably bounded. Since F(·, ·) has closed values, letw(·) ∈ F(·, 0) be such that |w(t)| = d(0, F(t, 0)).
From (H1) and (H2), we infer that for a.e. t ∈ [0, t1],

|gn(t)| ≤ |gn(t)− w(t)| + |w(t)|
≤ p(t)‖y‖PC1 + d(0, F(t, 0)) := M∗(t), ∀ n ∈ N,

that is,

gn(t) ∈ M(t)B(0, 1), a.e. t ∈ [0, t1].

Since B(0, 1) is compact in R, there exists a subsequence still denoted {gn}which converges to g .
Then the Lebesgue dominated convergence theorem implies that, as n→∞,

‖gn − g‖L1 → 0 and thus yn(t)→ ỹ(t)

with

ỹ(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1g(s)ds, t ∈ [0, t1],

proving that ỹ ∈ N(y).
Step 2. There exists γ < 1 such that Hd(N(y),N(y)) ≤ γ ‖y− y‖PC1 for each y, y ∈ PC1, where the norm ‖y− y‖PC1 will be

chosen conveniently. Indeed, let y, y ∈ Ω([−r, t1]) and h1 ∈ N(y). Then there exists g1(t) ∈ co F(t, y(t)) such that,
for each t ∈ [0, t1],

h1(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1g1(s)ds.

Since, for each t ∈ [0, t1],

Hd(co F(t, yt), co F(t, yt)) ≤ p(t)|y(t)− y(t)|,

then there exists somew(t) ∈ co F(t, y(t)) such that

|g1(t)− w(t)| ≤ p(t)|y(t)− y(t)|, t ∈ [0, t1].

Consider the multimap U1 : [0, t1] → P (R) defined by

U1(t) = {w ∈ R : |g1(t)− w| ≤ p(t)|y(t)− y(t)|}.

As in the proof of Theorem 5.5, we can show that the multivalued operator V1(t) = U1(t) ∩ co F(t, y(t)) is mea-
surable and takes nonempty values. Then there exists a function g2(t), which is a measurable selection for V1. Thus,
g2(t) ∈ co F(t, y(t)) and

|g1(t)− g2(t)| ≤ p(t)|y− y|, for a.e. t ∈ [0, t1].

For each t ∈ [0, t1], let

h2(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1g2(s)ds.

Therefore, for each t ∈ [0, t1], we have

|h1(t)− h2(t)| ≤
1

0(α)

∫ t

0
(t − s)α−1|g1(s)− g2(s)| ds

≤
tα1
0(α)

∫ t

0
p(s)|y(s)− ȳ(s)|ds

≤
tα1
0(α)

∫ t

0
p(s)eτ

∫ s
0 p(u)du

(
sup
0≤z≤t1

e−τ
∫ z
0 p(u)du|y(z)− ȳ(z)|

)
ds

≤
tα1

0(α)τ

∫ t

0
(eτ

∫ s
0 p(u)du)′‖y− ȳ‖BPC1ds.

Hence,

‖h1 − h2‖BPC1 ≤
tα1
τ
‖y− ȳ‖BPC1 ,
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where

‖y‖BPC1 = sup
{
e−τ

∫ t
0 p(s)ds|y(t)| : t ∈ [0, t1], τ >

tα1
0(α)

}
.

By an analogous relation, obtained by interchanging the roles of y and ȳ, we find that

Hd(N(y),N(ȳ)) ≤
tα1

0(α)τ
‖y− ȳ‖BPC1 .

Then N is a contraction and hence, by Lemma 5.3, N has a fixed point y0, which is solution to Problem (20).
Step 3. Let y2 := y|[t1,t2] be a possible solution to the problem

Dα
∗
y(t) ∈ co F(t, y(t)), t ∈ (t1, t2],

y(t+1 ) = I1(y0(t
−

1 )),

y′(t+1 ) = I1(y0(t
−

1 )).

(21)

Then y2 is a fixed point of the multivalued operator N : PC2 → P (PC2) defined by

N(y) :=

h ∈ PC2 : h(t) =

I1(y0(t1))+ (t − t1)I1(y0(t1))

+
1

0(α)

∫ t

t1
(t − s)α−1g(s)ds, t ∈ (t1, t2]


where

g ∈ Sco F ,y =
{
g ∈ L1([t1, t2],R) : g(t) ∈ co F(t, y(t)) for a.e. t ∈ [t1, t2]

}
.

Again, we show that N satisfies the assumptions of Lemma 5.3. Clearly, N(y) ∈ Pcl(PC2) for each y ∈ PC2. It remains
to show that there exists 0 < γ < 1 such that

Hd(N(y),N(y)) ≤ γ ‖y− y‖BPC2 ,

for each y, y ∈ PC2. For this purpose, let y, y ∈ PC2 and h1 ∈ N(y). Then there exists g1(t) ∈ co F(t, y(t)) such that,
for each t ∈ [0, t2],

h1(t) = I1(y0(t1))+ (t − t1)I1(y0(t1))+
1

0(α)

∫ t

t1
(t − s)α−1g1(s)ds.

Since from (H2)

Hd(co F(t, y(t)), co F(t, yt)) ≤ p(t)|y(t)− y(t)|, t ∈ [t1, t2],

we deduce that there is aw(·) ∈ co F(·, y(·)) such that

|g1(t)− w(t)| ≤ p(t)|y(t)− y(t)|, t ∈ [t1, t2].

Consider the multivalued map U2 : [t1, t2] → P (R) defined by

U2(t) = {w ∈ R : |g1(t)− w| ≤ p(t)|y(t)− y(t)|}.

Since the multivalued operator V2(t) = U2(t)∩ co F(t, y(t)) is measurable with nonempty values, there exists g2(t)
which is a measurable selection for V2. Then g2(t) ∈ co F(t, y(t)) and

|g1(t)− g2(t)| ≤ p(t)|y(t)− y(t)|, for a.e. t ∈ [t1, t2].

For a.e. t ∈ [t1, t2], define

h2(t) = I1(y0(t1))+ (t − t1)I1(y0(t1))+
1

0(α)

∫ t

0
(t − s)α−1g2(s)ds.

For some τ > Mewt2 , we have the estimates

|h1(t)− h2(t)| ≤
1

0(α)

∫ t

t1
(t − s)α−1|g1(s)− g2(s)| ds

≤
tα2
0(α)

∫ t

t1
p(s)|y(s)− y(s)|ds

≤
tα2

0(α)τ
‖y− y‖BPC2 .

By an analogous relation, obtained by interchanging the roles of y and y, we obtain

Hd(N(y),N(y)) ≤
tα2

0(α)τ
‖y− y‖BPC2 ,
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where

‖y‖BPC2 = sup
{
e−τ

∫ t
t1
p(s)ds
|y(t)| : t ∈ [t1, t2]

}
.

Therefore N is a contraction and thus, by Lemma 5.3, N has a fixed point y1 solution of Problem (21).
Step 4. We continue this process taking into account that ym := y|[tm,b] is a solution of the following problem:

Dα
∗
y(t) ∈ F(t, y(t)), t ∈ (tm, b],

y(t+m ) = Im(ym−1(t
−

m )),

y′(t+m ) = Im(ym−1(t
−

m )).

(22)

Then a solution y of Problem (15) may be defined by

y(t) =


y0(t), if t ∈ [0, t1],
y2(t), if t ∈ (t1, t2],
. . . . . .
ym(t), if t ∈ (tm, b].

Part 2. Let x be a solution of Problem (15). Then, there exists g ∈ Sco F ,x such that

x(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1g(s)ds, t ∈ [0, t1],

and

x(t) = Ik(x(tk))+ (t − tk)Ik(x(tk))+
1

0(α)

∫ t

tk
(t − s)α−1g(s)ds, t ∈ (tk, tk+1], k = 1, . . . ,m,

i.e., x is a solution of the problem
Dα
∗
x(t) = g(t), a.e. t ∈ [0, b] \ {t1, . . . , tm},

x(t+k ) = Ik(x(t
−

k )), k = 1, . . . ,m,
x′(t+k ) = Ik(x(t

−

k )), k = 1, . . . ,m.
x(0) = a, x′(0) = c.

(23)

Let ε > 0 and δ > 0 be given by the relationMeωbε = δL
∑m
k=1 Rk, where L, Rk, for k = 0, 1, . . . ,m, will be defined

later on. From Lemma 5.1, there exists a measurable selection f∗ of t 7→ F(t, x(t)) such that

sup
t∈[0,b]

∣∣∣∣ 10(α)
∫ t

0
(t − s)α−1g(s)ds−

1
0(α)

∫ t

0
(t − s)α−1f∗(s)ds

∣∣∣∣
≤
bα

0(α)
sup
t∈[0,b]

∣∣∣∣∫ t

0
g(s)ds−

∫ t

0
f∗(s)ds

∣∣∣∣ ≤ bα

0(α)
δ.

Let

z(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1f∗(s)ds, t ∈ [0, t1]

and

z(t) = Ik(x(tk))+ (t − tk)Ik(x(tk))+
1

0(α)

∫ t

tk
(t − s)α−1f∗(s)ds, t ∈ (tk, tk+1], k = 1, . . . ,m.

Hence

|x(t)− z(t)| ≤
bα

0(α)
δ.

With assumption (H2), we infer that, for all u ∈ co F(t, z(t)),

γ (t) := d(g(t), F(t, x(t))) ≤ d(g(t), u)+ Hd(F(t, z(t)), F(t, x(t)))
≤ Hd(co F(t, x(t)), co F(t, z(t)))+ Hd(F(t, z(t)), F(t, x(t)))
≤ 2p(t)|x(t)− z(t)| ≤ 2δp(t).

Since, under (H1(a)) and (H2), γ is measurable (see [60] or [72], Lemma 1.5), by the above inequality, we deduce
that γ ∈ L1(J,R). From Theorem 5.5, Problem (1)–(4) has a solution ywhich satisfies

|y(t)− x(t)| ≤ η0(t), t ∈ [0, t1].

It is clear that δ0 = 0 and

η0(t) ≤ δR0.
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Hence

‖y− x‖∞ ≤ δR0,

where

R0 = 2‖p‖2L1M
2 exp

(
MeP(t1)

)
+ 2M‖p‖L1 .

For t ∈ (t1, t2], we obtain

|y(t)− x(t)| ≤ M[(c1 + (t2 − t1)c̄1)]η0(t1)+Mη1(t).

Since

H1(t) ≤
[
M[1+ (c1 + (t2 − t1)c̄1)]R0 +

(
(c1 + (t2 − t1)c̄1)R0 exp

(
MeP1(t2)

)
+ 2‖p‖L1 exp

(
MeP1(t2)

))]
δ,

there exists R1 such that

sup{|y(t)− x(t)| : t ∈ [t1, t2]} ≤ (M[(c1 + (t2 − t1)c̄1)]R0 + R1)δ.

We continue this process until we get that there exists L > 0 such that, for all t ∈ [0, b], we have

|x(t)− y(t)| ≤ Lδ
m∑
k=0

Rk.

Set

δ =
ε

L
m∑
k=0
Rk
.

Then we obtain

‖y∗ − y‖PC ≤ ε,

and the proof is complete. �

6. Existence results

6.1. Convex case

For our main consideration of Problem (1)–(4), a nonlinear alternative of Leray–Schauder type is used to investigate the
existence of solutions for first-order impulsive fractional differential inclusions.

Theorem 6.1 (Convex Case). Suppose the following hold:
(B1) The function F : J × R→ Pcp,cv(R) is L1-Carathéodory,
(B2) There exist a function p ∈ L1(J,R+) and a continuous nondecreasing function ψ: [0,∞)→ [0,∞) such that

‖F(t, z)‖P ≤ p(t)ψ(|z|) for a.e. t ∈ J and each z ∈ R,

with ∫ b

0
p(s)ds <

∫
∞

|a|+t1|c|

du
ψ(u)

· .

Then the set of solutions for Problem (1)–(4) is nonempty and compact. Moreover, the operator solution S(·, ·) : R2 → P (PC),
defined by

S(a, c) = {y ∈ PC : y solution of the problem with y(0) = a, y′(0) = c},

is u.s.c.

Proof. Transform the problem into a fixed point problem. Consider first Problem (1)–(4) on the interval [0, t1], that is, the
problem

Dα
∗
y(t) ∈ F(t, y(t)), a.e. t ∈ [0, t1], (24)

y(0) = a, y′(0) = c. (25)

It is clear that the solutions of the Problem (24)–(25) are fixed points of the multivalued operator, N0 : C([0, t1],R) →
P (C([0, t1],R)) defined by

N0(y) :=
{
h ∈ C([0, t1],R) : h(t) = a+ tc +

1
0(α)

∫ t

0
(t − s)α−1g(s)ds, if t ∈ [0, t1]

}
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where

g ∈ SF ,y =
{
g ∈ L1([0, t1],R) : g(t) ∈ F(t, y(t)) for a.e. t ∈ [0, t1]

}
.

As in [49–51], we can show that N0 is completely continuous, with compact and convex values. �

Nowwe show thatN0 is upper semi-continuous. SinceN0 is completely continuous, it suffices to prove thatN0 has a closed
graph. Let yn −→ y∗, hn ∈ N0(yn) and hn −→ h∗, yn −→ y∗ as n→∞. We will prove that h∗ ∈ N0(y∗). Now hn ∈ N0(yn)
implies that there exists gn ∈ SF ,yn such that, for each t ∈ J ,

hn(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1gn(s)ds.

Wemust prove that there exists g∗ ∈ SF ,y∗ such that, for each t ∈ J ,

h∗(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1g∗(s)ds.

Consider the linear operator,

Ψ : L1([0, t1],R) −→ C([0, t1],R)

g 7−→ (Ψ g)(t) =
1

0(α)

∫ t

0
(t − s)α−1g(s)ds.

Then

‖Ψ (g)‖∞ ≤
tα1
0(α)
‖g‖L1 ,

and this implies that Ψ is continuous. From Lemma 2.5, it follows that Ψ ◦ SF ,y is a closed graph operator. Moreover, we
have that

hn ∈ 0(SF ,yn).

Since yn −→ y∗, it follows from Lemma 2.5 that

h∗(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1g∗(s)ds

for some g∗ ∈ SF ,y∗ .
A priori bounds.We now show that there exists an open set U0 ⊆ C([0, t1],R)with no y ∈ λN0(y), for λ ∈ (0, 1) and y ∈ ∂U0.
Let y ∈ C([0, t1],R) and y ∈ λN0(y) for some 0 < λ < 1. Thus there exists g ∈ SF ,y such that, for each t ∈ [0, b], we

have

y(t) = λ
[
a+ tc +

1
0(α)

∫ t

0
(t − s)α−1g(s)ds

]
, (26)

and so

|y(t)| ≤ |a| + t1|c| +
tα1
0(α)

∫ t

0
p(s)ψ(|y(s)|)ds, t ∈ [0, t1].

We consider the function µ defined by

µ(t) = sup{|y(s)| : 0 ≤ s ≤ t}, 0 ≤ t ≤ t1.

Then

µ(t) ≤ |a| + t1|c| +
tα1
0(α)

∫ t

0
p(s)ψ(µ(s))ds.

Let us take the right-hand side of the above inequality as v(t). Then we have

c∗ = v(0) = |a|, µ(t) ≤ v(t), t ∈ [0, t1]

and

v′(t) =
tα1
0(α)

p(t)ψ(µ(t)), t ∈ [0, t1].

Using the nondecreasing character of ψ , we get

v′(t) ≤
tα1
0(α)

p(t)ψ(v(t)), t ∈ [0, t1].
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This implies, for each t ∈ [0, t1], that∫ v(t)

v(0)

du
ψ(u)

≤
tα1
0(α)

∫ t1

0
p(s)ds.

Then there existsM0 > 0 such that

sup
t∈[0,t1]

|y(t)| ≤ M0.

Set

U0 = {y ∈ C([0, t1],R) : ‖y‖∞ < M0 + 1}.

N0 : U0 → P (C([0, t1],R)) is continuous and completely continuous. From the choice of U0, there is no y ∈ ∂U0 such that
y ∈ λN0(y), for some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray–Schauder type [74], we deduce that
N0 has a fixed point y0 in U0,which is a solution to (24)–(25).
Now, let y2 := y|(t1,t2] be a solution to the problem

Dα
∗
y(t) ∈ F(t, y(t)), a.e. t ∈ (t1, t2], (27)

y(t+1 ) = I1(y0(t
−

1 )). (28)

y′(t+1 ) = I1(y0(t
−

1 )). (29)

Then y1 is a fixed point of the multivalued operator N : PC1 → P (PC1) defined by

N1(y) :=

h ∈ PC1 : h(t) =

I1(y1(t1))+ (t − t1)I1(y0(t1))

+
1

0(α)

∫ t

t1
(t − s)α−1g(s)ds, t ∈ [t1, t2],


where

g ∈ SF ,y =
{
g ∈ L1([t1, t2],R) : g(t) ∈ F(t, y(t)) for a.e. t ∈ [t1, t2]

}
.

Clearly, N1 is completely continuous, u.s.c., compact and convex valued.
We now show there exists an open set U1 ⊆ PC1 with no y ∈ λN1(y) for λ ∈ (0, 1) and y ∈ ∂U1.
Let y ∈ PC1 and y ∈ λN1(y) for some 0 < λ < 1. Then,

y(t) = λ
[
I1(y0(t1))+ (t − t1)I1(y0(t1))+

1
0(α)

∫ t

0
(t − s)α−1g(s)ds

]
,

for some λ ∈ (0, 1). And so,

|y(t)| ≤ |I1(y0(t1))| + (t2 − t1)|I1(y0(t1))| +
tα2
0(α)

∫ t

t1
p(s)ψ(|y(s)|)ds, t ∈ (0, b]. (30)

Set

µ(t) = sup{|y(s)| : s ∈ [t1, t2]}, t ∈ [t1, t2].

Then

µ(t) ≤ |I1(y0(t1))| + (t2 − t1)|I1(y0(t1))| +
tα2
0(α)

∫ t

t1
p(s)ψ(µ(s))ds. (31)

This implies that there existsM1 > 0 such that

‖y‖PC1 ≤ M1.

Set

U1 = {y ∈ PC1 : ‖y‖PC1 < M1 + 1}.

N1 : U1 → P (PC1) is continuous and completely continuous. From the choice ofU1, there is no y ∈ ∂U1 such that y ∈ λN1(y),
for some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray–Schauder type [74], we deduce that N1 has a
fixed point y1 in U1, which is a solution to (27)–(29). We continue this process, and taking into account that ym := y|(tm,b] is
a solution to the problem

Dα
∗
y(t) ∈ F(t, y(t)), a.e. t ∈ (tm, b], (32)

y(t+m ) = Im(ym−1(t
−

m )), (33)

y′(t+m ) = Im(ym−1(t
−

m )). (34)



J. Henderson, A. Ouahab / Computers and Mathematics with Applications 59 (2010) 1191–1226 1205

The solution y of Problem (1)–(4) is then defined by

y(t) =


y0(t), if t ∈ [0, t1],
y1(t), if t ∈ (t1, t2],
...
ym(t), if t ∈ (tm, b].

Using the fact that F(·, ·) ∈ Pcv,cp(R), F(t, .) is u.s.c. andMazur’s lemma, by Ascoli’s theorem, we can prove that the solution
set of Problem (1)–(4) is compact.
Now, we will show that S(·, ·) is u.s.c. by proving that the graph of S,

0(a, c) := {(a, c, y) | y ∈ S(a, c)},

is closed. Let (an, cn, yn) ∈ 0, i.e., yn ∈ S(an, cn), and let (an, cn, yn)→ (a, c, y) as n→∞. Since yn ∈ S(an, cn), there exists
vn ∈ L1(J,R) such that

yn(t) =



an + cnt +
1

0(α)

∫ t

0
(t − s)α−1vn(s)ds, if t ∈ [0, t1],

I1(yn(t1))+ (t − t1)Ī1(yn(t1))+
1

0(α)

∫ t

t1
(t − s)α−1vn(s)ds, if t ∈ (t1, t2],

...

yn(tm)+ Im(yn(tm))+ (t − tm)Īm(yn(tm))+
1

0(α)

∫ t

t1
(t − s)α−1vn(s)ds, if t ∈ (tm, b].

Since (an, cn, yn) converges to (a, c, y), there existsM > 0 such that

|an| + |cn| ≤ M for all n ∈ N.

By using (B2), we can easily prove that there existM > 0 such that

‖yn‖PC ≤ M for all n ∈ N.

From the definition of yn, we have Dα∗yn(t) = vn(t) a.e. t ∈ J , and so

|vn(t)| ≤ p(t)ψ(M), t ∈ J.

Thus, vn(t) ∈ p(t)ψ(M)B(0, 1) := χ(t) a.e. t ∈ J . It is clear that χ : J → Pcp,cv(R) is a multivalued map that is integrably
bounded. Since {vn(·) : n ≥ 1} ∈ χ(·), we may pass to a subsequence if necessary to obtain that vn converges weakly to v
in L1w(J,R). From Mazur’s lemma, there exists

v ∈ conv{vn(t) : n ≥ 1},

so there exists a subsequence {v̄n(t) : n ≥ 1} in conv{vn(t) : n ≥ 1}, such that v̄n converges strongly to v ∈ L1(J,R). Since
F(t, ·) is u.s.c., for every ε > 0, there exists n0(ε) such that, for every n ≥ n0(ε), we have

v̄n(t) ∈ F(t, yn(t)) ⊆ F(t, ỹ(t))+ εB(0, 1).

This implies that v(t) ∈ F(t, y(t)), a.e. t ∈ J . Let

z(t) =



a+ ct +
1

0(α)

∫ t

0
(t − s)α−1v(s)ds, if t ∈ [0, t1],

I1(y(t1))+ (t − t1)I1(y(t1))+
1

0(α)

∫ t

t1
(t − s)α−1v(s)ds, if t ∈ (t1, t2],

...

Im(y(tm))+ (t − tm)Im(y(tm))+
1

0(α)

∫ t

t1
(t − s)α−1v(s)ds, if t ∈ (tm, b].

For each t ∈ J , the mapping 0 : L1(J,R)→ R defined by

0(g)(t) =
∫ t

0
g(s)ds
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is a continuous linear operator from L1(J,R) intoR. It remains continuous if these spaces are endowedwith topologies [75].
Therefore, for each t ∈ J , the sequence {yn(t)} converges to y(t) and the continuity of Ik, Ik k = 1, . . . ,m, we have

y(t) =



a+ ct +
1

0(α)

∫ t

0
(t − s)α−1v(s)ds, if t ∈ [0, t1],

I1(y(t1))+ (t − t1)I1(y(t1))+
1

0(α)

∫ t

t1
(t − s)α−1v(s)ds, if t ∈ (t1, t2],

...

Im(y(tm))+ (t − tm)Im(y(tm))+
1

0(α)

∫ t

t1
(t − s)α−1v(s)ds, if t ∈ (tm, b].

Thus, y ∈ S(a, c). Now, we show that S(·, ·)maps bounded sets into relatively compact sets of PC . Let B be a bounded set in
R2 and let {yn} ⊂ S(B). Then there exist {an, cn} ⊂ B such that

yn(t) =



an + cnt +
1

0(α)

∫ t

0
(t − s)α−1vn(s)ds, if t ∈ [0, t1],

I1(yn(t1))+ (t − t1)I1(yn(t1))+
1

0(α)

∫ t

t1
(t − s)α−1vn(s)ds, if t ∈ (t1, t2],

...

Im(yn(tm))+ (t − tm)Im(yn(tm))+
1

0(α)

∫ t

t1
(t − s)α−1vn(s)ds, if t ∈ (tm, b]

where vn ∈ SF ,yn , n ∈ N. Since {an, cn} is a bounded sequence, there exists a subsequence of {an, cn} converging to {a, c}, so
from (B2), there existM∗ > 0 such that

‖yn‖PC ≤ M∗, n ∈ N.

As in [52,49,51,54], we can show that {yn : n ∈ N} is equicontinuous in PC . As a consequence of the Arzelá–Ascoli theorem,
we conclude that there exists a subsequence of {yn} converging to y in PC . By a similar argument to the one above, we can
prove that

y(t) =



a+ ct +
1

0(α)

∫ t

0
(t − s)α−1v(s)ds, if t ∈ [0, t1],

I1(y(t1))+ (t − t1)I1(y(t1))+
1

0(α)

∫ t

t1
(t − s)α−1v(s)ds, if t ∈ (t1, t2],

...

Im(y(tm))+ (t − tm)Im(y(tm))+
1

0(α)

∫ t

t1
(t − s)α−1v(s)ds, if t ∈ (tm, b]

where v ∈ SF ,y. Thus, y ∈ S(a, c), and this implies that S(·, ·) is u.s.c.

Remark 6.2. For the proof that S(., .) is compact we can used the compactness of B(0, 1) in R and the Lebesgue dominated
convergence theorem.

6.2. Nonconvex case

In this subsection, we present a second result for Problem (1)–(4)with a nonconvex valued right-hand side.Wewillmake
use of some new conditions.

(A1) F : [0, b] × R× R −→ Pcp(R); t 7−→ F(t, x) is measurable for each x ∈ R.
(A2) There exists a function p ∈ L1([0, b],R+) such that, for a.e. t ∈ [0, b] and all x, y ∈ R,

Hd(F(t, x), F(t, y)) ≤ p(t)|x− y|,

and

d(0, F(t, 0)) ≤ p(t) for a.e. t ∈ [0, b].

Theorem 6.3. Suppose that hypotheses (A1) and (A2) are satisfied. Then the IVP (1)–(4) has at least one solution.

Proof. For the proof, see Theorem 5.6. �
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Lemma 6.4. Assume that the conditions of Theorem 6.3 are satisfied and F : [0, b] × R → Pcp,cv(R). Then the solution set of
Problem (1)–(4) is compact.

Proof. Using the fact the F(·, ·) ∈ Pcv(R) and Mazur’s lemma, by Ascoli’s theorem, we can prove that the solution set of
Problem (1)–(4) is compact.

We now lay some groundwork for this subsection, where F is not necessarily convex valued.
Let E be a Banach space and A a be subset of J × E.

Definition 6.5. A is calledL⊗B measurable if A belongs to the σ -algebra generated by all sets of the form I × D, where I
is Lebesgue measurable in J and D is Borel measurable in E.

Definition 6.6. A subset A ⊂ L1(J, E) is decomposable if, for all u, v ∈ A and for every Lebesgue measurable set I ⊂ J , we
have

uχI + vχJ\I ∈ A,

where χ stands for the characteristic function. The family of all nonempty closed and decomposable subsets of L1(J,Rn) is
denoted byD .

Let F : J × E → P (E) be a multivalued map with nonempty closed values. Assign to F the multivalued operator
F : C(J, E)→ P (L1(J, E)) defined by F (y) = SF ,y and let F (t, y) = SF ,y(t), t ∈ J . The operator F is called the Nemyts’kı̆i
operator associated to F .

Definition 6.7. Let F : J × E → P (E) be a multivalued function with nonempty compact values. We say that F is of lower
semi-continuous type (l.s.c. type) if its associated Nemyts’kı̆i operatorF is lower semi-continuous and has nonempty closed
and decomposable values.

Proposition 6.8 ([76]). Consider an l.s.c. multivalued map G : S→D and assume that φ : S→L1(J,Rn) andψ : S→L1(J,R+)
are continuous maps, and for every s ∈ S, the set

H(s) = {u ∈ G(s) : |u(t)− φ(s)(t)| < ψ(s)(t)}

is nonempty. Then the map H : S → D is l.s.c., and so it admits a continuous selection.

We now provide the main result of this subsection.

Theorem 6.9. Assume the multivalued map F : J × R −→ Pcp(R) satisfies (B2) and

(B4)

{
(a) (t, x) 7→ F(t, x) isL⊗B measurable;
(b) x 7→ F(t, x) is lower semi-continuous for a.e. t ∈ J.

Then Problem (1)–(4) has at least one solution.

(The following two lemmas will be fundamental in the proof of Theorem 6.9.)

Lemma 6.10 (See [59,77,61,62]). Let X be a separable metric space and let E be a Banach space. Then every l.s.c. multivalued
operator N : X→Pcl(L1(J, E))with closed decomposable values has a continuous selection, i.e., there exists a continuous single-
valued function f : X → L1(J, E) such that f (x) ∈ N(x) for every x ∈ X.

Lemma 6.11 (See [61,78]). Let F : J ×R→ Pcp(R) be an integrably bounded multivalued function satisfying (H2). Then F is of
lower semi-continuous type.

Proof of Theorem 6.9. From Lemmas 6.10 and 6.11, there exists a continuous selection function f : PC → L1(J,R) such
that f (y)(t) ∈ F (t, y) for every y ∈ PC and a.e. t ∈ J . Next, consider the following impulsive fractional problem,

Dα
∗
y(t) = f (y)(t), a.e. t ∈ J,

y(t+k ) = Ik(y(tk)), k = 1, . . . ,m,
y′(t+k ) = Ik(y(tk)), k = 1, . . . ,m
y(0) = a, y′(0) = c.

(35)

Clearly, if y ∈ PC is a solution of Problem (35), then y is a solution to Problem (1)–(4).
The remainder of the proof will be given in several steps.

Step 1: Consider the problem

Dα
∗
y(t) = f (y)(t), a.e. t ∈ [0, t1], (36)

y(0) = a, y′(0) = c. (37)
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TransformProblem (36)–(37) into a fixed point problem. Consider the operatorN : C([0, t1],R)−→C([0, t1],R), defined by

N(y)(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1f (y)(s)ds, t ∈ [0, t1].

Since α ∈ (1, 2], we can easily prove that N is completely continuous; see Henderson and Ouahab [13] and Ouahab [51,79].
As in Theorem 6.1, if y is a possible solution of the equation y = λN(y), for some λ ∈ (0, 1), there exists K0 > 0 such that

‖y‖∞ ≤ K0.

Set

U0 = {y ∈ C([0, t1],R) : sup{|y(t)| : 0 ≤ t ≤ t1} < K0 + 1}.

As a consequence of the nonlinear alternative of Leray–Schauder type [74], we deduce thatN has a fixed point y inU0,which
is a solution to Problem (36)–(37). Denote this solution by y0.
Step 2: Consider now the problem

Dα
∗
y(t) = f (y)(t), a.e. t ∈ (t1, t2], (38)

y(t+1 ) = I1(y0(t1)), (39)

y′(t+1 ) = I1(y0(t1)). (40)

Let

PC1 = {y ∈ C((t1, t2],R) : y(t+1 ) exists}.

Consider the operator N1 : PC1 → PC1 defined by

N1(y)(t) = I1(y0(t−1 ))+ (t − t1)I1(y0(t
−

1 ))+
1

0(α)

∫ t

t1
(t − s)α−1f (y)(s)ds, t ∈ (t1, t2].

As in [13,51,79] and Theorem 6.1, we can show that N1 is continuous and completely continuous, and if z is a possible
solution of the equations y = λN1(y) for some λ ∈ (0, 1), there exists K1 > 0 such that

‖y‖PC1 ≤ K1.

Set

U1 = {y ∈ PC1 : ‖z‖PC1 < K1 + 1}.

As a consequence of the nonlinear alternative of Leray–Schauder type [74], we deduce that N1 has a fixed point ywhich is a
solution to Problem (38)–(40). Denote this solution by y1.
Step 3:We continue this process, and taking into account that ym := y|[tm,b] is a solution to the problem

Dα
∗
y(t) = f (y)(t), a.e. t ∈ (tm, b], (41)

y(t+m ) = Im(ym−1(t
−

m )), (42)

y′(t+m ) = Im(y
′

m−1(t
−

m )). (43)

The solution y of Problem (1)–(4) is then defined by

y(t) =


y0(t), if t ∈ [0, t1],
y1(t), if t ∈ (t1, t2],
. . .
ym(t), if t ∈ (tm, b]. �

6.3. Filippov’s theorem

Our main result in this section is contained in the following theorem.

Theorem 6.12. Let F : J × R→ Pcp(R) be a multivalued map. Assume that, in addition to (B4), the following also hold:

(H1) There exists a function p ∈ L1(J,R+) such that

Hd(F(t, z1), F(t, z2)) < p(t)|z1 − z2| for all z1, z2 ∈ Rn.
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(H2) There exists the continuous mapping g(·) : PC → L1(J,R) and x ∈ PC such that
Dα
∗
x(t) = g(x)(t), a.e. t ∈ J \ {t1, . . . , tm},

x(t+k ) = Ik(x(t
−

k )), k = 1, . . . ,m,
x′(t+k ) = Ik(x(t

−

k )), k = 1, . . . ,m,
x(0) = ā, x′(0) = c̄,

(44)

and d(g(x)(t), F(t, x(t))) < p(t), a.e. t ∈ [0, b]. If
2bα‖p‖L1
0(α)

< 1, then Problem (1)–(4) has at least one solution y satisfying the
estimates

‖x− y‖PC ≤
m∑
k=0

2δkH̃k‖p‖L1
0(α)

+m‖p‖L1

and

|Dα
∗
y(t)− g(x)(t)| ≤ 2p(t)H̃k + p(t), t ∈ Jk, t ∈ [0, b],

where

H̃k =
δk0(α)

0(α)− 2bα‖p‖L1
+

bα‖p‖L1
0(α)− 2bα‖p‖L1

, k = 0, . . . ,m, δ0 = |a− ā| + b|c − c̄|,

and

δk = |Ik(x(tk))− Ik(y(tk))| + (tk − tk+1)|Īk(x(tk))− Īk(y(tk))|, k = 1, . . . ,m.

Proof. We are going to study Problem (1)–(4) in the respective intervals [0, t1], (t1, t2], . . . , (tm, b]. The proof will be given
in three steps and then continued by induction.

Step 1. In this first step, we construct a sequence of functions (yn)n∈N which will be shown to converge to some solution of
Problem (1)–(4) on the interval [0, t1], namely to{

Dα
∗
y(t) ∈ F(t, y(t)), t ∈ J0 = [0, t1], α ∈ (1, 2],

y(0) = a, y′(0) = c. (45)

Let f0(y0)(t) = g(x)(t), t ∈ [0, t1], and

y0(t) = ā+ c̄t +
1

0(α)

∫ t

0
(t − s)α−1f0(y0)(s)ds.

Let G1: C([0, t1],R)→ P (L1([0, t1],R)) be given by

G1(y) = {v ∈ L1([0, t1],R) : v(t) ∈ F(t, y(t)) a.e. t ∈ [0, t1]},

and G̃1 : C([0, t1],R)→ P (L1([0, t1],R)) be defined by

G̃1(y) = {v ∈ G1(y) : |v(t)− g(y0)(t)| < p(t)|y(t)− y0(t)| + p(t)}.

Since t → F(t, y(t)) is measurable multifunction, and from Corollary 2.3, there exists a function v1 which is a
measurable selection of F(t, y(t)), a.e. t ∈ [0, t1], and such that

|v1(t)− g(y0)(t)| ≤ d(g(y0)(t), F(t, y(t)))
< p(t)+ p(t)|y(t)− y0(t)|.

Then v1 ∈ G̃1(y) 6= ∅. By Lemma 6.11, F is of lower semi-continuous type. Then y→ G1(y) is l.s.c. and has decom-
posable values. So y→ G̃1(y) is l.s.c. with decomposable values from C([0, t1],R)→ P (L1([0, t1],R)).
Then from Lemma 6.10 and Proposition 6.8, there exists a continuous function f1 : C([0, t1],R)→ L1([0, t1],R)

such that f1(y) ∈ G̃1(y) for all y ∈ PC1. Consider the problem

Dα
∗
y(t) = f1(y)(t), t ∈ [0, t1], (46)

y(0) = a, y′(0) = c. (47)

From Theorem 6.9, Problem (46)–(47) has at least one solution, which we denote by y1.
Hence

y1(t) = a+ ct +
1

0(α)

∫ t

0
(t − s)α−1f1(y1)(s)ds, t ∈ [0, t1],
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where y1 is a solution of Problem (46)–(47). For every t ∈ J , we have

|y1(t)− y0(t)| ≤ |a− ā| + t1|c − c̄| +
1

0(α)

∫ t

0
(t − s)α−1|f1(y1)(s)− f0(y0)(s)| ds

≤ δ0 +
bα

0(α)

∫ t

0
p(s)|y1(s)− y0(s)|ds+

bα

0(α)
‖p‖L1 .

Then,

‖y1 − y0‖∞ ≤
δ0

1− b
α‖p‖L1

0(α)

+
bα‖p‖L1

0(α)
(
1−

bα‖p‖L1
0(α)

) .
Define the set-valued map G2 : C([0, t1],R)→ P (L1([0, t1],R)) by

G2(y) = {v ∈ L1([0, t1],R) : v(t) ∈ F(t, y(t)), a.e. t ∈ [0, t1]},

and

G̃2(y) = {v ∈ G2(y) : |v(t)− f1(y1)(t)| < p(t)|y(t)− y1(t)| + p(t)|y0(t)− y1(t)|}.

Since t → F(t, y(t)) is measurable, and from Corollary 2.3, there exists a function v2 ∈ G̃2 which is a measurable
selection of F(t, y1(t)), a.e. t ∈ J , and such that

|v2(t)− f1(y1)(t)| ≤ d(f1(y1)(t), F(t, y(t)))
≤ Hd(f1(y1)(t), F(t, y(t)))
≤ p(t)|y1(t)− y(t)|
< p(t)|y(t)− y1(t)| + p(t)|y1(t)− y0(t)|.

Then v2 ∈ G̃2(y) 6= ∅. Using the above method, we can prove that G̃2 has at least one continuous selection, denoted
by f2. Then there exists y2 ∈ C([0, t1],R) such that

y2(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1f2(y2)(s)ds, t ∈ [0, t1],

and y2 is a solution of the problem{
Dα
∗
y(t) = f2(y)(t), a.e. t ∈ [0, t1],

y(0) = a, y′(0) = c. (48)

We then have

|y2(t)− y1(t)| ≤
bα

0(α)

∫ t

0
|f2(y2)(s)− f1(y1)(s)| ds

≤
bα

0(α)

∫ t

0
p(s)|y2(s)− y1(s)| + p(s)|y1(s)− y0(s)|ds.

Thus,

‖y2 − y1‖∞ ≤
δ0bα‖p‖L1

0(α)
(
1−

bα‖p‖L1
0(α)

)2 + b2α‖p‖2
L1

02(α)
(
1−

bα‖p‖L1
0(α)

)2 .
Let

G3(y) = {v ∈ L1([0, t1],R) : v(t) ∈ F(t, y(t)) a.e. t ∈ [0, t1]},

and

G̃3(y) = {v ∈ G3(y) : |v(t)− f2(y2)(t)| < p(t)|y(t)− y2(t)| + p(t)|y1(t)− y2(t)|}.

Arguing as we did for G̃2 shows that G̃3 is an l.s.c. type multivalued map with nonempty decomposable values, so
there exists a continuous selection f3(y) ∈ G̃3(y), for all y ∈ PC . Consider

y3(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1f3(y3)(s)ds, t ∈ [0, t1],

where y3 is a solution of the problem{
Dα
∗
y(t) = f3(y)(t), a.e. t ∈ [0, t1],

y(0) = a, y′(0) = c. (49)
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We have

|y3(t)− y2(t)| ≤
bα

0(α)

∫ t

0
|f3(y3)(s)− f2(y2)(s)| ds.

Hence, from the estimates above, we have

‖y3 − y2‖∞ ≤
δ0b2α‖p‖2L1

02(α)
(
1−

bα‖p‖L1
0(α)

)3 + b3α‖p‖3
L1

03(α)
(
1−

bα‖p‖L1
0(α)

)3 .
Repeating the process for n = 1, 2, . . . ,we arrive at the bound

‖yn − yn−1‖∞ ≤
δ0b(n−1)α‖p‖n−1L1

0n−1(α)
(
1−

bα‖p‖L1
0(α)

)n + bnα‖p‖nL1

0n(α)
(
1−

bα‖p‖L1
0(α)

)n . (50)

By induction, suppose that (50) holds for some n. Let

G̃n+1(y) = {v ∈ Gn+1(y) : |v(t)− fn(yn)(t)| < p(t)|y(t)− yn(t)| + p(t)|yn(t)− yn−1(t)|}.

Since again G̃n+1 is an l.s.c. type multifunction, there exists a continuous function fn+1(y) ∈ G̃n+1(y) which allows
us to define

yn+1(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1fn+1(yn+1)(s)ds, t ∈ [0, t1]. (51)

Therefore,

|yn+1(t)− yn(t)| ≤
bα

0(α)

∫ t

0
|fn+1(yn+1)(s)− fn(yn)(s)| ds.

Thus, we arrive at

‖yn+1 − yn‖∞ ≤
δ0bnα‖p‖nL1

0n(α)
(
1−

bα‖p‖L1
0(α)

)n+1 + b(n+1)α‖p‖n+1
L1

0n+1(α)
(
1−

bα‖p‖L1
0(α)

)n+1 . (52)

Hence, (50) holds for all n ∈ N, and so {yn} is a Cauchy sequence in C([0, t1],R), converging uniformly to a function
y ∈ C([0, t1],R). Moreover, from the definition of Un, n ∈ N, we have, for a.e. t ∈ [0, t1],

|fn+1(yn+1)(t)− fn(yn)(t)| ≤ p(t)|yn+1(t)− yn(t)| + p(t)|yn(t)− yn−1(t)|.

Therefore, for almost every t ∈ [0, t1], {fn(yn)(t) : n ∈ N} is also a Cauchy sequence in R and so converges almost
everywhere to some measurable function f (·) in R. Moreover, since f0 = g , we have

|fn(yn)(t)| ≤ |fn(yn)(t)− fn−1(yn−1)(t)| + |fn−1(yn−1)(t)− fn−2(yn−2)(t)| + · · ·
+ |f2(y2)(t)− f1(y1)(t)| + |f1(y1)(t)− f0(y0)(t)| + |f0(y0)(t)|

≤ 2
n∑
k=1

p(t)|yk(t)− yk−1(t)| + |f0(y0)(t)| + p(t)

≤ 2p(t)
∞∑
k=1

|yk(t)− yk−1(t)| + |g(x)(t)| + p(t)

≤ 2H̃0p(t)+ |g(x)(t)| + p(t).

Then, for all n ∈ N,

|fn(yn)(t)| ≤ 2H̃0p(t)+ g(x)(t)+ p(t) a.e. t ∈ [0, t1]. (53)

From (53) and the Lebesgue dominated convergence theorem, we conclude that fn(yn) converges to f (y) in
L1([0, t1],R). Passing to the limit in (51), the function

y(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1f (y)(s)ds, t ∈ [0, t1],

is a solution to Problem (1)–(4).
Next, we give estimates for |Dα

∗
y(t)− g(x)(t)| and |x(t)− y(t)|. We have

|Dα
∗
y(t)− g(x)(t)| = |f (y)(t)− f0(x)(t)|

≤ |f (y)(t)− fn(yn)(t)| + |fn(yn)(t)− f0(x)(t)|
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≤ |f (y)(t)− fn(yn)(t)| +
n∑
k=1

|fk(yk)(t)− fk−1(yk−1)(t)|

≤ |f (y)(t)− fn(yn)(t)| + 2
n∑
k=1

p(t)|yk(t)− yk−1(t)| + p(t).

Using (52) and passing to the limit as n→+∞, we obtain

|Dα
∗
y(t)− g(x)(t)| ≤ 2p(t)

∞∑
k=1

|yk−1(t)− yk(t)|

≤ 2p(t)
∞∑
k=1

δ0(bα‖p‖L1)
k−1

0k−1(α)
(
1−

bα‖p‖L1
0(α)

)k + 2p(t) ∞∑
k=1

(bα‖p‖L1)
k

0k(α)
(
1−

bα‖p‖L1
0(α)

)k + p(t),
so

|Dα
∗
y(t)− g(x)(t)| ≤ 2H̃0p(t)+ p(t), t ∈ [0, t1].

Similarly,

|x(t)− y(t)| =
∣∣∣∣ 10(α)

∫ t

0
(t − s)α−1g(x)(s)ds−

1
0(α)

∫ t

0
(t − s)α−1f (y)(s)ds

∣∣∣∣
≤

bα

0(α)

∫ t1

0
|f (y)(s)− fn(yn)(s)|ds+

bα

0(α)

∫ t1

0
|fn(yn)(s)− f0(y0)(s)|ds.

As n→∞, we arrive at

‖x− y‖∞ ≤ 2
H̃0bα‖p‖L1
0(α)

+ ‖p‖L1 .

The obtained solution is denoted by y1 := y|[0,t1].
Step 2: Consider now Problem (1)–(4) on the second interval (t1, t2], i.e.,

Dα
∗
y(t) ∈ F(t, y(t)), a.e. t ∈ (t1, t2],

y(t+1 ) = I1(y1(t1)),
y′(t+1 ) = I1(y1(t1)).

(54)

Let f0 = g , and set

y0(t) = I1(x(t1))+ (t − t1)I1(x(t1))+
1

0(α)

∫ t

t1
(t − s)α−1f0(y0)(s)ds, t ∈ (t1, t2].

Let

PC1 = {y: y ∈ C(t1, t2] and y(t+1 ) exists}.

As in Step 1, let the multivalued map G1: PC1 → P (L1([t1, t2],R)) be given by

G1(y) = {v ∈ L1([t1, t2],R) : v(t) ∈ F(t, y(t)) a.e. t ∈ J}.

Then it has a continuous selection in G̃1 : PC1 → P (L1([t1, t2],R)), defined by

G̃1(y) = {v ∈ G1(y) : |v(t)− g(y0)(t)| < p(t)|y(t)− y0(t)| + p(t)}.

Define

y1(t) = I1(y1(t1))+ (t − t1)I1(y1(t1))+
1

0(α)

∫ t

t1
(t − s)α−1f1(y1)(s)ds, t ∈ (t1, t2].

Next define G2 : PC1 → P (L1([t1, t2],R)) by

G2(y) = {v ∈ L1([t1, t2],R) : v(t) ∈ F(t, y(t)), a.e. t ∈ [t1, t2]}

and

G̃2(y) =
{
v ∈ G2(y) : |v(t)− f1(y1)(t)| < p(t)|y(t)− y1(t)| + p(t)|y0(t)− y1(t)|

}
.

It has a continuous selection f2(y) ∈ G̃2(y). Repeating the process of selection as in Step 1,we can define by induction
a sequence of multivalued maps

G̃n+1(y) = {v ∈ Gn+1(y) : |v(t)− fn(yn)(t)| < p(t)|y(t)− yn(t)| + p(t)|yn(t)− yn−1(t)|}.
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Since again G̃n+1 is an l.s.c. type multifunction, there exists a continuous function fn+1(y) ∈ G̃n+1(y) which allows
us to define

yn+1(t) = I1(y1(t1))+ (t − t1)I1(y1(t1)) (55)

+
1

0(α)

∫ t

t1
(t − s)α−1fn+1(yn+1)(s)ds, t ∈ (t1, t2], (56)

and we can easily prove that

|yn+1(t)− yn(t)| ≤
δ1bnα‖p‖nL1

0n(α)
(
1−

bα‖p‖L1
0(α)

)n+1 + b(n+1)α‖p‖n+1L1

0n+1(α)
(
1−

bα‖p‖L1
0(α)

)n+1 , t ∈ (t1, t2],

where

δ1 = |I1(x(t1))− I1(y1(t1))| + (t2 − t1)|Ī1(x(t1))− Ī1(y1(t1))|.

As in Step 1, we can prove that the sequence {yn} converges to some y ∈ PC1, a solution to Problem (54) such that,
for a.e. t ∈ (t1, t2], we have

|Dα
∗
y(t)− g(x)(t)| := |f (y)(t)− f0(y0)(t)| ≤ 2H̃1p(t)+ p(t).

and

|x(t)− y(t)| ≤
2H̃1bαδ1‖p‖L1

0(α)
+ ‖p‖L1 .

Denote the restriction y|(t1,t2] by y2.
Step 3: We continue this process until we arrive at the function ym+1 := y|(tm,b], a solution of the problem

Dα
∗
y(t) ∈ F(t, y(t)), a.e. t ∈ (tm, b],

y(t+m ) = Im(ym−1(tm)),
y′(t+m ) = Im(y(tm)).

Then, for a.e. t ∈ (tm, b], the following estimates are easily derived:

|Dα
∗
y(t)− g(t)| ≤ 2H̃mp(t)+ p(t), t ∈ (t1, t2]

and

|x(t)− y(t)| ≤
2H̃mbα‖p‖L1

0(α)
+ ‖p‖L1 .

Step 4: Summarizing, a solution y of Problem (1)–(4) can be defined as

y(t) =


y1(t), if t ∈ [0, t1],
y2(t), if t ∈ (t1, t2],
. . . . . .
ym+1(t), if t ∈ (tm, b].

From Steps 1 to 3, we have that, for a.e. t ∈ [0, t1],

|x(t)− y(t)| ≤
2δ0bαH̃0‖p‖L1

0(α)
+ ‖p‖L1 and |Dα

∗
y(t)− g(x)(t)| ≤ 2H̃0p(t)+ p(t),

as well as the estimates, valid for t ∈ (t1, b],

|x(t)− y(t)| ≤
m∑
k=1

2δkbαH̃k‖p‖L1
0(α)

+m‖p‖L1 .

Similarly,

|Dα
∗
y(t)− g(x)(t)| ≤ 2p(t)H̃k + p(t), t ∈ Jk, k = 1, . . .m.

The proof of Theorem 6.12 is complete. �

6.4. Appendix

The reasoning used in [13,80,51,81] combined with Section 6 can be applied to obtain existence and uniqueness results
for the following fractional impulsive problem:

Dα
∗
y(t) = f (t, y(t)), a.e. t ∈ J := [0, b] \ {t1, . . . ,m}, α ∈ (1, 2], (57)
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y(t+k ) = Ik(y(t
−

k )), k = 1, 2, . . . ,m, (58)

y′(t+k ) = Ik(y(t
−

k )), k = 1, 2, . . . ,m, (59)

y(0) = a, y′(0) = c, (60)

where f : [0, b] × R→ R is a given function and Ik, Ik ∈ C(R,R), k = 1, . . . ,m.

Theorem 6.13. Let f : J × R→ R be a Carathéodory function. Assume the condition

(U1) There exist a continuous nondecreasing function ψ : [0,∞) −→ (0,∞) and p ∈ L1([0, b],R+) such that

‖f (t, x)‖ ≤ p(t)ψ(|x|) for a.e. t ∈ [0, b] and each x ∈ R,

with ∫ b

0
p(s)ds <

∫
∞

c̄

dx
ψ(x)

,

where c̄ = a+ b|c|.

Then the initial-value problem (57)–(60) has at least one solution.

Proof. For the proof,we can restrict Problem (57)–(60) in the respective intervals [0, t1], (t1, t2], . . . , (tm, b], and then apply
the same method as in [43] or the method in the proof of Theorem 6.9. �

We next introduce some additional conditions that lead to the uniqueness of the solution of (57)–(60).

Theorem 6.14. Assume that there exists l ∈ L1([0, b],R+) such that

|f (t, x)− f (t, x)| ≤ l(t)|x− x|, for all x, x ∈ R and t ∈ J.

Then the IVP (57)–(60) has a unique solution.

Proof. We consider the problem (57)–(60) on J0 = [0, t1], J1 = (t1, t2], . . . , Jm = (tm, b]. Successively applying the
condition of the theorem, we can prove the existence and uniqueness of a solution in each of the intervals Jk, k = 0, . . . ,m,
and by the continuity of the functions Ik, Ik, we conclude the existence and uniqueness on [0, b]. For more details, see
Benchohra et al. [43] and Henderson and Ouahab [13]. �

7. Geometric structure of solution sets

7.1. Background in geometric topology

First, we start with some elementary notions and notations from geometric topology. For details, we recommend [82,74,
83,84,55,85,86]. In what follows, (X, d) and (Y , d′) stand for two metric spaces.

Definition 7.1. A set A ∈ P (X) is called a contractible space provided there exists a continuous homotopy h : A×[0, 1] → A
and x0 ∈ A such that

(a) h(x, 0) = x, for every x ∈ A,
(b) h(x, 1) = x0, for every x ∈ A,

i.e., if the identity map A −→ A is homotopic to a constant map (A is homotopically equivalent to a point).

Note that if A ∈ Pcv,cl(X), then A is contractible. Also the class of contractible sets is much larger than the class of closed
convex sets.

Definition 7.2. A compact nonempty space X is called an Rδ set provided there exists a decreasing sequence of compact
nonempty contractible spaces {Xn} such that X =

⋂
∞

n=1 Xn.

Definition 7.3. A space X is called an absolute retract (in short X ∈ AR) provided that, for every space Y , every closed subset
B ⊆ Y and any continuous map f : B → X , there exists a continuous extension f̃ : Y → X of f over Y , i.e., f̃ (x) =
f (x) for every x ∈ B. In other words, for every space Y and for any embedding f : X −→ Y , the set f (X) is a retract of Y .

From Proposition 2.15 in [87], if X ∈ AR, then it is a contractible space.

Definition 7.4. A space A is called acyclic if

(a) H0(A) = Q,
(b) Hn(A) = 0, for every n > 0,



J. Henderson, A. Ouahab / Computers and Mathematics with Applications 59 (2010) 1191–1226 1215

whereH∗ = {Hn}n≥0 is the Čech-homology functor with compact carriers and coefficients in the field of rationalsQ. In other
words, a space A is acyclic if the map j : {p} → X, j(p) = x0 ∈ A, induces an isomorphism j∗ : H∗({p})→ H∗(A).

From the continuity of Čech-homology functors, we have:

Lemma 7.5 ([83]). Let X be a compactmetric space. Then X is an acyclic spacewhose structure corresponds to one of the following
types:

1. X is convex,
2. X is contractible,
3. X is AR,
4. X is an Rδ set.

Next, we present a result about the topological structure of the set of solutions of some nonlinear functional equations due
to Aronszajn and developed by Browder and Gupta in [88] (see also Theorem 1.2 in [87]).

Theorem 7.6. Let X be a space, (E, ‖·‖) a Banach space and f : X → E a proper map, i.e., f is continuous, and for every compact
K ⊂ E, the set f −1(K) is compact. Assume further that, for each ε > 0, a proper map fε : X → E is given and the following two
conditions are satisfied:

(a) ‖fε(x)− f (x)‖ < ε, for every x ∈ X,
(b) for every ε > 0 and u ∈ E in a neighborhood of the origin such that ‖u‖ ≤ ε, the equation fε(x) = u has exactly one
solution, xk.

Then the set S = f −1(0) is an Rδ set.

The following Lasota–Yorke approximation theorem (see [55]) will be needed in this section.

Lemma 7.7. Let E be a normed space, X a metric space and f : X → E be a continuous map. Then, for each ε > 0, there is a
locally Lipschitz map fε : X → E such that

‖f (x)− fε(x)‖ < ε, for every x ∈ X .

7.2. Application

Consider the first-order impulsive single-valued problem:
Dα
∗
y(t) = f (t, y(t)), a.e. t ∈ J = [t0, b] \ {t1, . . . , tm},

y(t−k ) = Ik(y(t
−

k )), k = 1, . . . ,m,

y′(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m,

y(0) = a, y′(0) = c,

(61)

where f , Ik and Ik are given functions.
Denote by S(f , φ) the set of all solutions of Problem (61). We are in a position to state and prove an Aronszajn type result

for this problem. First, we list two assumptions:

(C1) f : J × R→ R is an Carathéodory function.
(C2) There exist a function p ∈ L1(J,R+) and a continuous nondecreasing function ρ : [0,∞)→ [0,∞) such that

|f (t, x)| ≤ p(t)ρ(|x|) for a.e. t ∈ J and each x ∈ R

with ∫ b

0
p(s)ds <

∫
∞

|a|+t1|c|

du
ρ(u)

.

(C3) There exist constants rk > 0 and continuous functions φk: R+ → R+ such that

|Ik(x)|, |Ik(x)| ≤ rkφk(|x|) for each x ∈ R, k = 1, . . . ,m.

Then, the main first result in this section is

Theorem 7.8. Assume that Assumptions (C1)–(C3) hold. Then the set S(f , a, c) is an Rδ set, and hence an acyclic space.
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Proof. Let F : Ω → Ω be defined by

F(y)(t) =



F0(y)(t), t ∈ [0, t1],
F1(y)(t), t ∈ (t1, t2],
...
Fk(y)(t), t ∈ (tk, tk+1],
...
Fm(y)(t), t ∈ (tm, b],

where

F0(y)(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1f (y)(s)ds, t ∈ [0, t1],

and

Fk(y)(t) = Ik(Fk−1(y)(tk))+ (t − tk)Ik(Fk−1(y)(tk))

+
1

0(α)

∫ t

tk
(t − s)α−1f (y)(s)ds, t ∈ (tk, tk+1], k = 1, . . . ,m.

From (C1)–(C3)we can easily prove that F has at least one fixed point which is a solution of Problem (61).
Thus Fix F = S(f , a, c) 6= ∅ and there existsM > 0 such that

‖y‖PC ≤ M, for every y ∈ S(f , a, c).

Define

f̃ (t, y(t)) =


f (t, y(t)), if |y(t)| ≤ M,

f

(
t,
My(t)
|y(t)|

)
, if |y| ≥ M.

Since f is L1-Carathéodory, the function f̃ is Carathéodory and is integrably bounded by (C2). So there exists h ∈ L1(J,R+)
such that

‖̃f (t, x)‖ ≤ h(t), a.e. t and all x ∈ R. (62)

Consider the modified problem
Dα
∗
y(t) = f̃ (t, y(t)), a.e. t ∈ J \ {t1, . . . , tm},

y(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m,
y′(t−k ) = Ik(y(t

−

k )), k = 1, . . . ,m,
y(0) = a, y′(0) = c.

We can easily prove that S(f , a, c) = S (̃f , a, c) = Fix̃F , where F̃ : Ω → Ω is as defined by

F̃(y)(t) =



F̃0(y)(t), t ∈ [0, t1],
F̃1(y)(t), t ∈ (t1, t2],
...

F̃k(y)(t), t ∈ (tk, tk+1],
...

F̃m(y)(t), t ∈ (tm, b].

By the inequality (62) and the continuity of Ik and Ik, we deduce that there exists R > 0 such that

‖̃F(y)‖PC ≤ R.

Then F̃ is uniformly bounded. As in Theorem 6.1, we can prove that F̃ : PC → PC is compact, which allows us to define the
compact perturbation of the identity G̃(y) = y − F̃(y) which is a proper map. From the compactness of F̃ and the Lasota–
Yorke approximation theorem, we can easily prove that all conditions of Theorem 7.6 are met. Therefore the solution set
S (̃f , a, c) = G̃−1(0) is an Rδ set, and hence an acyclic space by Lemma 7.5. �
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7.3. σ -selectionable multivalued maps

The following definitions and the result can be found in [55,89] (see also p. 86 in [59]). Let (X, d) and (Y , d′) be twometric
spaces.

Definition 7.9. We say that a map F : X → P (Y ) is σ -Ca-selectionable if there exists a decreasing sequence of compact-
valued u.s.c. maps Fn : X → Y satisfying

(a) Fn has a Carathéodory selection, for all n ≥ 0 (Fn are called Ca-selectionable),
(b) F(x) =

⋂
n≥0 Fn(x), for all x ∈ X .

Definition 7.10. (a) A single-valued map f : [0, a] × X → Y is said to be measurable-locally-Lipschitz (mLL) if f (·, x) is
measurable for every x ∈ X and, for every x ∈ X , there exists a neighborhood Vx of x ∈ X and an integrable function
Lx : [0, a] → [0,∞) such that

d′(f (t, x1), f (t, x2)) ≤ Lx(t)d(x1, x2) for every t ∈ [0, a] and x1, x2 ∈ Vx.

(b) A multivalued mapping F : [0, a] × X → P (Y ) ismLL-selectionable if it has anmLL-selection.

Definition 7.11. We say that a multivalued map φ : [0, a] × Rn → P (Rn) with closed values is upper-Scorza–Dragoni if,
given δ > 0, there exists a closed subset Aδ ⊂ [0, 1] such that the measure µ([0, a] \ Aδ) ≤ δ and the restriction φδ of φ to
Aδ × Rn is u.s.c.

Theorem 7.12 (See Theorem 19.19 in [55]). Let E, E1 be two separable Banach spaces and let F : [a, b] × E → Pcp,cv(E1)
be an upper-Scorza–Dragoni map. Then F is σ -Ca-selectionable, the maps Fn : [a, b] × E → P (E1)(n ∈ N) are almost upper
semi-continuous, and we have

Fn(t, e) ⊂ conv(∪x∈E Fn(t, x)).

Moreover, if F is integrably bounded, then F is σ -mLL-selectionable.

Let S(F , a, c) denote the set of all solutions of Problem (1)–(4). Now, we are in position to state and prove another
characterization of the geometric structure of S(F , a, c). Let us introduce the following hypothesis:

(H3) There exist constants ck, ck > 0 such that

|Ik(u)− Ik(u)| ≤ ck|u− u|, |Ik(u)− Ik(u)| ≤ ck|u− u| k = 1, . . . ,m, for all u, u ∈ R.

Theorem 7.13. Let F : J × R → Pcp,cv(R) be a Carathéodory and an mLL-selectionable multivalued map which satisfies
Conditions (B2) and (H3), with

∑k=m
k=1 [ck + (tk+1 − tk)c̄k] < 1. Then, for every a, c ∈ R, the set S(F , a, c) is contractible.

Proof. Let f ⊂ F be a measurable, locally Lipschitz selection and consider the single-valued problem
Dα
∗
y(t) = f (t, y(t)), a.e. t ∈ J \ {t1, t2, . . . , tm},

y(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m,
y′(t+k ) = Ik(y(t

−

k )), k = 1, . . . ,m,
y(0) = a, y(0) = c.

(63)

Since α ∈ (1, 2], as in [49] combined with [13,51], we can prove that Problem (63) has exactly one solution for every
a, c ∈ R. From Theorem 6.1, S(F , a, c) is compact. Define the homotopy h : S(F , a, c)× [0, 1] → S(F , a, c) by

h(y, β)(t) =
{
y(t), for 0 ≤ t ≤ βb,
x(t), for βb < t ≤ b,

where x = S(f , a, c) is the unique solution of Problem (63). In particular,

h(y, α) =
{
y, for α = 1,
x, for α = 0.

We prove that h is a continuous homotopy. Let (yn, αn) ∈ S(F , a, c)× [0, 1] be such that (yn, βn)→ (y, β), as n→∞. We
shall prove that h(yn, βn)→ h(y, β). We have

h(yn, βn)(t) =
{
yn(t), for t ∈ [0, βnb],
x(t), for t ∈ (βnb, b].
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(a) If limn→∞ βn = 0, then
h(y, 0)(t) = x(t), for t ∈ [0, b].

Hence

‖h(yn, βn)− h(y, β)‖PC ≤ ‖yn − x̄‖[0,βnb],

which tends to 0 as n→+∞. The case when limn→∞ βn = 1 is treated similarly.
(b) If βn 6= 0 and 0 < limn→∞ βn = β < 1, then we may distinguish between two sub-cases:
(i) If t ∈ [0, βb], then for every n ∈ N, yn ∈ S(F , a, c) implies the existence of vn ∈ SF ,yn such that, for t ∈ [0, βnb],

yn(t) =



F0(vn)(t), t ∈ [0, t1],
F1(vn)(t), t ∈ (t1, t2],
...
Fk(vn)(t), t ∈ (tk, tk+1],
...
Fm(vn)(t), t ∈ (tm, b],

where

F0(vn)(t) = a+ tc +
1

0(α)

∫ t

0
(t − s)α−1vn(s)ds, t ∈ [0, t1],

and

Fk(y)(t) = Ik(Fk−1(vn)(tk−1))+ (t − tk)Ik(Fk−1(vn)(tk))

+
1

0(α)

∫ t

tk
(t − s)α−1vn(s)ds, t ∈ (tk, tk+1], k = 1, . . . ,m.

Now {yn} converges to y; then some R > 0 exists and satisfies

‖yn‖PC ≤ R.

Then, Assumption (B2) implies that

vn(t) ∈ p(t)ψ(R)B(0, 1), a.e. t ∈ [0, b].

Using the fact that B(0, 1) is compact in R, then there exists a subsequence of vn that converges to v. Since F(t, ·) is
u.s.c., then for every ε > 0, there exists n0 ≥ 0 such that, for any n ≥ n0, we have

vn(t) ∈ F(t, yn(t)) ⊂ F(t, y(t))+ εB(0, 1), a.e. t ∈ [0, βb].

In addition, F(·, ·) ∈ Pcp,c(R). Hence

v(t) ∈ F(t, y(t))+ εB(0, 1), ∀ ε > 0.

Therefore

v(t) ∈ F(t, y(t)), a.e. t ∈ [0, βb] ⇒ |v(t)| ≤ p(t)ψ(R).

It follows that

v ∈ L1([0, b],R)⇒ v ∈ SF ,y.

Using the continuity of Ik and Ik and the Lebesgue dominated convergence theorem, we find that, for t ∈ [0, b],

y(t) =



F0(y)(t), t ∈ [0, t1],
F1(y)(t), t ∈ (t1, t2],
...
Fk(y)(t), t ∈ (tk, tk+1],
...
Fm(y)(t), t ∈ (tm, b].

(ii) If t ∈ (βnb, b], then
h(yn, βn)(t) = h(y, β)(t) = x̄(t).

Thus

‖h(yn, βn)− h(y, β)‖PC → 0, as n→∞.

Therefore h is a continuous function, proving that S(F , a, c) is contractible to the point x = S(f , a, c). �
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7.4. More appendix

In this section under weaker conditions on the functions Ik, we present some results on the existence and uniqueness of
impulsive differential equations with fractional order. More precisely, we consider the following problem:

Dα
∗
y(t) = f (t, y(t)), a.e. t ∈ J := [0, b] \ {t1, . . . ,m}, α ∈ (0, 1], (64)

y(t+k )− y(t
−

k ) = Ik(y(t
−

k )), k = 1, 2, . . . ,m (65)

y(0) = a, (66)

where f : [0, b] × R→ R is a given function.
Essential for the main results of this section, we state a generalization of Gronwall’s lemma for singular kernels

(Lemma 7.1.1 in [90]).

Lemma 7.14. Let v : [0, b] → [0,∞) be a real function, and w(·) be a nonnegative, locally integrable function on [0, b], and
suppose there are constants a > 0 and 0 < α < 1 such that

v(t) ≤ w(t)+ a
∫ t

0

v(s)
(t − s)α

ds.

Then, there exists a constant K = K(α) such that

v(t) ≤ w(t)+ Ka
∫ t

0

w(s)
(t − s)α

ds,

for every t ∈ [0, b].

We will need the following auxiliary result in order to prove our main existence theorems. Lemmas 3.4 and 3.5 will be
employed to prove this auxiliary result.

Lemma 7.15. Let f : R→ R be a continuous function. Then y is the unique solution of the problem

Dα
∗
y(t) = f (y(t)), t ∈ J, t 6= tk, k = 1, . . . ,m α ∈ (0, 1), (67)

y(t+k )− y(tk) = Ik(y(tk)), k = 1, . . . ,m, (68)

y(0) = a, (69)

if and only if

y(t) = a+
1

0(α)

∫ t

0
(t − s)α−1f (y(s))ds+

m∑
0<tk<t

Ik(y(tk)), t ∈ [0, b]. (70)

Theorem 7.16. Let f : J × R→ R be an continuous function. Assume the condition

(U3) There exist p ∈ L1([0, b],R+) and M̄ > 0 such that

‖f (t, x)‖ ≤ M̄|x| + p(t) for a.e. t ∈ [0, b] and each x ∈ R,

with

sup
{∫ t

0
(t − s)α−1p(s)ds : t ∈ [0, b]

}
<∞.

Then the initial-value problem (64)–(66) has at least one solution.

Proof. For the proof, we can restrict Problem (57)–(60) in the respective intervals [0, t1], (t1, t2], . . . , (tm, b] and use the
same method as in [43] or the method in Theorem 6.9.
Transform Problem (64)–(66) into a fixed point problem. Consider the operator N : PC −→ PC , defined by

N(y)(t) = a+
1

0(α)

∫ t

0
(t − s)α−1f (s, y(s))ds, ∈ [0, b],

and now, we prove only that all solutions of the problem are a priori bounded. Let y be a possible solution of the equation
y = λN(y), for some λ ∈ (0, 1). Then

y(t) = λ
[
a+

1
0(α)

∫ t

0
(t − s)α−1f (s, y(s))ds

]
, for all t ∈ [0, t1].
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Hence

|y(t)| ≤ |a| +
M0
0(α)

+
1

0(α)

∫ t

0
(t − s)α−1M|y(s)|ds. (71)

Lemma 7.14 implies

|y(t)| ≤ |a| +
M0
0(α)

+ K(α)M
(
|a| +

M0
0(α)

)∫ t

0
(t − s)α−1ds.

Hence

‖y‖∞ ≤ C +
K(α)MC
0(α + 1)

:= M̃0,

where

C := |a| +
M0
0(α)

.

• Let t ∈ (t1, t2]; then

y(t) = λ
[
y(t1)+ I1(y(t1))+

1
0(α)

∫ t

t1
(t − s)α−1f (s, y(s))ds

]
and

y(t+1 ) = y(t1)+ I1(y(t1)).

Thus

|y(t+1 )| ≤ |y(t1)| + |I1(y(t1))|

≤ M̃0 + sup{|I1(u)| : |u| ≤ K̃0}.

Thus by analogies of above proofs, we can show that there exists M̃1 > 0 such that

sup{|y(t)| : t ∈ [t1, t2]} ≤ M̃1.
• We continue this process and also take into account that

y(t) = λ
[
ym−1(tm)+ Im(ym−1(tm))+

1
0(α)

∫ t

tm
f (s, y(s))ds

]
, t ∈ (tm, b].

We obtain that there exists a constant M̃m such that

sup{|y(t)| : t ∈ [tm, b]} ≤ M̃m.

Consequently, for each possible solution y to y = λN(y), for some λ ∈ (0, 1), we have

‖y‖∞ ≤ max{M̃i : i = 0, . . . ,m} := M.

Set

U = {y ∈ PC : ‖y‖∞ < M + 1}.

In analogy to [43] (see Theorem3.3 there),we can easily prove thatN : U → PC is continuous and completely continuous.
From the choice of U , there is no y ∈ ∂U such that y = λN(y), for some λ ∈ (0, 1). As a consequence of the nonlinear al-
ternative of Leray–Schauder type [74], we deduce thatN has a fixed point y inU , which is a solution to Problem (64)–(66),
and the proof is complete. �

We next introduce some additional conditions that lead to the uniqueness of the solution of (64)–(66).

Theorem 7.17. Assume that there exists l ∈ L1([0, b],R+) such that

|f (t, x)− f (t, x)| ≤ l(t)|x− x|, for all x, x ∈ R and t ∈ J.

If

sup
{∫ t

0
(t − s)α−1l(s)ds : t ∈ [0, b]

}
< 0(α),

then the initial-value problem (64)–(66) has a unique solution.

Proof. We consider Problem (64)–(66) on J0 = [0, t1], J1 = (t1, t2], . . . , Jm = (tm, b]. By the condition in the theorem,
we can prove the existence and uniqueness in each interval Jk, k = 1, . . . ,m, and by the continuity of the functions Ik, we
conclude the uniqueness on [0, b]. For more details, see Benchohra [43] and Henderson and Ouahab [13]. �
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8. Periodic solutions

In this section, we consider the impulsive periodic problem

Dαy (t) ∈ ϕ(t, y(t)), a.e. t ∈ J \ {t1, . . . , tm}, (72)

y(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m, (73)

y′(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m, (74)

y(0) = y(b), y′(0) = y′(b), (75)

where ϕ : J × R→ P (R) is a multifunction.
In caseswhereα = 1 orα = 2, a number of papers have been devoted to the study of initial and boundary value problems

for impulsive differential inclusions. Some basic results in the theory of periodic boundary value problems for first-order
impulsive differential equations and inclusions may be found in [18,91–93,80] and the references therein. Our goal in this
section is to give an existence result for the above problem by using topological degree combined with a Poincaré operator.

8.1. Poincaré translation operator

By Poincaré operators we mean the translation operator along the trajectories of the associated differential system, and
the first return (or section) map defined on the cross section of the torus by means of the flow generated by the vector field.
The translation operator is sometimes also called the Poincaré–Andronov or Levinson operator, or simply the T -operator.
In the classical theory (see [94–99] and the references therein), both these operators are defined to be single valued, when
assuming, among other things, the uniqueness of solutions of initial-value problems. In the absence of uniqueness, it is
often possible to approximate the right-hand sides of the given systems by locally Lipschitzian ones (implying uniqueness
already), and then apply a standard limiting argument. This might, however, be rather complicated, and is impossible
for discontinuous right-hand sides. On the other hand, set-valued analysis allows us to handle effectively such classically
troublesome situations. For additional background details, see [100,55].
Let ϕ : J × R→ P (R) be a Carathéodory map. We define a multivalued map

Sϕ : R2 → P (PC1)

by

Sϕ(a, c) = {y | y(·, x) is a solution of the problem satisfying y(0, a) = a, y′(0, c) = c}.

Consider the operator Pt defined by Pt = Ψ ◦ Sϕ , where

Pt : R2
Sϕ

−−−−−−→P (PC1)
Ψt

−−−−−−→P (R2)

and

Ψt(y) = (y(0)− y(t), y′(0)− y′(t)),

where PC1(J,Rn) = {y ∈ PC(J,Rn) : y′(t) is continuous at t 6= tk, y′(t+k ), y
′(t−k ) exist, and k = 1, 2, . . . ,m}, is a Banach

space with norm

‖y‖PC1 = ‖y‖PC + ‖y
′
‖PC .

Here, Pt is called the Poincaré translation map associated with the Cauchy problem

y′(t) ∈ ϕ(t, y(t)), a.e. t ∈ J \ {t1, . . . , tm}, (76)

y(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m, (77)

y′(t+k ) = Ik(y(t
−

k )), k = 1, . . . ,m, (78)

y(0) = a ∈ R, y′(0) = c ∈ R. (79)

The following lemma is easily proved.

Lemma 8.1. Let ϕ : J × R→ Pcv,cp(R) be a Carathéodory multifunction. Then the periodic problem (72)–(75) has a solution if
and only if for some (a, c) ∈ R2 we have 0 ∈ Pb(a, c), where Pb is the Poincaré map associated with (76)–(79).

Set

K n(r) = K n(x, r), Sn−1(r) = ∂K n(r), and Pn = Rn \ {0},

where K n(r) is a closed ball in Rn with center x and radius r , and ∂K n(r) stands for the boundary of K n(r) in Rn. For any
X ∈ ANR-space, we set

J(K n(r), X) = {F : X → P (X) | F u.s.c. with Rδ-values}.
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Moreover, for any continuous f : X → Rn, where X ∈ ANR, we set

Jf (K n(r), X) = {ϕ : K n(r)→ P (X) | ϕ = f ◦ F for some F ∈ J(K n(r), X) and ϕ(Sn−1(r)) ⊂ Pn}.

Finally, we define

CJ(K n(r),Rn) = ∪{Jf (K n(r),Rn) | f : X → Rn is continuous and X ∈ ANR}.

It is well known (see [55]) that, for themultivaluedmaps in this class, the notion of topological degree is available. To define
it, we need an appropriate concept of homotopy in CJ(K n(r),Rn).

Definition 8.2. Let φ1, φ2 ∈ CJ(K n(r),Rn) be two maps of the form

φ1 = f1 ◦ F1 : K n(r)
F1

−−−−−−→P (X)
f1

−−−−−−→Rn

φ2 = f2 ◦ F2 : K n(r)
F2

−−−−−−→P (X)
f2

−−−−−−→Rn.

We say that φ1 and φ2 are homotopic in CJ(K n(r),Rn) if there exist a u.s.c. Rδ-valued homotopy χ : [0, 1] × K n(r)→ P (X)
and a continuous homotopy h : [0, 1] × X → Rn satisfying

(i) χ(0, u) = F1(u), χ(1, u) = F2(u) for every u ∈ K n(r),
(ii) h(0, x) = f1(x), h(1, x) = f2(x) for every x ∈ X ,
(iii) for every (u, λ) ∈ [0, 1] × Sn−1(r) and x ∈ χ(λ, u), we have h(x, λ) 6= 0.

The map H : [0, 1] × K n(r)→ P (Rn) given by

H(λ, u) = h(λ, χ(λ, u))

is called a homotopy in CJ(K n(r),Rn) between φ1 and φ2.

Theorem 8.3 ([55]). There exists amapDeg : CJ(K n(r),Rn)→ Z, called the topological degree function, satisfying the following
properties:

(C1) If ϕ ∈ CJ(K n(r),Rn) is of the form ϕ = f ◦ F with F single valued and continuous, then Deg(ϕ) = deg(ϕ), where deg(ϕ)
stands for the ordinary Brouwer degree of the single valued continuous map ϕ : K n(r)→ Rn.

(C2) If Deg(ϕ) = 0, where ϕ ∈ CJ(K n(r),Rn), then there exists u ∈ K n(r) such that 0 ∈ ϕ(u).
(C3) If ϕ ∈ CJ(K n(r),Rn) and {u ∈ K n(r)|0 ∈ ϕ(u)} ⊂ Int K n(r0) for some 0 < r0 < r, then the restriction ϕ0 of ϕ to K n(r0)

is in CJ(K n(r),Rn) and Deg(ϕ0) = Deg(ϕ).

Let A ⊂ Rn and B ⊂ Rm; CJ0(A, B)will denote the class of mappings

CJ0(K n(r),Rn) = {ϕ : A→ P (B) | ϕ = f ◦ F , F : A→ P (X), F is u.s.c. with Rδ-values and f : X → B is continuous},

where X ∈ ANR. We also need the following lemma.

Lemma 8.4. Let ϕ: J × R→ Pcp,cv(Rn) be σ -LL-selectionable. Assume that (B1)–(B2) and (H3) hold. Then the set Sϕ is an Rδ
set.

Proof. Sinceϕ isσ -LL-selectionable, there exists a decreasing sequence ofmultivaluedmaps Fk : [0, b]×R→ P (R) (k ∈ N)
which have Carathéodory selections such that

ϕk+1(t, u) ⊂ ϕk(t, x) for almost all t ∈ [0, b], x ∈ R

and

ϕ(t, y) =
∞⋂
k=0

ϕk(t, y), y ∈ R.

Then

Sϕ(a, c) =
∞⋂
k=0

Sϕk(, a, c).

From Theorem 7.13, the set Sϕ(a, c) is contractible for each k ∈ N. Hence Sϕ(a, c) is an Rδ set. �

The following theorem due to Gorniewicz [55] is critical in the proof of the main result in this section.

Theorem 8.5 (Nonlinear Alternative). Assume that ϕ ∈ CJ0(K n(r),Rn). Then ϕ has at least one of the following properties:

(i) Fix(ϕ) 6= ∅,
(ii) there is an x ∈ Sn−1(r) with x ∈ λϕ(x) for some 0 < λ < 1.
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Lemma 8.6. If ϕ : X → Pcp,cv(Rn) is a u.s.c. multivalued map, then ϕ is σ -LL-selectionable.

Theorem 8.7. Let ϕ:R→ Pcp,cv(R) be a u.s.c. multifunction. Assume the condition

(R1) there exist p ∈ L1 and M > 0 such that

‖ϕ(t, x)‖P ≤ p(t), a.e. t ∈ [0, b], sup
t∈[0,b]

∫ t

0
(t − s)α−2p(s)ds <∞,

and

|Ik(x)| ≤ M, |Ik(x)| ≤ M, ∀x ∈ R.

Then Problem (72)–(75) has at least one solution.

Proof. From Lemma 8.6, ϕ is σ -LL-selectionable, and so by Lemma 8.4, Sϕ(a, c) is Rδ , for every (a, c) ∈ R2, and from
Theorem 6.1, Sϕ(·, ·) is u.s.c. Set A = B = R2 and X = PC1 ∈ ANR. We will prove that

Ψ : PC1 → R2 defined by y→ Ψ (y) = (y(·)− y(0), y′(·)− y(0))

is a continuous map. Let {yn, y′n} be a sequence such that y
′
n, yn → y, y′ in PC1. Then,

|Ψ (yn)(t)− Ψ (y)(t)| ≤ 2‖yn − y‖PC + 2‖y′n − y
′
‖PC → 0 as n→∞.

Hence,

Ψb ∈ CJ0(K 2(r),R2).

Therefore the Poincaré translation operator Pt(a, c) = Ψt◦Sϕ(a, c). Let (a, c) ∈ λΨt◦Sϕ(a, c) for someλ ∈ (0, 1). Then, there
exists y ∈ PC1 such that y ∈ Sϕ(a, c). This implies y(0) = a, y′(0) = c and a = λ(a− y(t)), c = λ(c − y′(t)), (a, c) ∈ S1(r).
For t ∈ J , we have

a = −λ



a+ ct +
1

0(α)

∫ t

0
(t − s)α−1v(s)ds, if t ∈ [0, t1],

I1(y(t1))+ (t − t1)I1(y(t1))+
1

0(α)

∫ t

t1
(t − s)α−1v(s)ds, if t ∈ (t1, t2],

...

Im(y(tm))+ (t − tm)Im(y(tm))+
1

0(α)

∫ t

t1
(t − s)α−1v(s)ds, if t ∈ (tm, b],

and

c = −λ



α − 1
0(α)

∫ t

0
(t − s)α−2v(s)ds, if t ∈ [0, t1],

I1(y(t1))+
α − 1
0(α)

∫ t

t1
(t − s)α−2v(s)ds, if t ∈ (t1, t2],

...

Im(y(tm))+
1

0(α − 1)

∫ t

t1
(t − s)α−2v(s)ds, if t ∈ (tm, b].

Hence, from (R1) there exists K̃ such that

|a| + |c| ≤ K̃ .

Set

K 2(K̃ + 1) = {(a, c) ∈ R2 : |a| + |c| ≤ K̃ + 1}.

From Theorem 6.1, Sϕ(·, ·) is u.s.c., and by Lemma 8.4, Sϕ(·, ·) is Rδ . Since Ψ is continuous, then Pb ∈ CJ0(K 2(K̃ + 1),R2).
As a consequence of the nonlinear alternative of Leray–Schauder type [55], we conclude that Fix Pb 6= ∅. This completes the
proof of the theorem. �

9. Concluding remarks

In this paper, we have investigated Problem (1)–(4) under various assumptions on the multivalued hand-side
nonlinearity, and we have obtained a number of new results regarding existence of solutions. We first proved a Filippov–
Ważewski theorem and continuous versions of Filippov’s results to impulsive differential inclusions with fractional order.
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The main assumptions on the nonlinearity are the Carathéodory and the Lipschitz conditions with respect to the Hausdorf
distance in generalized metric spaces.
In 1976, Lasry and Robert [86] proved that, if the nonlinearity F is compact, convex valued, u.s.c. and bounded, then the set

of all solutions for first-order differential inclusionswith nonlinearity F is a compact and acyclic set. In 1986, Górniewicz [84]
discussed the topological structure of the set of solutions (contractibility and acyclic contractibility) when F is ML- or σ -
selectionable.
When the multivalued nonlinearity is further σ -Ca- or σ -mLL-selectionable, based on Aronszajn type results, we

investigated the geometric properties of the solution set, proving that it enjoys Rδ , contractible and acyclicity properties.
Also, the existence and uniqueness results for impulsive differential equations with fractional order were established.
Very recently, Djebali et al. [68] discussed the topological structure, Filippov’s theorem and the Filippov–Ważewski

theorems for impulsive semilinear functional differential inclusions with finite delay.
In the case where α ≥ 1, the integrable equations involved with impulsive differential equations and inclusions lack

singularity, and by the same methods used in [59,4,82,61,68,83,5,89,101,13,80,62–64], we can establish the existence
and uniqueness results for differential equations, differential inclusions, impulsive differential equations, and impulsive
differential inclusions of fractional order.
Some problems considered in this paper can be improved under weaker conditions on the functions Ik and Ik.
This paper contributes within the domain of impulsive fractional differential equations and inclusions.
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