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Abstract

Let Bn be the poset of subsets of {1; 2; : : : ; n} ordered by inclusion and Mn be the poset of
monomials in x1; x2; : : : ; xn ordered by divisibility. Both these posets have an additional linear
order making them what is called Macaulay posets. We show in this paper that the pro-les (also
called f-vectors) of ideals in Bn and Mn generated by the -rst elements (relatively to the linear
order) of a given rank are log-concave. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we will prove that some sequences of nonnegative integers arising
from extremal set theory are unimodal or log-concave. The question of unimodality is a
natural one concerning a sequence of positive integers; however, it can be very hard to
solve. There are a lot of such open problems about integer sequences in combinatorics:
see [14,2] for an excellent survey on these problems.
The sequences we are interested in are related to shadow functions @Pk of Macaulay

posets (P;6;4), where 6 is the partial order on P and 4 is a linear extension
of 6. Macaulay posets were de-ned to bring a uni-ed point of view on analogous
theorems; they are presented in [5, Chapter 8]. We will restrict ourselves to the two
most well-known Macaulay posets, namely Bn and Mn. Bn is the set of subsets of
{1; 2; : : : ; n} partially ordered by inclusion; it has been proved to have the Macaulay
property by Kruskal [9] and Katona [8], independently. Mn is the set of monomials
in variables x1; x2; : : : ; xn ordered by divisibility (equivalently: the set of multisets of
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{1; 2; : : : ; n} ordered by multiset inclusion); Macaulay [12] proved that Mn has that
property which is now called Macaulay property. Now there are several simpler proofs
of these theorems: see e.g. [4,6], or [1].
The necessary terminology is introduced in Section 2, where it is also shown how

Macaulay posets can help to prove unimodality of some sequences of positive integers
(Proposition 2.2). In Section 3, we look at the particular case of Bn. The main theorem
of the paper is Theorem 3.1: it says that, if C(m) is the set of the -rst m elements
of Bn with respect to the linear order 4, then the sequence (f0; f1; : : : ; fn) is strongly
log-concave, where fk is the number of elements of C(m) of rank k. Section 4 is
devoted to the poset Mn. We show in Theorem 4.1 a similar but weaker result than in
the case of Bn. Both these theorems can be seen as a particular study of the shadow
functions @Bnk and @Mn

k , or simply as log-concavity properties of sequences of sums of
binomial coe1cients.

2. Macaulay posets

As usual, N is the set of nonnegative integers, N∗ :=N−{0}, and [n] := {1; 2; : : : ; n}.
We will be interested in ranked posets only, i.e. posets (P;6) with a rank function
r :P→N satisfying r(p)= 0 for some minimal element p∈P and r(q)= r(p) + 1 if
p¡q and there exists no x∈P with p¡x¡q. The rank of P is de-ned by r(P) := max
{r(p): p∈P}∈N∪{∞}. Such a poset is called graded if all its maximal chains have
the same -nite cardinality. We de-ne the ith level of P by Ni(P) := {p∈P : r(p)= i}
and set Wi(P) := |Ni(P)|. We often write Ni and Wi for Ni(P) and Wi(P).
An ideal I ⊆P is a subset such that if p∈ I and q¡p then q∈ I ; if E⊆P then the

subset 〈E〉 := {p∈P: p6x for some x∈E} is the ideal generated by E. The sequence
f(I) := (f0(I); f1(I); : : : ; fr(P)(I)), with fi(I)= |I ∩Ni(P)|, is called the pro3le of the
ideal I . The shadow of p∈P is the set �(p) := {q∈P: q¡p and r(q)= r(p) − 1}
and if E⊆P then �(E) :=

⋃
x∈E �(x). Note that if F is a subset of an ideal I then

�(F)⊆ I .
A sequence (ai)i¿0 of nonnegative integers is called unimodal if there exists an

index j¿0 such that ai6ai+1 for 06i¡j and ai¿ai+1 for i¿j. It is log-concave if
a2i¿ai+1ai−1 for i¿1 and strongly log-concave if ia2i¿(i + 1)ai+1ai−1 for i¿1. One
can easily see that a sequence which is log-concave and without internal zeros (i.e.
there exist no indices i¡j¡k with aj =0 and ai =0 = ak) is unimodal. Note that the
pro-le of an ideal is always without internal zeros; thus, such a log-concave pro-le is
unimodal, in particular.
The problem of minimizing the shadow of a subset of P is important in the the-

ory of -nite sets. Macaulay posets are posets on which there exists an extra lin-
ear order which solves the problem. The presentation of Macaulay posets follows
[5, Chapter 8:1].
Let (P;6) be a ranked poset and let 4 be a linear order on P. If E⊆P let C(m; E)

be the set of the -rst m elements of E with respect to the linear order 4. If F is
-nite and F ⊆Nk then C(F) or CF is de-ned by C(|F |; Nk) and is called the compres-
sion of F . A set E⊆P is compressed if C(E ∩Ni)=E ∩Ni for every i=0; : : : ; r(P).
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In addition, we de-ne the position functions p :P→N∗ (resp. pk :Nk(P)→N∗) by
p(x) := |{z ∈P: z4 x}| (resp. pk(x) := |{z ∈Nk(P): z4 x}|).

De�nition. A ranked poset (P;6) is a Macaulay poset if there exists a linear order 4
on P such that

�(CF)⊆C(�F) for every k¿1 and every -nite F ⊆Nk(P): (1)

Hence a Macaulay poset is a triple (P;6;4) satisfying the stated property (the
linear order 4 is of course not unique in general). An equivalent de-nition can be
given as follows:

Proposition 2.1 (Engel [5; Proposition 8:1:1]). Let 4 be a linear order on a ranked
poset (P;6). Then (1) holds if and only if

(i) |HF |¿|�(CF)| for every 3nite F ⊆Nk; k¿1;
(ii) �(CF)=C(�(CF)) for every 3nite F ⊆Nk; k¿1.

Given a linear order 4 on P, the condition (ii) is easy to check. Hence let us focus
on the -rst. Since |�(CF)| depends on |F | and k only, de-ne the shadow functions
@Pk : [Wk ]→N∗ by @Pk (m) := |�(CF)|, with -nite F ⊆Nk and |F |=m. An explicit de-
scription of these functions is necessary for practical use of shadow-minimization in
Macaulay posets; moreover, it is the key to the kind of pro-les we will consider,
namely ideals of the form 〈C(m;Nk)〉.

De�nition. A Macaulay poset (P;6;4) is called shadow increasing if
@Pk (m)6@Pk+1(m) for all k¿1 and 16m6min{Wk;Wk+1}.

Proposition 2.2 (Engel [5; Proposition 8:1:6]). The pro3le of a graded shadow in-
creasing Macaulay poset is unimodal.

As a direct consequence of Proposition 2.2 we get that, for a shadow increasing
Macaulay poset P, the pro-le f(〈C(m;Nk(P))〉) is unimodal since 〈C(m;Nk(P))〉 is
obviously a graded shadow increasing Macaulay poset. Thus, here is a way of prov-
ing the unimodality of some ideals’ pro-les. But of course, neither the Macaulay
property nor the shadow increasing property are easy to prove. However three fami-
lies of posets are known to have both properties: chain products S(k1; k2; : : : ; ks) (see
[3,4]), star products T (k1; k2; : : : ; ks) (see [10,11]) and their duals Col(k1; k2; : : : ; ks)
(see [5]). In Sections 3 and 4 we will prove stronger versions of Proposition 2.2
for the posets Bn and Mn (without using Macaulay or shadow increasing
properties).

The poset Bn. Put the following linear order 4 (called reverse lex) on Bn: for
A; A′∈Bn,

A≺A′ if max{(A∪A′)\(A∩A′)}∈A′:
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Then (Bn;6;4) is a Macaulay poset.
Given a -xed k ∈N∗, de-ne the k-binomial representation of an integer m∈N∗ by

m=

(
ak
k

)
+

(
ak−1

k − 1

)
+ · · ·+

(
a1
1

)
+ 1;

where the ai’s are natural numbers and ak¿ak−1¿ · · ·¿a1¿0 (such a representation
exists and is unique). Then the operator @Bnk is given by

@Bnk (m)= 1 +
k∑

i=2

(
ai

i − 1

)

if the k-binomial representation of m is 1 +
∑k

i=1

( ai
i

)
.

The poset Mn. Put the following linear order 4 on Mn:

xa11 xa22 : : : xann ≺ xb11 xb22 : : : xbnn if aj¡bj; where j= max{i: ai = bi}:

Then (Mn;6;4) is a Macaulay poset. In this case, the operator @Mn
k is given by

@Mn
k (m)= 1 +

k∑
i=2

(
ai − 1

i − 1

)

if the k-binomial representation of m is 1 +
∑k

i=1

( ai
i

)
.

Details and proofs of the above statements can be found in [5,1,15,7].

3. The result for Bn

In this section, the compression operator C will always be used relatively to the
reverse lex linear order 4 introduced at the end of the preceding section. The reverse
lex order is such that if m62n0 , then C(m; Bn0 ) =C(m; Bn) for all n¿n0. Hence, we can
simplify the notation C(m; Bn) by writing C(m) only and think of n as large enough
such that m62n.
We prove the following result:

Theorem 3.1. The pro3le f(C(m)) is strongly log-concave for every m∈N∗.

This theorem can be seen as a generalization of the observation that
f(C(2n))=

(( n
0

)
;
( n
1

)
; : : : ;

( n
n

))
is strongly log-concave. Note that C(m) is an ideal

since A6A′ ⇒A4A′, for A; A′∈Bn. Theorem 3.1 has been generalized to the poset
Col(k1; k2; : : : ; ks) in [13].
As a particular case of Theorem 3.1, we get that f(〈C(‘; Nk)〉) is strongly log-

concave for ‘6Wk : take m=p(A) with A∈Bn such that pk(A)= ‘. The pro-le f(〈C
(‘; Nk)〉) is then exactly the restriction of f(C(m)) to its k + 1 -rst levels. The
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diLerence between both statements should be clear considering the following -gure (this
kind of picture is taken from [15]): the elements of rank i are pictured horizontally,
in reverse lex order, and such that Ni is above Ni−1. The shaded regions represent
respectively 〈C(‘; Nk)〉 and C(m).

Let us -rst compute the coe1cients of the pro-le f(C(m)). In the sequel, �x� stands
for the greatest integer less than or equal to the real number x.

Lemma 3.2. Let m∈N∗ and assume that m−1=
∑k

i=1 2
ci with 06c1¡c2¡ · · ·¡ck .

Then

(i) max{i: fi(C(m))¿0}= �log2 m�;
(ii) f‘(C(m))= #k; ‘ +

∑k
i=1

(
ci

‘−k+i

)
, for every ‘∈N.

Proof. Observe that the bijection {a1; a2; : : : ; ak} �→ 1 +
∑k

i=1 2
ai−1 from Bn to [2n]

preserves linear orders in the sense that the reverse lex order corresponds to the natural
order in the integers. In particular, p({a1; a2; : : : ; ak})= 1 +

∑k
i=1 2

ai−1 and {c1 + 1;
c2 + 1; : : : ; ck + 1} is the last element of C(m).
Since p‘({1; 2; : : : ; ‘})= 1 we get

f‘(C(m))¿0 ⇔ {1; 2; : : : ; ‘}∈C(m) ⇔ p({1; 2; : : : ; ‘})= 2‘6m:

Hence (i) is proved. Now set A := {a1; a2; : : : ; ak} with ai := ci + 1 and consider for
every ‘¿0 the following partition of {D∈N‘: D≺A}:

k⋃
i=1

{D∈N‘: D≺A; ai =∈D and {ai+1; ai+2; : : : ; ak}⊆D}

where the ith part is of cardinality
(

ai−1
‘−k+i

)
. Hence, f‘ = |{D∈N‘: D4A}|=

#k; ‘ +
∑k

i=1

(
ci

‘−k+i

)
since, of course, one has to count A itself when ‘= k.

Next we show an upper bound for the quotient f‘(C(m))=f‘−1(C(m)).

Proposition 3.3. Let m∈N; m¿1; we have

f‘(C(m))
f‘−1(C(m))

6
�log2(m− 1)� − ‘ + 2

‘
; for every 16‘6�log2 m�:



426 P. Pitteloud / Discrete Mathematics 254 (2002) 421–432

Proof. It is well-known that Bn has the dual normalized matching property, i.e. for
all F ⊆N‘(Bn) and 0¡‘6r(P), we have |F |=|HF |6W‘(Bn)=W‘−1(Bn) (see [5, Chap-
ter 4.5]). Let A= {a1; a2; : : : ; ak} be such that a1¡a2¡ · · ·¡ak and p(A)=m. Then
C(m)= {D⊆N∗: D4A} is an ideal of the poset Bak . Set F :=C(m)∩N‘(Bak ). Since
C(m) is an ideal, we have HF ⊆ (C(m)∩N‘−1(Bak )); hence |HF |6f‘−1(C(m)).
Thus,

f‘(C(m))
f‘−1(C(m))

6
|F |
|HF |6

W‘(Bak )
W‘−1(Bak )

=
ak − ‘ + 1

‘
:

Finally ak − 1= �log2(m− 1)� since m=p(A)= 1 +
∑k

i=1 2
ai−1.

Now we -nd a lower bound for the same quotient:

Proposition 3.4. Let m∈N; m¿1; we have

f‘(C(m))
f‘−1(C(m))

¿
�log2(m− 1)� − ‘

‘
; for every 16‘6�log2 m�:

Proof. We proceed by induction on ‘, for arbitrary m.
Write c := �log2(m− 1)�; m′ :=m− 2c; fi :=fi(C(m)) and f′

i :=fi(C(m′)).
If ‘=1, then f0 = 1 and f1 = c + 1, whence f1=f0¿c − 1.
Assume ‘¿1. By Lemma 3.2, fi =

( c
i

)
+f′

i−1 for i¿1. Let us rewrite the statement
to be proved in an equivalent form using the f′

i ’s:

f‘
f‘−1

¿
c − ‘
‘

⇔
( c
‘

)
+ f′

‘−1(
c

‘−1

)
+ f′

‘−2

¿
c − ‘
‘

⇔ ‘f′
‘−1 +

(
c

‘−1

)
¿(c − ‘)f′

‘−2: (2)

If f′
‘−2 = 0 then we are done since

(
c

‘−1

)
¿1; hence, we can assume that f′

‘−2¿0.

Set c′ := �log2(m′ − 1)� and consider 2 cases:
Case (i): c′6‘ − 2.
Then m′62‘−1, which yields f′

‘−26‘− 1. To obtain (2) it is enough to show that(
c

‘ − 1

)
¿(c − ‘)(‘ − 1); with 16‘ − 16c:

In order to prove it we introduce f :N→N; f(u) :=
(

u
‘−1

)
− (u − ‘)(‘ − 1). We

have f(‘ − 1)= ‘¿0 and, for u¿‘ − 1,

f(u+ 1)− f(u) =

(
u+ 1

‘ − 1

)
−
(

u

‘ − 1

)
+ ((u− ‘)− (u+ 1− ‘))(‘ − 1)
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=

(
u

‘ − 2

)
− (‘ − 1)¿

(
‘ − 1

‘ − 2

)
− (‘ − 1)¿0:

Hence, f(u)¿0 for u¿‘ − 1 and (2) is proved in the -rst case.
Case (ii): c′¿‘ − 1.
In this case m′¿2‘−1 and f′

‘−1¿0. By the induction hypothesis, we have f′
‘−1=f

′
‘−2¿

(c′−(‘−1))=‘−1. Moreover, Lemma 3.2 gives the upper bound f′
‘−26

∑‘−2
i=0

(
c′−i

‘−2−i

)
=(

c′+1
‘−2

)
. To show (2), it is then enough to see that

‘
c′ − ‘ + 1
‘ − 1

+

(
c

‘−1

)
(

c′+1
‘−2

)¿c − ‘; with 1¡‘6c′ + 16c:

Consequently, we have to show (using the substitutions s := c− c′¿1 and b := c′ +1)

(b+ s− 1)!
(b+ s− ‘)!

¿
b!

(b− ‘ + 2)!
(s(‘ − 1) + 1− b); 1¡‘6b; s¿1:

As before, let

g :N→N; g(u) :=
(b+ u− 1)!
(b+ u− ‘)!

− b!
(b− ‘ + 2)!

(u(‘ − 1) + 1− b):

We have g(1)¿0 since ‘6b. For u¿1:

g(u+ 1)− g(u) =
(b+ u)!

(b+ u− ‘ + 1)!
− (b+ u− 1)!

(b+ u− ‘)!

− b!
(b− ‘ + 2)!

((u+ 1)(‘ − 1) + 1− b− (u(‘ − 1) + 1− b))

=
(b+ u− 1)!

(b+ u− ‘ + 1)!
(‘ − 1)− b!

(b− ‘ + 2)!
(‘ − 1)¿0:

Hence, g(u)¿0 for every u¿1 and (2) is proved in the second case.

By using both preceding propositions we can prove Theorem 3.1. Before proceeding
with the proof, we recall an elementary fact: if a; c∈N and b; d∈N∗ then

a
b
¡

c
d

⇔ a
b
¡

a+ c
b+ d

⇔ a+ c
b+ d

¡
c
d

and (a+ c)=(b+ d) is called the mediant of a=b and c=d.

Proof of Theorem 3.1. We show that the strict inequalities

‘f‘(C(m))2¿(‘ + 1)f‘+1(C(m))f‘−1(C(m))
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hold for every m∈N∗. As before, we set c := �log2(m − 1)�; m′ :=m − 2c;
c′ := �log2(m′ − 1)�; fi :=fi(C(m)) and f′

i :=fi(C(m′)).
Assume the statement to be false: let m be minimal such that there exists an ‘¿1

with

f‘
f‘−1

6
‘ + 1
‘

f‘+1

f‘
: (3)

First, we see that we must have ‘¿1: otherwise f0 = 1; f1 = c+ 1; f2 =
( c
2

)
+ f′

16( c
2

)
+ c′ + 1 and

2
1

f2

f1
6

c(c − 1) + 2(c′ + 1)
c + 1

6
c(c − 1) + 2c

c + 1
= c¡

f1
f0

:

Thus, Propositions 3.3, 3.4 and inequality (3) yield

c − ‘
‘

¡
f‘
f‘−1

6
‘ + 1
‘

f‘+1

f‘
6

‘ + 1
‘

c − (‘ + 1) + 2
‘ + 1

=
c − ‘ + 1

‘
: (4)

By Lemma 3.2, we know that fi =
( c
i

)
+ f′

i−1 for every i¿1. Then we have f′
‘¿0,

since otherwise

‘ + 1
‘

f‘+1

f‘
=

‘ + 1
‘

( c
‘+1

)
( c
‘

)
+ f′

‘−1

6
‘ + 1
‘

( c
‘+1

)
( c
‘

) =
c − ‘
‘

;

contradicting (4). Thus f′
‘¿0, whence f′

‘−1¿0 and f′
‘−2¿0.

Since

f‘
f‘−1

=

( c
‘

)
+ f′

‘−1(
c

‘−1

)
+ f′

‘−2

and
f‘
f‘−1

6
c − ‘ + 1

‘

by (4) we get

f′
‘−1=f

′
‘−26f‘=f‘−1

by mediant’s property. The same argument yields

‘ + 1
‘

f′
‘

f′
‘−1

¿
‘ + 1
‘

f‘+1

f‘

since

‘ + 1
‘

f‘+1

f‘
=

(‘ + 1)
( c
‘+1

)
+ (‘ + 1)f′

‘

‘
( c
‘

)
+ ‘f′

‘−1

and
c − ‘
‘

¡
‘ + 1
‘

f‘+1

f‘
:

Thus, -nally:

‘
‘ − 1

f′
‘

f′
‘−1

− f′
‘−1

f′
‘−2

¿
‘ + 1
‘

f′
‘

f′
‘−1

− f′
‘−1

f′
‘−2

¿
‘ + 1
‘

f‘+1

f‘
− f‘

f‘−1
¿0;

which contradicts the minimality of m in (3).
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Remark. Inequalities of Theorem 3.1, which are indeed strict, are sharp in the fol-
lowing sense: consider the ideals C(2k + 1), with k¿1. Their pro-les are of the form(
1; k + 1;

(
k
2

)
;
(

k
3

)
; : : :
)
, and f2=f1 − 3

2f3=f2 = 1=(k + 1) tends to 0 as k tends to

in-nity.
Now we know that the pro-le of C(m) is log-concave — hence unimodal. It arises

the question where exactly is the peak of this sequence. The answer is that the pro-
-le f(C(m)) behaves approximatively like the sequence of binomial coe1cients (i.e.
f(C(2k))).

Theorem 3.5. The following inequalities hold, for every m¿1:

f0¡f1¡ · · ·¡fj¿fj+1¿fj+2¿ · · ·¿f�log2 m�;

where (f0; f1; : : : ; f�log2 m�)=f(C(m)) and

j=




�log2(m− 1)�
2

if �log2(m− 1)� is even;

�log2(m− 1)� ± 1
2

if �log2(m− 1)� is odd :

Proof. Set c := �log2(m− 1)�; by Propositions 3.3 and 3.4, we have

f‘=f‘−1 ∈ ((c − ‘)=‘; (c − ‘ + 2)=‘)]:

But

fj=fj−1¿1⇒ (c − j + 2)=j¿1⇔ j¡(c + 2)=2

and

fj+1=fj61⇒ (c − (j + 1))=(j + 1)¡1⇔ j¿(c − 2)=2:

Hence

j∈
( c
2
− 1;

c
2
+ 1
)
;

which proves the statement.

Remark. One can easily prove by induction the following improvement:
If c := �log2(m− 1)� is odd, then we have

j=




c − 1
2

if m¡ 2
3 (2

c+1 − 1);

c + 1
2

if m¿ 2
3 (2

c+1 − 1):
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4. The result for Mn

Recall that the compression operator C is now relative to the linear order 4 which
makes Mn a Macaulay poset. As this poset is in-nite and the linear order 4 is such
that xk1 ≺ x2 for all k, the question of log-concavity of the pro-le f(C(m;Mn)) is trivial.
In fact, we see immediately that f(C(m;Mn))=f(〈C(1; Nm−1)〉)= (1; 1; : : : ; 1) is log-
concave, but not strongly. Hence, it is reasonable to restrict ourselves to the following
statement, which will turn out to be a corollary of Theorem 3.1.

Theorem 4.1. Let k ∈N∗ and m∈ [Wk(Mn)]; then f(〈C(m;Nk)〉) is log-concave.

Proof. Let (f0; f1; : : : ; fk) be the pro-le considered (with fk =m). We have to show
that f2

‘−1¿f‘f‘−2 for every ‘=2; 3; : : : ; k. Write the ‘-binomial representation of f‘:

f‘ =1 +
‘∑

i=1

(
ai
i

)
with 06a1¡a2¡ · · ·¡a‘:

As we saw in Section 2, we have

f‘−1 = @Mn
‘ (f‘)= 1 +

‘∑
i=2

(
ai − 1

i − 1

)
; f‘−2 = @Mn

‘−1(f‘−1)= 1 +
‘∑

i=3

(
ai − 2

i − 2

)
:

Now, set

g‘ :=f‘ − f‘−1 = 1 +
‘∑

i=1

(
ai − 1

i

)
;

g‘−1 :=f‘−1 − f‘−2 = 1 +
‘∑

i=2

(
ai − 2

i − 1

)
;

h‘ := g‘ − g‘−1 = 1 +
‘∑

i=1

(
ai − 2

i

)

and observe that

f2
‘−1¿f‘f‘−2 ⇔ (f‘−2 + g‘−1)2¿f‘−2(f‘−2 + g‘−1 + g‘)

⇔ g2‘−1¿h‘f‘−2:

We conclude the proof by applying Theorem 3.1. In order to do it, we consider three
cases, depending if the above expressions for h‘ and g‘−1 are binomial representations
or not. Let A∈Bt (with t large enough) such that

(i) p‘(A)= h‘ if a1¿2 or
(ii) p‘−1(A)= g‘−1 if a1¡2 and a2¿2 or
(iii) p‘−2(A)=f‘−2 if a1 = 0 and a2 = 1
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and consider the ideal C(p(A))⊆Bt . Denote by (f′
0 ; f

′
1 ; : : : ; f

′
t ) its pro-le and look at

each case separately.

Case (i): if a1¿2 then 1+
∑‘

i=1

(
ai−2
i

)
is the ‘-binomial representation of h‘ =f′

‘ .

Hence, f′
−1 = @Bt

‘ (f′
‘)= g‘−1 and f′

‘−2 = @Bt
‘−1(f

′
‘−1)=f‘−2. By applying Theorem 3.1

to C(p(A)) we get g2‘−1¿h‘f‘−2 in particular.

Case (ii): if a2¿2 then 1 +
∑‘

i=2

(
ai−2
i−1

)
is the (‘ − 1)-binomial representation of

g‘−1 =f′
‘−1. Hence, f

′
‘−2 = @Bt

‘−1(f
′
‘−1)=f‘−2 and by Lemma 3.2

f′
‘ =

‘∑
i=2

(
ai − 2

i

)
¿1 +

(
a1 − 2

1

)
+

‘∑
i=2

(
ai − 2

i

)
= h‘:

Theorem 3.1 yields f′
‘−1

2¿f′
‘f

′
‘−2, whence g2‘−1¿h‘f‘−2.

Case (iii): Finally, 1+
∑‘

i=3

(
ai−2
i−2

)
is the (‘−2)-binomial representation of f‘−2 =

f′
‘−2 since a3¿2. By Lemma 4

f′
‘−1 =

‘∑
i=3

(
ai − 2

i − 1

)
=1 +

(
−1

1

)
+

‘∑
i=3

(
ai − 2

i − 1

)
= g‘−1;

f′
‘ =

‘∑
i=3

(
ai − 2

i

)
=1 +

(
−2

1

)
+

(
−1

2

)
+

‘∑
i=3

(
ai − 2

i

)
= h‘

and Theorem 3.1 yields the result.

Remark. In the case of the poset Mn, the unimodality of f(〈C(m;Nk)〉) is trivial since
this pro-le is indeed an increasing sequence: @Mn

k (m)6m for every k¿1 and m∈ [Wk ]
by de-nition of the operator @Mn

k .
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