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a b s t r a c t

BAY 81-8973 is a full-length, unmodified recombinant human factor VIII (FVIII) approved for the treat-
ment of hemophilia A. BAY 81-8973 has the same amino acid sequence as the currently marketed
sucrose-formulated recombinant FVIII (rFVIII-FS) product and is produced using additional advanced
manufacturing technologies. One of the key manufacturing advances for BAY 81-8973 is introduction of
the gene for human heat shock protein 70 (HSP70) into the rFVIII-FS cell line. HSP70 facilitates proper
folding of proteins, enhances cell survival by inhibiting apoptosis, and potentially impacts rFVIII glyco-
sylation. HSP70 expression in the BAY 81-8973 cell line along with other manufacturing advances
resulted in a higher-producing cell line and improvements in the pharmacokinetics of the final product
as determined in clinical studies. HSP70 protein is not detected in the harvest or in the final BAY 81-8973
product. However, because this is a new process, clinical trial safety assessments included monitoring for
anti-HSP70 antibodies. Most patients, across all age groups, had low levels of anti-HSP70 antibodies
before exposure to the investigational product. During BAY 81-8973 treatment, 5% of patients had
sporadic increases in anti-HSP70 antibody levels above a predefined threshold (cutoff value, 239 ng/mL).
No clinical symptoms related to anti-HSP70 antibody development occurred. In conclusion, addition of
HSP70 to the BAY 81-8973 cell line is an innovative technology for manufacturing rFVIII aimed at
improving protein folding and expression. Improved pharmacokinetics and no effect on safety of BAY 81-
8973 were observed in clinical trials in patients with hemophilia A.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction1 accomplished intracellularly by protein-protein interactions and
The development of recombinant technology for expressing
factor VIII (FVIII) in mammalian cell lines greatly decreased
the likelihood of bloodborne pathogen transmission in patients
with hemophilia A, a concern with the use of plasma-derived
FVIII products available at the time [1]. Recombinant technol-
ogy continues to be refined, with current efforts aimed at
improving safety and efficacy and producing a purer recombinant
FVIII (rFVIII) product. An issue with recombinant techniques for
rFVIII manufacture is the generally low level of FVIII expression
by the cell line [2,3]. One potential means of enhancing FVIII
expression and achieving more consistent posttranslational
modification is to reduce aggregation of misfolded proteins and
cell apoptosis (programmed cell death) by introducing the gene
for human heat shock protein 70 (HSP70) into the cell line.
HSP70 is an intracellular chaperone protein that facilitates
proper protein folding and enhances cell survival, and coex-
pression may result in a rFVIII product of high and consistent
purity [2,4,5].

BAY 81-8973 (Kovaltry®, Bayer, Berkeley, CA, USA) is a full-
length, unmodified, recombinant human FVIII approved for pre-
vention and treatment of bleeding episodes in patients with he-
mophilia A. BAY 81-8973 has the same amino acid sequence as
sucrose-formulated rFVIII (rFVIII-FS; Kogenate® FS/Bayer; Bayer,
Berkeley, CA, USA) and is produced using additional advanced
manufacturing technologies [6,7]. A key improvement in the
manufacturing of BAY 81-8973 compared with rFVIII-FS is the use
of an improved cell line into which the human gene for expression
of HSP70 has been introduced [6]. Other advances in BAY 81-8973
manufacturing include production without addition of human- or
animal-derived raw materials to the cell culture, purification, or
formulation processes; use of an optimized and simplified puri-
fication process; and the addition of a filtration step that uses a
20-nm pore size filter capable of removing small nonenveloped
viruses and potential protein aggregates [6]. These manufacturing
changes resulted in a more productive, apoptosis-resistant cell
line and a rFVIII product of high, consistent purity with highly
branched and sialylated glycans. The resultant rFVIII product
exhibited favorable pharmacokinetics in clinical studies [8]. This
article discusses the rationale for and implications of the use of
HSP70 chaperone protein in the BAY 81-8973 manufacturing
process.
2. Role of HSP70 in cellular function

Heat shock proteins are a family of proteins expressed in
response to cellular stress, including exposure to heat, cytotoxic
drugs, or ultraviolet irradiation [9,10]. Heat shock proteins are
categorized by size; at 70 kDa, HSP70 is a high molecular weight
HSP [9]. High molecular weight HSPs are distinguished from small
HSPs by their dependence on adenosine triphosphate (ATP) for
proper functioning, whereas small HSPs appear to be primarily
controlled by phosphorylation status [9].

Heat shock protein 70 and other HSPs function as molecular
chaperones (proteins that facilitate folding of proteins and pro-
vide quality control [11]); they execute essential and protective
cellular functions under normal physiologic conditions and in
conditions of environmental stress. The functions of HSP70 are
1 BHK ¼ baby hamster kidney; HSP70 ¼ heat shock protein 70; LEOPOLD ¼ Long-
Term Efficacy Open-Label Program in Severe Hemophilia A Disease;
rFVIII ¼ recombinant factor VIII; rFVIII-FS ¼ sucrose-formulated rFVIII.
include (1) facilitation of proper folding of newly formed pro-
teins, refolding of denatured or aggregated proteins, and degra-
dation of proteins that cannot be properly refolded [4,5,9,11]
(HSP70 and other co-chaperones can aid in protein degradation
through interaction with the ubiquitin-proteasome system [9]);
(2) facilitation of translocation of proteins across membranes [4];
(3) protection against stress-induced programmed cell death [10]
by providing greater resistance to apoptosis-inducing agents and
cell culture conditions [4]; (4) regulation of cell cycle [4]; and (5)
direct maintenance of genomic stability by enhancing DNA repair
[12e14].

The HSP70 gene is highly inducible [15,16], which is consistent
with the variable levels of endogenous HSP70 measured in
humans [17]. Although its function is intracellular, HSP70 can be
released into the extracellular environment, and serum levels of
HSP70 in young, healthy individuals have been found in the range
of 60e3000 ng/mL [18,19]. HSP70 levels decrease with age [18] but
are increased in patients with acute infections, in whom
serum levels of approximately 500e6021 ng/mL have been
measured [19].

Antibodies to HSP70 have been detected in healthy individuals
[17] and in several disease states. Varying levels of anti-HSP70
antibodies have been reported in patients with hypertension [20],
atherosclerotic cardiovascular disorders [21], and inflammatory
diseases such as Behçet-induced uveitis [22]; in pediatric patients
on hemodialysis [23]; and in healthy pregnant women [24]. Anti-
HSP70 antibody levels tend to increase with age [18].

3. Role of HSP70 in BAY 81-8973 manufacturing

The feasibility of using HSP70 to increase FVIII expression was
demonstrated in a cell culture study comparing an existing baby
hamster kidney (BHK)-21 cell line expressing full-length rFVIII
(rBHK-21-host) with the same cell line transfected with the hu-
man HSP70 gene (rBHK-21-HSP70) [2]. Apoptosis, induced by
nutrient deprivation or exposure to cytotoxins, was inhibited in
the rBHK-21-HSP70 cells compared with the rBHK-21-host cells
[2]. The rBHK-21-HSP70 cells also showed an approximate 2-fold
increase in rFVIII productivity and procoagulant activity versus
rBHK-21-host cells [2]. A separate study indicated that the anti-
apoptotic effects of HSP70 may enhance rFVIII expression by
inhibiting adherence of rFVIII to the cell surface (which limits
rFVIII productivity) and maintaining higher intracellular levels of
FVIII [3]. BAY 81-8973 is the first use of HSP70 coexpression in
mammalian cells for production of a licensed recombinant
therapeutic protein (US Patent No: US 2005/0048608 AI). The
BAY 81-8973 cell line has 2 copies of the HSP70 gene per cell;
expression of HSP70 was found to be consistent over a 7-day
culture period [2]. No HSP70 was detected in BAY 81-8973
drug substance by a very sensitive western blot assay (limit of
detection, 1.5 ng/mL).

4. BAY 81-8973 molecule description

Factor VIII is a highly glycosylated protein that contains several
N- and O-linked glycans. Compared with its predecessor, rFVIII-FS,
BAY 81-8973 presents a higher proportion of highly branched,
sialylated carbohydrates and a consistently high degree of sialic
acid capping of N-terminal glycans (BAY 81-8973, a full-length re-
combinant FVIII: manufacturing processes and product character-
istics [Manuscript in preparation]); this posttranslational
modification step may affect the half-life of some mammalian
proteins [25].
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4.1. BAY 81-8973 pharmacokinetics

In the Long-Term Efficacy Open-Label Program in Severe He-
mophilia A Disease (LEOPOLD) clinical trials, the pharmacokinetic
profile of BAY 81-8973 was compared in a crossover design with
rFVIII-FS. The overall pharmacokinetic profile of BAY 81-8973 was
more favorable than that for rFVIII-FS [8]. Compared with rFVIII-FS,
BAY 81-8973 had a longer half-life (13.8 vs 12.0 h), higher area
under the curve (AUC; 1889.2 vs 1583.9 IU$h/dL) and mean resi-
dence time (19.3 vs 16.5 h), and slower clearance (0.026 vs
0.032 dL/h/kg; data cited are geometric mean results using the
chromogenic assay) [8]. Differences were statistically significant for
all of these parameters. Compared with its predecessor, BAY 81-
8973 showed significant improvement in pharmacokinetic pa-
rameters that are relevant for maintaining a protective FVIII level
during prophylaxis treatment. In a phase 1, open-label, crossover
clinical study in 18 patients aged 19e64 years, the pharmacokinetic
profile of BAY 81-8973 was superior to that of another commercial
rFVIII [26]; simulations based on the study data demonstrated that
the time to a trough level of 1% was 18e19 hours longer for BAY 81-
8973 compared with the other rFVIII in 50% of patients [26].

5. BAY 81-8973 clinical data

5.1. Anti-HSP70 antibodies and clinical safety

The clinical efficacy and safety of BAY 81-8973were evaluated in
the LEOPOLD clinical development program, comprising 3 clinical
trials (LEOPOLD I, LEOPOLD II, LEOPOLD Kids) in children, adoles-
cents, and adults with severe hemophilia A [27e29]. HSP70 is not
detected in the cell culture medium or in the final BAY 81-8973
product. However, because of the change in manufacturing
methods, assessment of the safety of BAY 81-8973 included routine
monitoring for the development of anti-HSP70 antibodies in
addition to standard assays for anti-drug and anti-host cell anti-
bodies [27]. Anti-HSP70 antibody levels were measured in each
study by enzyme-linked immunosorbent assay using a commercial
kit; measurements were performed every 3 months for adults
(observation time of 1 year) and at the beginning and end of the 6-
month study for children. Because anti-HSP70 antibodies are found
in the general population, antibody levels above the 95th percentile
in a sample of the general population were determined. The cutoff
value for antibody negativity or normal levels was set at 239 ng/mL
during method validation, with a lower limit of quantification of 25
or 50 ng/mL. The cutoff was determined based on analysis of 50
samples from healthy controls applying standard statistical ap-
proaches for evaluation [30], with a 95% CI yielding a 5% false-
positive rate. Anti-HSP70 antibody tests were performed by a
centralized laboratory (PRA International, Early Development Ser-
vice, Assen, Netherlands).
Table 1
Patients with anti-HSP70 antibody formation in the LEOPOLD Kids, LEOPOLD I, and LEOP

LEOPOLD Kid
safety pool
(n ¼ 51)

At least 1 positivea anti-HSP70 antibody result pretreatment, n (%) 1 (2.0)
At least 1 positive result during BAY 81-8973 treatment 0
Only negative results during BAY 81-8973 treatment 1 (100)

Only negative results pretreatment, n (%) 50 (98.0)
At least 1 positive result during BAY 81-8973 treatment 0
Only negative results during BAY 81-8973 treatment 50 (100)

HSP70 ¼ heat shock protein 70; LEOPOLD ¼ Long-Term Efficacy Open-Label Program in
a Positive defined as >95th percentile for normal population (cutoff value, 239 ng/mL
b 1 patient became positive during the 1-year LEOPOLD I extension.
In the LEOPOLD I (N ¼ 62; median age, 30.0 years), LEOPOLD II
(N ¼ 80; median age, 28.5 years), and LEOPOLD Kids (N ¼ 51;
median age, 6 years) trials, all of which enrolled patients previously
treated with a FVIII product, most patients had detectable anti-
HSP70 antibody levels before first exposure to BAY 81-8973 (pre-
treatment) but were below the defined assay cutoff for positivity
(LEOPOLD I, mean ± SD, 88.4 ± 46.9 ng/mL [range, 25.0e244.0 ng/
mL]; LEOPOLD II, mean ± SD, 86.2 ± 99.0 ng/mL [range,
25.0e861.0 ng/mL]). Four of the 193 patients (2.1%) had anti-HSP70
antibody levels above the cutoff level pretreatment; 3 of these
patients became negative during the study and 1 patient remained
positive. Of the 189 patients who were negative pretreatment, 10
patients (5.3%) had positive anti-HSP70 antibody levels during BAY
81-8973 treatment for at least 1 of the assessment time points
during the study; of these, 5 patients were transiently positive at
single time points, and 5 patients remained positive until the end of
the study with decreasing values (Table 1).

Anti-HSP70 antibody levels at various time points for the pa-
tients who had any positive antibody titers during the LEOPOLD
trials are shown in Fig. 1. All patients with positive anti-HSP70
antibody levels had a diagnosis of hemophilic arthropathy or
chronic synovitis, and 4 patients had a chronic hepatitis C virus
(HCV) infection. Several additional pathologic conditions that may
be indicative of inflammatory reactions, including upper respira-
tory tract infections, common cold, increased liver enzymes, caries,
high neutrophil count, and joint pain symptoms, were observed at
the time of increased anti-HSP70 antibody levels. The observed
increased antibody levels were inmost cases only slightly above the
predefined threshold for positivity (range, 240e584 ng/mL). The
highest value was observed before the start of BAY 81-8973 treat-
ment in 1 patient. In the LEOPOLD Kids trial, 1 patient had positive
anti-HSP70 antibody levels (1865 ng/mL) pretreatment only, and all
subsequent anti-HSP70 values were negative. The patient's clinical
historywas notable because the pretreatment samplewas collected
approximately 1 week after the patient was treated for a central
venous access device infection, suggesting that the antibodies were
present as a part of an inflammatory response against bacterial
infection.

6. Discussion

BAY 81-8973 is a full-length, unmodified, recombinant human
FVIII approved for prevention and treatment of bleeding episodes
in hemophilia A. BAY 81-8973 has the same amino acid sequence as
the currently marketed product rFVIII-FS and is produced using
additional advanced manufacturing technologies [6]. One of the
key advances in the BAY 81-8973 manufacturing process was the
introduction of the human HSP70 gene into the cell line to improve
cell viability and increase rFVIII yield [6]. The overall changes in BAY
81-8973 manufacturing have resulted in a rFVIII product of high
OLD II trials.

s LEOPOLD I safety pool (n ¼ 62) LEOPOLD II safety pool (n ¼ 80)

1 (1.6) 2 (2.5)
0 1 (50)
1 (100) 1 (50)
61 (98.4) 78 (97.5)
2 (3.3)b 8 (10.3)
59 (96.7) 70 (89.7)

Severe Hemophilia A Disease.
).



Fig. 1. Anti-HSP70 antibody titers at various time points in patients with at least 1 elevated anti-HSP70 level in the LEOPOLD trials. Symbols represent anti-HSP70 antibody
titers in individual patients at each measurement time point; horizontal dashed line indicates the cutoff value for antibody positivity (239 ng/mL). HSP70 ¼ heat shock protein 70;
LEOPOLD ¼ Long-Term Efficacy Open-Label Program in Severe Hemophilia A Disease.
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and consistent purity and with highly sialylated and branched
glycan structure that is relevant for the half-life of some proteins
[8,27].

The pharmacokinetics of BAY 81-8973 compared favorably with
the predecessor FVIII, rFVIII-FS [8]. In addition, the improved half-
life and AUC of BAY 81-8973 resulted in a prolonged time above
the threshold of 1% compared with another commercial rFVIII [26].
The enhanced pharmacokinetics of BAY 81-8973 may be one of the
reasons for the low bleeding rate observed with a twice-weekly
dosing regimen [31].

BAY 81-8973 efficacy and safety were evaluated in 3 clinical
trials enrolling pediatric, adolescent, and adult patients with he-
mophilia A. Although HSP70 is not detectable in the final product,
safety assessments in each trial included monitoring for develop-
ment of anti-HSP70 antibodies in addition to monitoring for FVIII
inhibitors and anti�host cell antibodies. Overall, across all BAY 81-
8973 studies, any measured increase in anti-HSP70 antibodies was
small and only slightly above the assay cutoff, representing both the
upper 5% of the normal distribution of anti-HSP70 antibody levels
(5% false-positive rate of the validated cutoff) and minor fluctua-
tions of anti-HSP70 antibody levels in single patients over time.

Our work confirms that anti-HSP70 antibodies are commonly
found in healthy individuals [17] and most likely result from
normal and ongoing exposure to HSP70 released into the blood
during infection or other inflammatory processes and that these
levels tend to increasewith age [18]. SerumHSP70 levels in persons
with acute infection have been reported to range from 500 e

6021 ng/mL [19]. Increased expression of HSP70 has also been re-
ported in several disorders, including rheumatoid arthritis, sys-
temic lupus erythematosus, and hypertension [19,32,33]. For the
purposes of the LEOPOLD clinical trials, a conservative cutoff level
of 239 ng/mL (95th percentile of values in a normal population) was
defined to allow a false-positive rate of 5%. This cutoff value may
not be clinically relevant but was chosen to ensure that the assay
was sufficiently sensitive to detect and characterize potential new
immune responses to BAY 81-8973. Overall, treatment with BAY
81-8973 did not result in a meaningful change in anti-HSP70
antibody titers. In the few patients in whom an increase in anti-
HSP70 antibody levels was observed, the rise was almost always
temporally associated with an acute infection or concomitant in-
flammatory event. When antibody responses were observed, no
other associated hypersensitivity reactions were reported. Thus, it
is unlikely that BAY 81-8973 induces any relevant anti-HSP70
antibody response.

In summary, advanced manufacturing technologies including
the use of the human HSP70 gene in BAY 81-8973 manufacturing
yield a higher-producing cell line with better cell viability andmore
consistent posttranslational modifications. The expressed FVIII has
an improved pharmacokinetic profile and does not affect BAY 81-
8973 safety, based on data collected as part of the LEOPOLD clinical
trial program.
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