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Abstract 

Pulsed voltammetry has been applied to drinking water monitoring. This non-selective technique facilitates detection of several 
different threats to the drinking water. A multivariate algorithm shows that anomaly detection is possible with a minimum of false 
alarms. Multivariate analysis can also be used to classify different types of substances added to the drinking water. Low 
concentrations of sewage water contaminating the drinking water can be detected. A network of such sensors is envisaged to 
facilitate real-time and on-line monitoring of drinking water distribution networks. 
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1. Introduction 

Safe drinking water supply is an important part of a city's critical infrastructure that may be vulnerable to terrorist 
attacks as well as the constant risk of contamination by accidents and infrastructure breakdowns. Real-time monitoring 
of drinking water quality in the distribution networks occurs rarely today, but several sensor technologies have been 
considered for anomaly detection [1-3]. We report here on pulsed voltammetry measurements with an "electronic 
tongue" [4, 5]. By utilizing this type of non-selective sensor, we are able to detect a plurality of anomalies without the 
need of a specific sensor for each type of event. Multivariate evaluation techniques facilitate classification of different 
contaminants. These properties, combined with the robustness of the sensor, make it a potential candidate for 
relatively maintenance free monitoring of drinking water distribution networks. 

2. Experimental details 

The voltammetric sensor contains an array of working electrodes and a counter electrode, also called reference 
electrode in two electrode systems [6]. We have used working electrodes of Au, Pt and Rh, each with 1 mm diameter, 
and a large area counter electrode of stainless steel. The measurement principle is based on pulsed voltammetry, where 
a series of voltage pulses are applied and the induced current responses are measured, see Fig. 1a. The size and the 
shape of the resulting current responses depend on the conductivity, the concentration and type of redox active 
components, the diffusion coefficients of charged components, the applied voltage and on the working electrode 
material. Therefore different substances added to the water can often be classified by applying multivariate evaluation 
techniques. We have used feature extraction and principal component analysis (PCA) in the classification work. 
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Fig. 1. (a) Excitation voltages (top) and resulting current responses (bottom) in a typical measurement of non-contaminated drinking water in a pilot 
system with similar properties as the real drinking water distribution system. (b) Current response due to one of the voltage pulses in (a). The 
positive current transient is due to the sudden increase in voltage and the negative current transient to the sudden decrease. The exact shape of the 
current transients depends on several parameters, such as the type and concentration of substances added to the drinking water. F1-F4 are examples 
of features that are extracted from the sensor signals. 

3. Results and discussion 

From the sensor signals certain features are chosen from the data as illustrated in Fig. 1b. The feature extraction is 
an initial signal processing step that aims at giving measurement data a compact and informative representation. The 
electrode signals are sampled at 1000 Hz, and every electrode thus yields a signal vector with 17000 elements in this 
case. This number indeed needs to be reduced to facilitate statistical modeling and visualization. Exponential functions 
are therefore fitted to the electrode signals. Every voltage step response is then modeled by 
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which is fitted to the sensor data using numerically and computationally efficient separable least squares techniques. 
Apart from compressing data, the exponential functions also suppress disturbances. F2-F4 in Fig. 1b are extracted 
from the exponential functions and they are thereby subjected to noise filtering. F1 is calculated directly from raw data 
since there is little motivation to filter this very transient part of the signal. 

These initial features sum up to 48 (4 features times 12 voltage steps (two for each pulse, see Fig. 1a)) for a whole 
electrode measurement. To reduce the feature space further and to avoid co-linearity, the first three principal 
components of a PCA constitute the final feature set. 

Anomaly detection is essentially about to learn how the extracted features respond over time to normal (harmless) 
variations, to be able to detect the deviating signal patterns that result from water pollutions. It is assumed that a 
measurement on clean water is sampled from a multivariate normal distribution. If the mean and covariance of this 
distribution is at least approximately known, every measurement can be evaluated by the normal distribution 
probability density function (PDF) as being more or less likely to be due to clean water: 
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L(x) is the likelihood of measurement x and p is the dimension of x. C and m are the covariance and mean of the 
clean water (normal) distribution N(m,C). If the likelihood L(x) is close to zero, x is unlikely to be a sample of the 
normal distribution, and the water is probably polluted. 

The normal variations in the drinking water characteristics are due to e.g. variations in temperature, water flow 
velocity, pH, turbidity and residual chlorine. The biggest challenge in this respect turned out to be the temperature 
variations. Fig. 2 illustrates the influence of the temperature variations on the sensor signal and how it could be 
handled by introducing a temperature sensor. Fig 2a shows the strong influence of the temperature variations on the 
raw sensor signal. By first training the anomaly algorithm with data during the normal variations, it was then possible 
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 Fig. 2. (a) The first principal component (PC) of extracted features of the Rh electrode signals and temperature measurement data. At the end of the 
measurement, three pulses of different pollutants are added: H2SO4 (changing the pH from 8.2 to 7.1), NaOH (changing the pH from 8.2 to 8.4) and, 
finally, 0.5 % sewage water. (b) The first 9 h from the 12 h data set of (a) (the "Training" part) have first been used to train a statistical model for 
change detection. The model is then applied to the final 3 h of the data set (the "Validation" part of (a)). Since the pollution measurements do not fit 
the model well, they appear very unlikely, and therefore deviate strongly from the background level. 

to validate the algorithm with measurements where contaminations were added to the water. As can be seen in Fig. 2b 
the algorithm detects anomalies only during the contamination pulses and is not confused by the temperature 
variations. 0.5 % sewage water added to the drinking water can easily be detected in this way and the detection limit is 
at present about a tenth of this value. 

The three electrodes were measured in series in the experiments above and required 17 s per pulse train which 
means that the total measurement time was almost one minute per sample. Since the work aims at realtime monitoring 
we reduced the time per voltage pulse of the pulse train and applied parallel measurement of the three electrodes. In 
this way the sample time could be reduced to 10 s including data communication with an "analysis computer" over the 
Internet. Fig. 3 illustrates the voltage pulse train and a few raw data responses for different contaminations added to 
the drinking water. Also in this case a number of features were chosen from the current signals from the three 
electrodes and a new algorithm for anomaly detection was developed. Fig. 4 shows a long term test (45 days) where 
measurement data has been collected on natural tap water for several days before low concentrations of sewage water, 
NaOH, and H2SO4 are added. Every new measurement is compared to the set of measurements collected from the past 

Fig. 3. Measurements with reduced time for pulses and pulse train. (a) Applied voltage pulse train and (b) current responses for the Pt electrode 
when low concentrations of sewage water, NaOH and H2SO4 have been added to drinking water. 

Training Validation

(a) (b)

Sewage water

NaOH

H2SO4

Time (s)

(b)(a)

Time (s)

Vo
lta

ge
(V

)

Cu
rr

en
t(

A)
Cu

rr
en

t(
A)

Cu
rr

en
t(

A)



1168  M. Eriksson et al. / Procedia Engineering 25 (2011) 1165 – 1168

Fig. 4. (a) Long term investigation of the anomaly algorithm. The lower panel shows addition of different concentrations of sewage water (black), 
NaOH (green) and H2SO4 (red) to the drinking water in a pilot system at several occasions during a measurement period of 45 days. The upper panel 
shows the anomaly signal (blue) and a threshold level (red) placed at 6 dB. (b) Classification of the different pollutants added to the drinking water 
with PCA. Drinking water (blue) is the reference medium. Addition of sewage water (0.25 %, black) results in data taking off in a completely 
different direction than those of NaOH (0.3 % (pH increases from 7.7 to 9.4), green) and H2SO4 (0.4 % (pH decreases from 7.7 to 7.0), red). 

24 hours. The model thus adapts to slow changes of the background due to e.g. drift in the sensor signals. This 
comparison consecutively gives deviation values that we here choose to express as signal to noise ratio (SNR) in dB, 
calculated as  
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Here, t denotes time index, yt the measurement, mt and Rt the estimated mean and covariance based on the 
measurements collected 24 hours prior to t. The output of this algorithm is illustrated in Fig. 4a where a long term test 
(45 days) shows that the algorithm produces alarms when different pollutants are added to the water with a minimum 
of false alarms in between. Fig. 4b illustrates that a classification of the different substances with PCA is possible. 

4. Conclusions 

The sensor system can thus alert when anomalies are detected and indicate if the anomaly is, or is not, included in a 
library of pollutants that the system has been trained for. A network of voltammetric sensors distributed on the 
drinking water network is envisaged to give a fast alarm, determine which part of the distribution network that is 
affected, facilitate a forecast of the spreading of the pollution and pinpoint the location of the pollution source. 
Demonstration measurements over the internet have also been performed, including remote data analysis and remote 
integration with a crises management system, all in real-time. 
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