# A fixed point theorem and a norm inequality for operator means 

Jaspal Singh Aujla<br>Department of Applied Mathematics, Regional Engineering College, Jalandhar-144011. Punjab, India<br>Received 27 August 1997; accepted 28 September 1998<br>Submitted by L. Rodman


#### Abstract

There is one to one correspondence between positive operator monotone functions on $(0, \infty)$ and operator connections. For a symmetric connection $\sigma$, it is proved that the map $X \rightarrow(A \sigma X) \sigma^{\perp}(B \sigma X)$ from positive operators on a Hilbert space to itself, has a unique fixed point. Here $\sigma^{\perp}$ denotes the dual of $\sigma$. It is also proved that $\||A \sigma B\|\leqslant\|| A\| \sigma\|B\| \|$ for all unitarily invariant norms ||| $||\mid$ and for all positive operators $A, B$. © 1999 Elsevier Science Inc. All rights reserved.


## 1. Introduction

Throughout $H$ denotes the complex Hilbert space $\mathbb{C}^{n}, n \in \mathbf{N} . \mathscr{L}(H)$ is the space of bounded linear operators on $H$, while $\mathscr{L}_{+}(H)$ is the cone of positive semidefinite operators on $H$ and $\mathscr{P}(H)$ is the cone of positive operators on $H$.

The study of operator means began with the work of Anderson and Duffin [1]. They first studied the arithmetic and harmonic means and proved the ar-ithmetic-harmonic inequality. Ando [5] defined the geometric mean and proved the arithmetic-geometric inequality. The axiomatic theory for connections and means for pairs of positive operators has been developed by Nishio and Ando [17] and Kubo and Ando [13]. Let $A, B, C, \ldots$, denote elements of $\mathscr{L}_{-}(H)$. An operator connection $\sigma$ is a binary operation on $\mathscr{L}_{+}(H)$ satisfying the following axioms:

## Monotonicity

$$
A \leqslant C, B \leqslant D \quad \text { imply } \quad A \sigma B \leqslant C \sigma D,
$$

Transformer inequality

$$
C(A \sigma B) C \leqslant(C A C) \sigma(C B C)
$$

## Upper continuity

$A_{n} \downarrow A$ and $B_{n} \downarrow B \operatorname{imply}\left(A_{n} \sigma B_{n}\right) \downarrow(A \sigma B)$.
A mean is a connection with normalization condition

$$
I \sigma I=I .
$$

Kubo and Ando [13] showed the existence of an affine order isomorphism between the class of connections and the class of positive operator monotone functions on $\mathbb{R}_{+}$. This isomorphism $\sigma \leftrightarrow f$ is characterized by the relation

$$
\begin{equation*}
A \sigma B=A^{1 / 2} f\left(A^{-1 / 2} B A^{-1 / 2}\right) A^{1 / 2} \tag{1}
\end{equation*}
$$

for $A, B \in \mathscr{P}(H)$. The operator monotone function $f$ is called the representing function of $\sigma$. The following inequality holds.

Let $A, B, C, D \in \mathscr{P}(H)$. Then for any connection $\sigma$,

$$
\begin{equation*}
(A+C) \sigma(B+D) \geqslant(A \sigma B)+(C \sigma D) . \tag{2}
\end{equation*}
$$

The transpose $\sigma^{\prime}$ of a connection $\sigma$ is defined by

$$
A \sigma^{\prime} B=B \sigma A
$$

For a connection $\sigma$ its dual $\sigma^{\perp}$ is defined by

$$
A \sigma^{\perp} B=\left(B^{-1} \sigma A^{-1}\right)^{-1}
$$

$A, B \in \mathscr{P}(H)$. If $f$ is the representing function of $\sigma$ then $f^{\prime}(t)=t f\left(t^{-1}\right)$ is the representing function of $\sigma^{\prime}$ and $f^{\perp}(t)=t(f(t))^{-1}$ is the representing function of $\sigma^{\perp}$. A connection $\sigma$ is called symmetric if $\sigma^{\prime}=\sigma$ and is called selfdual if $\sigma^{\perp}=\sigma$.

The operator mean corresponding to the operator monotone function $t \rightarrow t^{1 / 2}$ is called the geometric mean and is denoted by \#. For $A, B \in \mathscr{P}(H)$, their parallel sum is defined by

$$
A: B=\left(A^{-1}+B^{-1}\right)^{-1}
$$

In his unpublished thesis $\mathbf{F}$. Kubo considered the following problem.
Given a pair $\sigma, \tau$ of operator means and $A, B \in \mathscr{P}(H)$, define a map $\theta$ by

$$
\theta(X)=(A \sigma X) \tau(B \sigma X)
$$

$X \in \mathscr{P}(H)$. Then the iterates converges to a fixed point of $\theta$

$$
\lim _{n \rightarrow \infty} \theta^{n}\left(\frac{A+B}{2}\right)=\lim _{n \rightarrow \infty} \theta^{n}(2(A: B))
$$

which is a unique fixed point among $X$ 's such that $X \geqslant c(A: B)$ for some $c>0$.

In Ref. [8], Arlinskii proved that $A \# B$ is the unique fixed point of the map

$$
X \rightarrow(A+X):(B+X)
$$

The operator connections : and + are symmetric and are duals of each other. In Section 2, we shall prove a generalization of this result for all symmetric connections. Our Theorem 2.5 gives a characterization of symmetric connections. In Section 3, we shall prove that for all connections $\sigma$ and for all unitarily invariant norms $\|\|\cdot\|$,

$$
|\|A \sigma B\|| \leqslant\|A|\||\sigma\|B\||
$$

for $A, B \in \mathscr{P}(H)$.

## 2. A fixed point theorem

Theorem 2.1. Let $\sigma$ be a symmetric connection and let $A, B \in \mathscr{P}(H)$. Then $A \# B$ is the unique fixed point of the map $\Phi_{A, B}: \mathscr{P}(H) \rightarrow \mathscr{P}(H)$ defined by

$$
\Phi_{A, B}(X)=(A \sigma X) \sigma^{\perp}(B \sigma X)
$$

$X \in \mathscr{P}(H)$.

Proof. Let $f$ be the representing function of $\sigma$. We shall prove that $A \# B$ is a fixed point of $\Phi_{A, B}$, that is, $\Phi_{A, B}(A \# B)=A \# B$. Indeed, using the representation (1), we have

$$
\begin{align*}
& \Phi_{A, B}(A \# B)=[A \sigma(A \# B)] \sigma^{\perp}[B \sigma(A \# B)] \\
& =\left[A^{1 / 2} f\left(A^{-1 / 2}(A \# B) A^{-1 / 2}\right) A^{1 / 2}\right] \sigma^{\perp}\left[B^{1 / 2} f\left(B^{-1 / 2}(A \# B) B^{-1 / 2}\right) B^{1 / 2}\right] \\
& =\left[A^{1 / 2} f\left(A^{-1 / 2}(A \# B) A^{-1 / 2}\right) A^{1 / 2}\right] \sigma^{\perp}\left[B^{1 / 2} f\left(B^{-1 / 2}(B \# A) B^{-1 / 2}\right) B^{1 / 2}\right] \\
& =\left[A^{1 / 2} f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right) A^{1 / 2}\right] \sigma^{\perp}\left[B^{1 / 2} f\left(\left(B^{-1 / 2} A B^{-1 / 2}\right)^{1 / 2}\right) B^{1 / 2}\right] \\
& =A^{1 / 2}\left[\left\{f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\right\} \sigma^{\perp}\left\{A^{-1 / 2} B^{1 / 2} f\left(\left(B^{-1 / 2} A B^{-1 / 2}\right)^{1 / 2}\right) B^{1 / 2} A^{-1 / 2}\right\}\right] A^{1 / 2} . \tag{*}
\end{align*}
$$

Now

$$
\begin{aligned}
& \left\{f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\right\} \sigma^{\perp}\left\{A^{-1 / 2} B^{1 / 2} f\left(\left(B^{-1 / 2} A B^{-1 / 2}\right)^{1 / 2}\right) B^{1 / 2} A^{-1 / 2}\right\} \\
& =\left\{f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\right\} \sigma^{\perp}\left\{A^{-1 / 2} B^{1 / 2}\left(I \sigma\left(B^{-1 / 2} A B^{-1 / 2}\right)^{1 / 2}\right) B^{1 / 2} A^{-1 / 2}\right\} \\
& =\left\{f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\right\} \sigma^{\perp}\left\{\left(A^{-1 / 2} B A^{-1 / 2}\right) \sigma\left(A^{-1 / 2}(B \# A) A^{-1 / 2}\right)\right\} \\
& =\left\{f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\right\} \sigma^{\perp}\left\{\left(A^{-1 / 2} B A^{-1 / 2}\right) \sigma\left(A^{-1 / 2}(A \# B) A^{-1 / 2}\right)\right\} \\
& =\left\{f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\right\} \sigma^{\perp}\left\{\left(A^{-1 / 2} B A^{-1 / 2}\right) \sigma\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right\} \\
& \left.=\left\{f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\right\} \sigma^{\perp}\left\{\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\left[\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right) \sigma I\right]\right\} \\
& =\left\{f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\right\} \sigma^{\perp}\left\{\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\left[I \sigma\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\right\} \sigma^{\perp}\left\{\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\right\} \\
& =f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\left[I \sigma^{\perp}\left\{\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right]\right. \\
& =f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right) f^{\perp}\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right) \\
& =f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\left[f\left(\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2}\right)\right]^{-1} \\
& =\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} .
\end{aligned}
$$

Thus it follows from (*) that

$$
\Phi_{A . B}(A \# B)=A \# B
$$

To prove the uniqueness, we need the following lemma.
Lemma 2.2. Let $A, B \in \mathscr{P}(H)$ and $\sigma$ be a symmetric connection. Then

$$
\begin{equation*}
(A \sigma I) \sigma^{\perp}(B \sigma I)=I \tag{3}
\end{equation*}
$$

if and only if $B=A^{-1}$.
Proof. Observe that if $B=A^{-1}$ then $A \# B=I$ and hence (3) follows from the proof given in above theorem. Conversely, suppose (3) holds. Let $f$ be the representing function of $\sigma$. Then

$$
f(A) \sigma^{\perp} f(B)=I
$$

which implies

$$
(f(A))^{-1} \sigma(f(B))^{-1}=I
$$

Thus

$$
f\left((f(A))^{1 / 2}(f(B))^{-1}(f(A))^{1 / 2}\right)=f(A)
$$

Since a non-constant operator monotone function is strictly increasing and hence is one to one. Thus for a non-constant operator monotone function $g$, $g(C)=g(D)$, implies $C=D$. The function $f$ is non-constant operator monotone, we have from the above equality

$$
(f(A))^{1 / 2}(f(B))^{-1}(f(A))^{1 / 2}=A
$$

which implies

$$
\begin{equation*}
f(B)=A^{-1} f(A) \tag{4}
\end{equation*}
$$

Now using that $f(t)=t f\left(t^{-1}\right)$, we have

$$
A^{-1} f(A)=f\left(A^{-1}\right)
$$

Thus from Eq. (4), we get

$$
f(B)=f\left(A^{-1}\right),
$$

which further implies

$$
B=A^{-1} .
$$

Proof of uniqueness. Suppose $\Phi_{A B}(X)=X, X \in \mathscr{P}(H)$. We shall prove that $X=A \# B$. We have

$$
(A \sigma X) \sigma^{\perp}(B \sigma X)=X,
$$

which implies

$$
X^{1 / 2}\left[\left\{\left(X^{-1 / 2} A X^{-1 / 2}\right) \sigma I\right\} \sigma^{\perp}\left\{\left(X^{-1 / 2} B X^{-1 / 2}\right) \sigma I\right\}\right] X^{1 / 2}=X,
$$

so

$$
\left[\left(X^{-1 / 2} A X^{-1 / 2}\right) \sigma I\right] \sigma^{\perp}\left[\left(X^{-1 / 2} B X^{-1 / 2}\right) \sigma I\right]=I .
$$

Therefore, by Lemma 2.2,

$$
X^{-1 / 2} B X^{-1 / 2}=\left[X^{-1 / 2} A X^{-1 / 2}\right]^{-1} .
$$

Consequently,

$$
\left(X^{-1 / 2} A X^{-1 / 2}\right) \#\left(X^{-1 / 2} B X^{-1 / 2}\right)=I .
$$

Hence

$$
X=A \# B,
$$

which completes the proof.
Corollary 2.3 ( $[8]$, Theorem 2). Let $A, B \in \mathscr{P}(H)$. Then the maps

$$
\Psi_{A, B}^{(1)}, \Psi_{A, B}^{(2)}: \mathscr{P}(H) \rightarrow \mathscr{P}(H)
$$

defined by

$$
\Psi_{A, B}^{(1)}(X)=(A+X):(B+X)
$$

and

$$
\Psi_{A, B}^{(2)}(X)=(A: X)+(B: X)
$$

have the unique fixed point $A \# B$.
Remark 2.4. Theorem 2.1 need not be true if $\sigma$ is not symmetric. Indeed, if $\sigma$ is the operator mean corresponding to the operator monotone function $f(t)=1$, then

$$
X \rightarrow(A \sigma X) \sigma^{-}(B \sigma X)=B
$$

is a constant map. If $f(t)=t$ then

$$
X \rightarrow(A \sigma X) \sigma^{\perp}(B \sigma X)=X,
$$

so every point of this map is a fixed point. Infact our next result gives a characterization of the symmetric connections.

Theorem 2.5. Let $A, B \in \mathscr{P}(H)$ and let $\sigma$ be a connection. Then $\sigma$ is symmetric if and only if $A \# B$ is the unique fixed point of the map $\Phi_{A, B}: \mathscr{P}(H) \rightarrow \mathscr{P}(H)$ defined $b y$

$$
\Phi_{A . B}(X)=(A \sigma X) \sigma^{\perp}(B \sigma X),
$$

$X \in \mathscr{P}(H)$.
Proof. Suppose $A \# B$ is the unique fixed point of $\Phi_{A, B}$. Therefore, for $X, Y \in \mathscr{P}(H)$

$$
(X \sigma I) \sigma^{\perp}(Y \sigma I)=I \quad \text { implies } \quad Y=X^{-1} .
$$

Let $g$ be the representing function of $\sigma^{\perp}$. Note that $g$ is non-constant operator monotone function. Let $t>0$. Then

$$
\begin{aligned}
& (t \sigma 1) \sigma^{\perp}\left(t^{-1} \sigma 1\right)=1 \\
& \quad \Rightarrow\left(g\left(t^{-1}\right)\right)^{-1} \sigma^{\perp}(g(t))^{-1}=1 \\
& \quad \Rightarrow g\left((g(t))^{-1} g\left(t^{-1}\right)\right)=g\left(t^{-1}\right) \\
& \quad \Rightarrow(g(t))^{-1} g\left(t^{-1}\right)=t^{-1} \\
& \quad \Rightarrow g(t)=\operatorname{tg}\left(t^{-1}\right)
\end{aligned}
$$

Thus $\sigma^{\perp}$ is symmetric and hence $\sigma$ is symmetric. The other part of the theorem is Theorem 2.1.

## 3. A norm inequality

For an operator $A \in \mathscr{L}(H)$, its singular values are denoted by $s_{j}(A)$ and its eigen values are denoted by $\lambda_{j}(A)$. The Schatten $p$-norms on $\mathscr{L}(H)$ are defined as

$$
\begin{aligned}
& \|A\|_{p}=\left[\sum\left(s_{j}(A)\right)^{p}\right]^{1 / p}, \quad 1 \leqslant p<\infty, \\
& \|A\|_{\infty}=\|A\|=s_{1}(A),
\end{aligned}
$$

$A \in \mathscr{L}(H)$.
A norm $\||\cdot| \mid$ on $\mathscr{L}(H)$ is called symmetric or unitarily invariant, if $\|\mid A\|=$ $\|U A V\| \mid$ for all $A \in \mathscr{L}(H)$ and for all unitary operators $U, V \in \mathscr{L}(H)$. The operator norm $\|\cdot\|$ and the Schatten $p$-norms are such norms. A basic property
of the unitarily invariant norms is that they are symmetric gauge functions of the singular values of the operator. For a positive operator $T$ its singular values are the same as its eigen values. Let $T \in \mathscr{L}(H)$ and let its singular values be enumerated as

$$
s_{1}(T) \geqslant s_{2}(T) \geqslant \cdots \geqslant s_{n}(T)
$$

The generalized spectral norms have been introduced in Ref. [14].
Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{+}^{n}$ be such that $\alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{n}$. Then

$$
\|T \mid\|_{x}=\sum_{j=1}^{n} \alpha_{j} s_{j}(T)
$$

is a unitarily invariant norm and is called the generalized spectral norm.
In Ref. [8], Arlinskii proved that for all connections $\sigma$

$$
\|A \sigma B\|_{p} \leqslant\|A\|_{p} \sigma\|B\|_{p}
$$

for all $p$-norms. We shall extend this inequality for all unitarily invariant norms. We need some lemmas.

Lemma 3.1. Let $A, B \in \mathscr{P}(H)$ and let $\sigma$ be a connection. Then

$$
\langle(A \sigma B) x, x\rangle \leqslant\langle A x, x\rangle \sigma\langle B x, x\rangle
$$

for all $x \in H$.
Proof. Let $A, B \in \mathscr{P}(H)$ and $x \in H$. Using the fact that an operator monotone function $f$ on $(0, \infty)$ can be represented as an integral

$$
f(s)=a+b s+\int_{0}^{\infty}(1+t) \frac{s}{t+s} \mathrm{~d} \mu(t)
$$

where $a, b \geqslant 0$ and $\mu$ is a finite positive measure, one can show

$$
A \sigma B=a A+b B+\int_{0}^{\infty} \frac{1+t}{t}\{(t A): B\} \mathrm{d} \mu(t)
$$

(see Ref. [13], Theorem 3.4 for details). Therefore

$$
\begin{aligned}
\langle(A \sigma B) x, x\rangle & =a\langle A x, x\rangle+b\langle B x, x\rangle+\int_{0}^{\infty} \frac{1+t}{t}\langle((t A): B) x, x\rangle \mathrm{d} \mu(t) \\
& \leqslant a\langle A x, x\rangle+b\langle B x, x\rangle+\int_{0}^{\infty} \frac{1+t}{t}\{t\langle A x, x\rangle:\langle B x, x\rangle\} \mathrm{d} \mu(t) \\
& =\langle A x, x\rangle \sigma\langle B x, x\rangle
\end{aligned}
$$

using that $\langle(C: D) x, x\rangle \leqslant\langle C x, x\rangle:\langle D x, x\rangle$ for $C, D \in \mathscr{P}(H), x \in H$, [3].

The following lemma is known as Fan Maximum Principle and can be found in Ref. [10].

Lemma 3.2. Let $A \in \mathscr{L}_{+}(H)$. Then for $k=1,2, \ldots, n$,

$$
\sum_{j=1}^{k} \lambda_{j}(A)=\max \sum_{j=1}^{k}\left|\left\langle A x_{j}, y_{j}\right\rangle\right|,
$$

$\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$, where the maximum is taken over all choices of the orthonormal vectors $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$.

Lemma 3.3. Let $h: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$be non-decreasing in each component, and let $A, B, C \in \mathscr{L}(H)$. If
$\|A\|_{\alpha} \leqslant h\left(\|B\|_{\alpha},\|C\| \|_{\alpha}\right)$
for all $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{+}^{n} ; \alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{n}$, then
$\||A|\| \leqslant h(\|B\|\|\|, C \| \mid)$
for all unitarily invariant norms $\||\cdot|| |$.
For a proof of the above lemma the reader may refer to ([12], Corollary 3.5.11).

Theorem 3.4. Let $A, B \in \mathscr{P}(H)$ and let $\sigma$ be a connection. Then

$$
\|A \sigma B\| \leqslant\|A\| \sigma\|B\|
$$

for all unitarily invariant norms $\|\mid \cdot\| \|$.
Proof. Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{R}_{+}^{n} ; \alpha_{1} \geqslant \alpha_{2} \geqslant \cdots \geqslant \alpha_{n}$. Choose orthonormal vectors $x_{1}, x_{2}, \ldots x_{n}$, such that, we have, for $k=1,2, \ldots, n$,

$$
\begin{aligned}
\sum_{j=1}^{k} \alpha_{j} \lambda_{j}(A \sigma B) & =\sum_{j=1}^{k} \alpha_{j}\left\langle(A \sigma B) x_{j}, x_{j}\right\rangle \\
& \leqslant \sum_{j=1}^{k} \alpha_{j}\left\{\left\langle A x_{j}, x_{j}\right\rangle \sigma\left\langle B x_{j}, x_{j}\right\rangle\right\} \\
& \left.\leqslant\left(\sum_{j=1}^{k} \alpha_{j}\left\langle A x_{j}, x_{j}\right\rangle\right) \sigma \sum_{j=1}^{k} \alpha_{j}\left\langle B x_{j}, x_{j}\right\rangle\right) \\
& \leqslant\left(\sum_{j=1}^{k} \alpha_{j} \hat{\lambda}_{j}(A)\right) \sigma\left(\sum_{j=1}^{k} \alpha_{j} \hat{\lambda}_{j}(B)\right)
\end{aligned}
$$

using Lemma 3.1, the inequality (2) and Fan Maximum Principle, respectively. Thus

$$
\|A A \sigma B\|\left\|_{x} \leqslant\right\| A\left\|\left\|_{\alpha} \sigma\right\| B\right\|_{x} .
$$

The function $h: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}$defined by $h(s, t)=s \sigma t$ is non-decreasing in each component. Consequently, by Lemma 3.3
$\||A \sigma B|\| \leqslant\||||||\sigma|| B| \|$.

Corollary 3.5. Let $f$ be a positive operator monotone function on $(0, \infty)$. Then

$$
\|f(T)\| \leqslant\|I\| \| f\left((\|I\| \|)^{-1}\|\mid T\|\right)
$$

for all unitarily invariant norms ||| ||| and for all $T \in \mathscr{P}(H)$.
Proof. Taking $A=1, B=T$ and $\sigma$ to be the connection corresponding to the operator monotone function $f$ and then using representation (1), we get the desired result.

For related subjects see Refs. [2,4,6,7,9,11,15-16].

## Acknowledgements

The author is thankful to the referees for valuable comments and suggestions.

## References

[1] W.N. Anderson Jr., R.J. Duffin, Series and parallel addition of matrices, J. Math. Anal. Appl. 26 (1969) 576-594.
[2] W.N. Anderson, Jr., T.D. Morley, G.E. Trapp, Ladder networks, fixpoints, and the geometric means, Cir. Sys. Sig. Proc. 3 (1983) 259-268.
[3] W.N. Anderson Jr., G.E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975) 60-71.
[4] W.N. Anderson Jr., G.E. Trapp, Operator means and electrical networks, in: Proceedings of the IEEE International Symposium on Circuits and Systems 1980, pp. 523-527.
[5] T. Ando, Topics on Operator Inequalities, Lecture notes, Hokkaido University, Sapporro, 1978.
[6] T. Ando, Fixed points of certain maps on positive semidefinite operators, Funct. Anal. Appro. ISNM 60 (1981) 29-38.
[7] T. Ando, Comparison of norms $\|\mid f(A)-f(B)\|$ and $\|\mid f(|A-B|)\| \|$. Math, Z. 197 (1988) 403-409.
[8] Yu.M. Arlinskii, On the theory of operator means, Ukrain Mat. Zh. 42 (1990) 723-730.
[9] J.S. Aujla, Some operator equalities involving connections and means, Linear Alg. Appli. 259 (1997) 223-228.
[10] R. Bhatia, Matrix Analysis, Springer, Berlin, 1997.
[11] R.A. Horn, C.R. Johnson, Hadamard and conventional submultiplicativity for unitary invariant norms on matrices, Linear Multilinear Alg. 20 (1987) 91-106.
[12] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
[13] F. Kubo, T. Ando, Means of positive linear operators, Math. Ann. 240 (1980) 205-224.
[14] C.-K. Li, N.-K. Tsing, The generalized spectral radius, numerical radius and spectral norm, Linear Alg. Appli. 16 (1984) 215-237.
[15] R. Mathias, Concavity of monotone matrix functions of finite order, Linear Multilinear Alg. 27 (1990) 129-138.
[16] T.D. Morley, Parallel summation, Maxwell's principle and the infimum of projections, J. Math. Anal. Appl. 70 (1979) 33-41.
[17] K. Nishio, T. Ando, Characterizations of operations derived from network connections, J. Math. Anal. Appl. 53 (1976) 539-549.

