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Abstract

There is one to one correspondence between positive operator monotone functions
on (0, o0) and operator connections. For a symmetric connection o, it is proved that the
map X — (40X)o'(BoX) from positive operators on a Hilbert space to itself, has a
unique fixed point. Here ¢! denotes the dual of o. It is also proved that
llAeBl)| < |||4|ll o }i| B||| for all unitarily invariant norms ||| - ||| and for all positive
operators 4,B.  © 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

Throughout H denotes the complex Hilbert space C*, n € N. #(H) is the
space of bounded linear operators on H, while ¥, (H) is the cone of positive
semidefinite operators on H and 2(H) is the cone of positive operators on H.

The study of operator means began with the work of Anderson and Duffin
[1]. They first studied the arithmetic and harmonic means and proved the ar-
ithmetic-harmonic inequality. Ando [5] defined the geometric mean and
proved the arithmetic—geometric inequality. The axiomatic theory for con-
nections and means for pairs of positive operators has been developed by
Nishio and Ando [17] and Kubo and Ando [13]. Let 4,B,C, ..., denote ele-
ments of .¥_(H). An operator connection ¢ is a binary operation on ¥ (H)
satisfying the following axioms:
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Monotonicity
AL C,BLD imply AeB<CoD,
Transformer inequality
C(AegB)C < (CAC)a(CBC),
Upper continuity
A, | A and B, | B imply(4,0B,) | (4eB).
A mean is a connection with normalization condition
Iol = 1.

Kubo and Ando [13] showed the existence of an affine order isomorphism
between the class of connections and the class of positive operator monotone
functions on R.. This isomorphism ¢ < f is characterized by the relation

AcB = AV f(47'7BA' )42 (1)
for A, B € #(H). The operator monotone function f is called the representing
function of ¢. The following inequality holds.

Let 4,B,C,D € #(H). Then for any connection o,
(A+ C)a(B+ D) = (46B) + (CoD). (2)
The transpose ¢’ of a connection ¢ is defined by
Ad'B = BaA.
For a connection ¢ its dual ¢+ is defined by
Ac'B= (B 'eA™")",

A,B € Z(H). If f is the representing function of ¢ then f/(f) = tf(¢') is the
representing function of ¢’ and f1(¢) = ¢(f(r))”" is the representing function of
ot. A connection ¢ is called symmetric if ¢/ = ¢ and is called selfdual if 6% = 5.

The operator mean corresponding to the operator monotone function
t — t'/2 is called the geometric mean and is denoted by #. For 4, B € #(H),
their parallel sum is defined by

A:B=(4"+8")".

In his unpublished thesis F. Kubo considered the following problem.
Given a pair ¢, 1 of operator means and 4, B € #(H), define a map 8 by

0(X) = (4doX)1(BaX),
X € Z(H). Then the iterates converges to a fixed point of §

lim 0"<A—+—B) = lim ¢ (2(4: B))

n—00 2

which is a unique fixed point among X’s such that X > c(4: B) for some ¢ > 0.
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In Ref. [8], Arlinskii proved that A48 is the unique fixed point of the map
X —>Ad+X):(B+X).

The operator connections : and + are symmetric and are duals of each other. In
Section 2, we shall prove a generalization of this result for all symmetric
connections. Our Theorem 2.5 gives a characterization of symmetric connec-
tions. In Section 3, we shall prove that for all connections ¢ and for all unitarily
invariant norms {|| - |||,

[14aBIll < [l 4lll & il Bl
for 4,B € #(H).

2. A fixed point theorem

Theorem 2.1. Let 6 be a symmetric connection and let A,B € P(H). Then A#B is
the unique fixed point of the map ®,p5 : P(H) — P(H) defined by

®,5(X) = (40X)o' (BoX),
X € 2(H).
Proof. Let f/ be the representing function of o. We shall prove that 4#B is a

fixed point of @, 5, that is, @4 (44B) = A#B. Indeed, using the representation
(1), we have

D, 5(A#B) = [Ac(A#B)]|o* [Ba(A#B)]

= [4"2f (472 (A#B) A1) 42| o B2 F (B '/”Z(A#B)Bvl/z)Buz]

— (A2 F(A7P(A#B) A A e (B2 f (B (B#A)Bf]/l)Bl/Z]

= [AI/Z (4~ 12B4- 1/» 1/7 w] L[Bl/lf( ]/2AB“1/2)'/2)B‘/2]

:A'/z[{f((A"/zBA 1/2)'/7)}0L{A 1/231/2f(( ﬁl/zABfl/z)1/2)31/314_1/2}]141/2‘

(*)

Now

{f((A—l/ZBA—l/Z)l/Z)}GJ_{A—-l/ZBl/Zf((B—lﬂAB—l/Z)l/Z)B]/zA_l/z}

= {f((A‘l/zBA"/z)l/2 }GL{A‘]/ZBI/Z(IU( -l/ZAB—l/Z)l/Z)Bl/ZAAl/z}

= {f((4712BA7%) )} o {(47 " 2BA o (471 2 (BHA) A1)}

= {((472B4712) )} {(47 PBAT' ) o472 (atB) A1)}

:{_f((A~l/2BA4/2)1/2)}ai{( l/lBA—l/Z)o.(Avl/ZBAﬁl/Z)1/2}

— {f((A~]/2BAwI/2)1/2)}0__L{(A ”“BA 1/2)]/2[(A_]/ZBA_I/Z)I/Z)()’I]}
= /(47 BA7) ) g (47 2BAP) P 1412 BA ) )
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= {f((47'2BA7' ) ) o (471 2BAT ) P (471 2BATY )
:f((A"/zBA’”Z)'/2)[Iol{(A"/ZBA“/Z)l/Z]
:f((A—l/ZBA—l/2)1/2)fL((A—l/ZBA—l/Z)1/2)
— f((A*]/ZBA"/Z)I/Z)(A"/zBA’l/z)'/z[f((A"/zBA"/z)l/z)]fl
_ (A”/ZBA‘I/z)I/z.

Thus it follows from (+) that
@, p(A#B) = A#B.

To prove the uniqueness, we need the following lemma.

Lemma 2.2. Let A,B € 2(H) and o be a symmetric connection. Then
(Aol)o*(Bol) =1 (3)

if and only if B = A",

Proof. Observe that if B = A~! then A#B8 = I and hence (3) follows from the

proof given in above theorem. Conversely, suppose (3) holds. Let f be the
representing function of 6. Then

f(A)atf(B) =1,
which implies
(f(4))'o(/(B) " =1.
Thus
S 2 (8)7 (£(4)?) = f(4).

Since a non-constant operator monotone function is strictly increasing and
hence is one to one. Thus for a non-constant operator monotone function g,
g(C) = g(D), implies C = D. The function f is non-constant operator mono-
tone, we have from the above equality

FAN 2B (FAa)'? = 4,

which implies
f(B)=4""f(4). (4)
Now using that f(r) = ¢f(¢""), we have
AT (4) = f47).
Thus from Eq. (4), we get
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f(B)y=f(A"),
which further implies
B=4" O

Proof of uniqueness. Suppose @,p(X) =X, X € #(H). We shall prove that
X = A#B. We have

(46X)o' (BoX) = X,
which implies

X'P{(x V2 ax " elyo {(X2BX Vel X = X,
SO

(X'7Pax " )allo (X 2BXP)al] = .
Therefore, by Lemma 2.2,

x\2gx 12 = [X~1/2AX—1/2]—1'
Consequently,

(XVPAX T #(XVPBXT) =1
Hence

X = A#B,

which completes the proof. [

Corollary 2.3 ([8], Theorem 2). Let A, B € Z(H). Then the maps
vy YE s P(H) = PH)
defined by
Pip(X) = (4 +X): (B+X)
and
P (X) = (4:X) + (B: X)
have the unique fixed point A#B.
Remark 2.4. Theorem 2.1 need not be true if ¢ is not symmetric. Indeed, if o is

the operator mean corresponding to the operator monotone function /() = I,
then

X — (doX)o—(BoX) =B
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is a constant map. If f(¢) = ¢ then
X — (4doX)o'(BaX) = X,
so every point of this map is a fixed point. Infact our next result gives a

characterization of the symmetric connections.

Theorem 2.5. Let A, B € #(H) and let a be a connection. Then o is symmetric if
and only if A#B is the unigue fixed point of the map @45 : P(H) — P(H)
defined by

@, 3(X) = (AdoX)a* (BoX),
X € #(H).
Proof. Suppose A#B is the unique fixed point of &,p. Therefore, for
X,Y € #(H)

(Xol)o'(Yal) =1 implies Y =X"!.

Let g be the representing function of ¢+. Note that g is non-constant operator
monotone function. Let ¢ > 0. Then

(tel)a*(t 'ol) = 1
= (g(t") et (g()) ! =1
= g((g() 'g(c™") =g(t™)
= (g(0) gty =1
= g(t) =1g(c™").

Thus ¢+ is symmetric and hence ¢ is symmetric. The other part of the theorem
is Theorem 2.1. O

3. A norm inequality

For an operator 4 € #(H), its singular values are denoted by s5,;(4) and its
eigen values are denoted by 4,(4). The Schatten p-norms on #(H) are defined as

Il = [Ser]”, 1<p<oo

4l = 4] = 51 (4),

A€ Z(H).

A norm ||| - ||| on £(H) is called symmetric or unitarily invariant, if ||| 4]|| =
IlUAV||| for all 4 € #(H) and for all unitary operators U,V € £(H). The
operator norm || - || and the Schatten p-norms are such norms. A basic property
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of the unitarily invariant norms is that they are symmetric gauge functions of
the singular values of the operator. For a positive operator T its singular values
are the same as its eigen values. Let T € ¥(H) and let its singular values be
enumerated as

si{T) 2 5:(T) = -+ 2 5,(T).

The generalized spectral norms have been introduced in Ref. [14].
Let o = (2),0,...,%,) € R} be such that ; > %, > --- > «,. Then

n

I Tll= " as,(T)

=1
is a unitarily invariant norm and is called the generalized spectral norm.
In Ref. [8], Arlinskii proved that for all connections o

408l < [l4li, o 1B,

for all p-norms. We shall extend this inequality for all unitarily invariant
norms. We need some lemmas.

Lemma 3.1. Let A, B € P(H) and let ¢ be a connection. Then
{(AoB)x,x) < {Ax,x)o(Bx,x)
forallxe H.

Proof. Let 4, B € #(H) and x € H. Using the fact that an operator monotone
function / on (0, 00) can be represented as an integral

s
= b: 1+ 1) — du(r),
fls) = b+ (140 dul)
0
where a,b = 0 and p is a finite positive measure, one can show

1
AoB =aAd + bB + /—%{(tA):B} du(r).
D
(see Ref. [13], Theorem 3.4 for details). Therefore

x

{((AaB)x,x) = a{dx,x) + b{Bx,x) + /l—j——t {((z4): B)x,x) du(e)

<afdx,x) + b{Bx,x) + /—1# {#(Ax,x}: (Bx,x)} du(r)

= (4x,x)6(Bx,x),
using that {(C: D)x,x) < {(Cx,x): (Dx,x) for C,D € #(H),x € H,[3]. O
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The following lemma is known as Fan Maximum Principle and can be found
in Ref. [10].

Lemma 3.2. Let A € & (H). Then fork=1,2,...,n,

k &
> 24y = max Y | {dx; ) |,
=1 =1
A== o = A, where the maximum is taken over all choices of the ortho-
normal vectors {x\,xz, ..., X} and {y1,¥2, ..., Y }-

Lemma 3.3. Let 4 : Ri — R be non-decreasing in each component, and let
A,B,Ce YH). If

Al < A8 I Clllx)
Jorall o= (o), 00,...,0,) ER; oy Z 000> -+ = oy, then

1411 < ACIBILCID

for all unitarily invariant norms || - |||-

For a proof of the above lemma the reader may refer to ([12], Corollary
3.5.11).
Theorem 3.4. Let A, B € P(H) and let ¢ be a connection. Then
l4eBll|l < [ii4lll o I Bl

Jor all unitarily invariant norms ||| - ||| .

Proof. Let « = (o1, 02,...,0%) € Ri; 0 22 = -+ = «,. Choose orthonormal
vectors xj,Xxa,...x,, such that, we have, for k =1,2,... n,

S oy (408) = Y 1 ((AoB)x, )

Jj=1

< Za_,—{(ij,x,)o(Bx,-,xj)}

J=1

k k
< (Za,(Ax,,x,~))aZa,-(Bx,,x,))

Jj=1 =1

< (Ek:aj’lj(/f)) o (Zk:“j;?/(B)),

using Lemma 3.1, the inequality (2) and Fan Maximum Principle, respectively.
Thus
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4Bl <Il[4lllx o [l Bl -

The function 4 : Ri — R, defined by A(s, ) = sor is non-decreasing in each
component. Consequently, by Lemma 3.3

Il4aBll| <[4/l o [IIB]]] - O

Corollary 3.5. Let f be a positive operator monotone function on (0,00). Then

AN < W2 Acizin= iz

Jor all unitarily invariant norms || - ||| and for all T € P(H).

Proof. Taking 4 =/, B =T and ¢ to be the connection corresponding to the
operator monotone function /* and then using representation (1), we get the
desired result. OJ

For related subjects see Refs. [2,4,6,7,9,11,15-16].
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