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Abstract 

There is one to one correspondence between positive operator monotone functions 
on (0, w) and operator connections. For a symmetric connection a, it is proved that the 
map X --+ (AaX)a±(BaX) from positive operators on a Hilbert space to itself, has a 
unique fixed point. Here a ± denotes the dual of ~r. It is also proved that 
IhAaB[I ] ~< ]IIAII[ cr IUBIll for all unitarily invariant norms II1" Ill and for all positive 
operators A,B. © 1999 Elsevier Science Inc. All rights reserved. 

I. Introduction 

Throughou t  H denotes the complex Hilbert space C ", n E N. Lf(H) is the 
space o f  bounded  linear operators  on H, while Lf+(H) is the cone o f  positive 
semidefinite operators  on H and .~(H) is the cone o f  positive operators  on H. 

The study o f  opera tor  means began with the work of  Anderson  and Duffin 
[1]. They first studied the arithmetic and harmonic  means and proved the ar- 
i thmet ic -harmonic  inequality. A n d o  [5] defined the geometric mean and 
proved the ar i thmet ic-geometr ic  inequality. The axiomatic  theory for con- 
nections and means for pairs o f  positive operators  has been developed by 
Nishio and A n d o  [17] and K u b o  and A n d o  [13]. Let A,B,  C , . . . ,  denote ele- 
ments o f  d _ ( H ) .  An  opera tor  connect ion a is a binary operat ion on ~ + ( H )  
satisfying the following axioms: 
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Monotonici ty  

A~<C,B~<D imply AaB<~CaD, 

Transformer inequality 

C(A B)C (CAC) (CBC), 

Upper continuity 

A, + A and B, + B imply(A,aB,) ~ (AaB). 

A mean is a connection with normalization condition 

lcrI -~ I. 

Kubo and Ando [13] showed the existence of  an affine order isomorphism 
between the class of  connections and the class of  positive operator monotone 
functions on l~+. This isomorphism a ~ f is characterized by the relation 

A~B = A 1/2f(A-J/2BA-l/Z)A l/2 (1) 

for A, B E ~ (H) .  The operator monotone function f is called the representing 
function of  ~r. The following inequality holds. 

Let A, B, C, D E ~ (H) .  Then for any connection a, 

(A + C)a(B + D) >~ (AaB) + (CAD). (2) 

The transpose a' of  a connection a is defined by 

Aa'B = BaA. 

For a connection a its dual a z is defined by 

Aa±B = (B-Io-A-1) -l,  

A , B  E .~(H). I f f  is the representing function of a then f ' ( t )  = t f ( t  - j )  is the 
representing function of  a' and f ± ( t )  = t ( f ( t ) )  -~ is the representing function of  
a ±. A connection a is called symmetric if a' = a and is called selfdual if a ± = a. 

The operator mean corresponding to the operator monotone function 
t ~ t 1/2 is called the geometric mean and is denoted by # .  For  A, B E ~@(H), 
their parallel sum is defined by 

A : B  = (A - l  + B - I )  -I . 

In his unpublished thesis F. Kubo considered the following problem. 
Given a pair a, ~ of  operator means and A, B E ~ (H ) ,  define a map 0 by 

o(x) = (AaX) (BaX), 

X E ~ (H) .  Then the iterates converges to a fixed point of  0 

lim 0" ( ~ - ~ )  = lim 0"(2(A:B)) 
n ~ o o  n ~ o c  

which is a unique fixed point among X's such that X >>. c(A: B) for some c > 0. 
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In Ref. [8], Arlinskii proved that A # B  is the unique fixed point of the map 

X ~ (A + X ) : ( B + X ) .  

The operator connections : and + are symmetric and are duals of each other. In 
Section 2, we shall prove a generalization of  this result for all symmetric 
connections. Our Theorem 2.5 gives a characterization of  symmetric connec- 
tions. In Section 3, we shall prove that for all connections a and tbr all unitarily 
invariant norms [l[' Ill, 

I[IA~Blll ~< IllAl[I ~lllBl[[ 
for A, B E JY(H). 

2. A fixed point theorem 

Theorem 2.1. Let a be a symmetric connection and let A, B ¢ ~(H) .  Then A # B  is 
the unique f ixed  point o f  the map ~A,, : ~ ( H )  -~ ,~(H) defined by 

~A,8(X) = (AaX)a±(B~X),  

x ~ ~(H). 

Proof. Let f be the representing function of a. We shall prove that A # B  is a 
fixed point of ~A,B, that is, CbA,8(A#B) = A#B .  Indeed, using the representation 
(1), we have 

~A.B(A#B) = [AG(A#B)]a±[Ba(A#B)] 

= [A'/2f(A-I/2(A#B)A-I/2)A'/2]o.±[BI/2f(B '/2(A#B)B-'/Z)BI/2 ] 

: [AI/2f(A-I/2(A#B)A-I/2)A1/2]~±[B1/2f( B I/2(B#A)B-I/2)B1/2 ] 

= [A1/2f((A 1/2BA-I/2)'/2)A'/Z]a±[B'/2f((B-"/2AB-1/2)'/Z)BI/2 ] 

= AI/2[{T((A I/2BA-I/2)'/2)}a±{A '/2B'/Zf((B-'/2AB I/2)'/2)BI/2A-I/Z}]AI/~-" 

Now 

{f((A-l/28A '/2)'/2)}~l{A-I/2~'/Ef((B ,/2;B-,/2)'/2)8,/2A-I/2 } 
= {f((A-~/2BA-'/2)'/2)}a±{A-'/2BI/Z(I~(B-I/2AB-1/z)'/2)BI/2A-,/2 } 

= {f((A-I/2BA-'/2)I/2)}~±{( A '/2BA-I/2)~(A-'/Z(B4CA)A-'/2)} 

= {f((A '/2BA-'/z)'/2)}a={(A-I/2BA-'/2)~(A-'/~(A#B)A-'/2)} 
= {f((A-'/2BA '/2)'/2)}a±{(A-'/ZBA 1/2)~(A-I/2BA-1/2)I/2 } 
= {T((A-'/2BA-'/z)'/2)}a±{( A '/2BA 1/2)'/2[(A-'/2BA-¿/2)'/2)aI] } 
= {f((A-'/ZBA-'/2)I/2)}a±{(A-'/2BA-'/2)'/2[Io(A-,/2BA-,/2)'/2]} 

(,) 
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= {f((A- ' /2BA-1/z)I /2))a±{(A I/2BA-'/2)l/2f((A '/2BA-'/2)'/2)} 

= f ( (A-I /2BA l/2)'/2)[la±{(A 1/2BA-I/2)'/2 ] 

= f ( (A- ' /2BA '/2)'/2)f±((A-'/2BA-I/2)'/2 ) 

= f ( ( A  '/2BA-'/2)1/2)(A-I/2BA I/2)'/e~C((A-'/2BA-I/2)'/2)] I 

= (A I/2BA-1/2)1/2. 

Thus it follows from (*) that 

• A B(A#B)  = A # B .  

To prove the uniqueness, we need the following lemma. 

Lemma 2.2. Let A, B E :~(H) and ~ be a symmetric connection. Then 

(A~l)a ± (B~I) = I (3) 

i f  and only i f  B = A -l . 

Proof. Observe that if B = A -1 then A # B  = 1 and hence (3) follows from the 
proof  given in above theorem. Conversely, suppose (3) holds. Let f be the 
representing function of a. Then 

f ( A ) a ± f ( B )  = I, 

which implies 

(f(A)) = z .  

Thus 

f ( ( f ( A) )  ' /2( f (B))- '  ( f (A))  '/2) = f ( A ) .  

Since a non-constant operator monotone function is strictly increasing and 
hence is one to one. Thus for a non-constant operator monotone function g, 
g(C) = g(D), implies C = D. The function f is non-constant operator mono- 
tone, we have from the above equality 

( f (A)) l t2( f (B)) - I  ( f (A))  '/2 = A, 

which implies 

f ( B )  = A - ' f  (A). (4) 

Now using that f ( t )  = t f ( t - l ) ,  we have 

A - ' f ( A )  = f ( A - ' ) .  

Thus from Eq. (4), we get 
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f ( B ) =  f ( A  1), 

which further implies 

B = A  -1" [5] 

113 

Proof of uniqueness. Suppose ~A.8(X) = X,  X E ~(H).  We shall prove that 
X = A4CB. We have 

(A~X)~: (B~X) = X, 

which implies 

x'/2[{ (x  '/2AX-'/2)~I}~I { (X-'/2~X '/2)~I}]X '/2 = x ,  

s o  

[(X-'/2AX '/2)aI],:[(X-1/zBX 1/2)ai] = I. 

Therefore, by Lemma 2.2, 

X - I / 2 B X  1/2 : [X-I/2AX-I/2]-I. 

Consequently, 

(X lnAX l n ) # ( X  I/2BX -In)  = I. 

Hence 

x = A # B ,  

which completes the proof. [] 

Corollary 2.3 ([8], Theorem 2). Let A, B E ~(H).  Then the maps 

t/j(1, i//(2) :~(H) -~ ~(H) 
,4,B ~ A.B : 

defined by 

7u!~I~(X) = (A +X): (B +X) 

and 

~,)~(x) : (A: X) + (B:X) 

have the unique f ixed point A#B.  

Remark 2.4. Theorem 2.1 need not be true if o is not symmetric. Indeed, if a is 
the operator mean corresponding to the operator monotone function f ( t )  = 1, 
then 

X ~ (AaX)o:(BoX)  = B 



114 J. Singh Aujla I Linear Algebra and its Applications 290 (1999) 109 118 

is a constant map. I f  f (t) = t then 

X --+ (AoX)a±(BaX)  = X ,  

so every point of  this map is a fixed point. Infact our next result gives a 
characterization of  the symmetric connections. 

Theorem 2.5. Let  A, B E ~ ( H )  and let a be a connection. Then a b symmetric i f  
and only i f  A # B  is the unique f i xed  point o f  the map 4~A,B : ~ ( H )  -+ ~ ( H )  
defined by 

• A ~ ( x )  = ( A ~ X ) ~  (B~X),  

x ~ ,~(H). 

Proof. Suppose A # B  is the unique fixed point of  ~bA.B. Therefore, for 
x ,  Y ~ .~(H) 

( X a l ) ~ l ( Y a I )  = I implies Y = X  i. 

Let g be the representing function of a ±. Note that g is non-constant operator  
monotone  function. Let t > O. Then 

(tal)~r±(t l a l ) =  1 

( g ( t - l ) ) - l a l ( g ( t ) )  - l =  l 

g ( (g ( t ) ) - lg ( t - l ) )  = g(t  l) 

(g( t ) ) - Ig( t  - l )  = t 1 

g(t) = tg(t- ' ) .  

Thus a ~ is symmetric and hence a is symmetric. The other part  of  the theorem 
is Theorem 2.1. [] 

3. A norm inequality 

For  an operator A E 5°(H), its singular values are denoted by ss(A ) and its 
eigen values are denoted by 2j(A). The Schat tenp-norms on L~(H) are defined as 

Fx--~ 1 p l/p 
IIAll, = j , 1 < 2 ,  

]JAIl ~ = IIAII = s , ( A ) ,  

A ~ ~ ( n ) .  
A norm ]]l " ill on 5~°(H) is called symmetric or unitarily invariant, if IlIA []] = 

I][UAVI[ [ for all A 6 5a(H) and for all unitary operators U, V C LP(H). The 
operator  norm II • ]] and the Schatten p-norms are such norms. A basic property 
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of  the unitarily invariant norms is that they are symmetric gauge functions of 
the singular values of the operator. For a positive operator T its singular values 
are the same as its eigen values. Let T E 5¢(H) and let its singular values be 
enumerated as 

s, ( r )  > s_,(v) > . . .  >/s , , (T) .  

The generalized spectral norms have been introduced in Ref. [14]. 
I t  Let ~ = ( :q ,~2 , . . . ,~ , )  E ~+ be such that ~l ~> ~2 ~> "'" /> ~,,. Then 

t l  

i- :  I 

is a unitarily invariant norm and is called the generalized spectral norm. 
In Ref. [8], Arlinskii proved that for all connections ~r 

IIA~BII,, ~< IIAHp ~ [[Bllp 

for all p-norms. We shall extend this inequality for all unitarily invariant 
norms. We need some lemmas. 

Lemma 3.1. Let A, B E ~(H) and let cz be a connection. Then 

{(AaB)x,x) <~ (Ax, x)a(Bx, x) 

for all x E H. 

Proof. Let A, B E g2(H) and x E H. Using the fact that an operator monotone 
function f on (0, oc) can be represented as an integral 

f(s) = a + bs + (1 + t) t ~ s  d/~(t), 
0 

where a, b ~> 0 and p is a finite positive measure, one can show 

A~B = aA + bB + ~f ~ - { ( t A ) : B }  tilt(t). 

0 

(see Ref. [13], Theorem 3.4 for details). Therefore 
~ c  

((AaB)x,x) = a(Ax, x I + b(Bx, x) + / ~ - ( ( ( t A ) :  B)x,x I d~,(t) 

0 
o c  

<~ a(Ax:x) + b(Bx, x) + / ~ -  {t(Ax, x): (Bx, x) } dp(t) 

0 

= (Ax,  x ) ,  

using that ((C:D)x,x) <<. (Cx, x): (Dx,x) for C,D E/~(H),x E H, [3]. [] 
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The following lemma is known as Fan Maximum Principle and can be found 
in Ref. [10]. 

Lemma 3.2. Let  A E 5F+ (H). Then for  k = 1 , 2 , . . . ,  n, 

k k 

~-~2j(A) = max ~ - ~ l ( A x j , y j ) I ,  
./ l j 1 

21 >~ 22 >~ " "  >- 2,, where the max imum is taken over all choices o f  the ortho- 
normal vectors {xl,x2, . . . ,xk } and {yl ,y2 , . . .  ,yk}. 

Lemma 3.3. Let  h : ~+ --~ ~+ be non-decreasing in each component, and let 
A, B, C E S ( H ) .  I f  

IIIAIII~, ~< h(lllBIrl=,lllCtll~,) 
for all ~ = ( ~ 1 , ~ 2 , . . .  ,~,,) E I ~ ;  oq ~> oc2 ~> . . .  >~ ~,,, then 

IIIAIII ~< h(ll lBlll ,  lllClll) 

f o r  all unitarily invariant norms ]H" Ill- 

For  a p roo f  of  the above lemma the reader may refer to ([12], Corol lary 
3.5.11). 

Theorem 3.4. Let  A, B E ~ ( H )  and let ~ be a connection. Then 

IIIAo8111 ~< IllAlll ,~ IIIBIII 
f o r  all unitariZy invariant norms Ill" III. 

Proof.  Let ~ = (~l, c~2,..., ~,) E 1~+; ~l ~> ~2 /> ' "  /> ~,. Choose o r thonormal  
vectors x l , x~ . , . . . x , ,  such that, we have, for  k = 1 ,2 , . . .  ,n, 

k k 

i=J  j = l  

k 

<~ Z ~ j {  IAxj,xj)~(Bxj,xj) } 
j = l  

(± £ ,) <<. ~j(Axj,x~) )~ ~j(exi, xj 
\ i = l  i=1 / 

\ i= l  / 

inequality (2) and Fan  Maximum Principle, respectively. 

~< 

using Lemma 3.1, the 
Thus 
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IllAaBll]~ ~< I]IAI]]~ a IllBIll=. 

The  f u n c t i o n  h : ~2+ -~ ~+ def ined  by  h(s, t) = sat is n o n - d e c r e a s i n g  in each 

c o m p o n e n t .  C o n s e q u e n t l y ,  by  L e m m a  3.3 

IllA~B[l[ ~< IIIAlllallIBlll  • [] 

Corollary 3.5. Let f be a positive operator monotone funct ion on (0, cx~). Then 

IIIS(T)III ~< IIItlll f ( ( l l l I I l l )  1 IIITIll) 

Jor all unitarily invariant norms HI III and fo r  all T 6 ~ ( H ) .  

Proof .  T a k i n g  A = 1, B = T a n d  a to be  the c o n n e c t i o n  c o r r e s p o n d i n g  to the  
o p e r a t o r  m o n o t o n e  f u n c t i o n  f a n d  then  us ing  r e p r e s e n t a t i o n  (I) ,  we get the  

desired result .  [] 

F o r  re la ted subjects  see Refs. [2,4,6,7,9,11,15-16].  
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