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A b s t r a c t - - I n  this paper, we discuss the inverse scattering problem for a penetrable obstacle with 
an impenetrable rigid core. Using a generalization of Schiffer's method to nonsmooth domains (hu' 
to Ramm, we prove that the rigid core is uniquely determined by the far field patterns for a rant4e ,,f 
interior wavenumbers. @ 2000 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - I n v e r s e  obstacle scattering, Multilayered obstacle, Neumann boundary c(mditi(,n. 
Helmholtz equation, Green's theorem for nonsmooth domains. 

1. I N T R O D U C T I O N  

This  p a p e r  is concerned  wi th  the  uniqueness  of the  mul t i l ayered  obs tac le  inverse sca t t e r ing  I)rob- 

lem for acous t ic  waves for a pene t r ab l e  sca t t e re r  wi th  an i m p e n e t r a b l e  core. In  pa r t i cu la r ,  we 

cons ider  the  case where  the  core is rigid,  or sound-hard ,  i.e., the  N e u m a n n  b o u n d a r y  cond i t ion  

holds.  For  d iscuss ions  on o the r  t ypes  of b o u n d a r y  condi t ions ,  such as Dir ichlet  (soft) and  Robin  

( , impedance) condi t ions ,  and  re la ted  inverse sca t t e r ing  problems,  we refer to  [1 5]. 

For  the  ex is tence  and  uniqueness  of the  d i rec t  acoust ic  sca t t e r ing  p rob lem 1) 3" mul t i l aye red  

obs tac les ,  we refer to  [1,4,6-8]. Dassios deve loped  the  low-frequency t h e o r y  for acoust ic  s ca t t e r ing  

by a soft b o d y  [9] and  by  a pene t r ab l e  b o d y  wi th  e i ther  a soft or a rigid core [10]. T w e r s k y  

in [11] proved  rec ip roc i ty  and  sca t t e r ing  theo rems  for bo th  soft and  ha rd  obstacles ,  and  using 

low-frequency expans ions ,  he ob t a ined  the  leading t e r m  a p p r o x i m a t i o n  of the  real pa r t  of the  

s ca t t e r i ng  a m p l i t u d e  by  di rec t  app l i ca t ion  of the  sca t t e r ing  theorems.  

.However,  for the  inverse p rob lem for mul t i l aye red  obstacles ,  few resul ts  have been f(mnd. In 

~his paper ,  we s t u d y  whe the r  and  when the  core can be uniquely  de t e rmined  by the  far field 

l )a t t e rn  of  the  s ca t t e r ed  wave. 

2. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Cons ide r  a finite b o d y  ( the  sca t t e re r )  in R a wi th  C 2 b o u n d a r y  So. Let  $I be  the  57 .2 bou tMary  

of ano the r  such b o d y  ( the core) f~ lying en t i re ly  wi th in  the  sca t t e re r  S0 (So A SI = ¢). Deno te  

by l~+ the  region ex te r ior  to  So, and  f~- the  region be tween So and $1. 
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The time-independent scattering problem of a plane acoustic wave by the penetrable body So 
with the impenetrable rigid core S1 may be formulated as follows: 

A u ( x )  + k2u(x)  = O, x C ~+,  (1) 

A v ( x )  + k]v(x)  = O, x • ~ - ,  (2) 

u(z )  = v(x) ,  z • So, (3) 
Ou(x) _ ~ Or(x) 

0y 0~ ' x • S0, (4) 

Ov(x) 
- -  0 ,  X • S1 ,  (5 )  

0u 

where 3~v denotes the outward normal derivative. The constants k and k0 are called the exterior 
and interior wavenumbers, respectively, and the constant A, given by the ratio of the exterior 
(gt +) and interior ( f i - )  densities, is known as the jump parameter. 

The total field u in the region fi+ can be decomposed as 

u(x) = u~(x) + uS(x), 

where ui(x)  = e ikx'd is the incident plane wave with incidence direction d, and u s is the scattered 

wave. We assume that  u 8 satisfies the Sommerfeld radiation condition 

lira f Ou~ 2 r - ~  j s,. ~ - iku~ ds = O, 

where Sr is the sphere of radius r centered at 0. It follows that  the scattered wave has the 
asymptotic behavior 

u~(x)- Ixl ~ o ~ ( ~ )  + o  , Ixl ~ oo,  

uniformly in all directions 2 = x / I x  1. The function uoo defined on the unit sphere S ~ is known 
as the far  field pattern or scatterin 9 amplitude. To emphasize the dependence of uoo on the 
incidence direction d and interior wavenumber k0, we also denote it by uoo(., d, k0). 

The well-posedness of the boundary value problem (1)-(5) using integral equation methods is 
discussed in [1,4]. Our result is the following. 

THEOREM 2.1. For the boundary value problem (1) (5), let the scatterer So and the exterior 

wavenumber k be fixed. Suppose that there are two rigid cores ~1 and f~2 which lead to the same 
far field pattern ui(. ,d,  ko) for a given incident wave for any interior wavenumber ko • [a,b], 

0 < a < b. Suppose also that ui( ., d, k0) ¢ ui( -, d, k0) for ko ¢ k0- Then the two cores f~l and f~2 
coincide, i.e., 

~i - ~2. 

3.  P R O O F  

Our proof is inspired by a paper by Ramm [12] which uses a generalization of Schiffer's method. 
A main ingredient is a nonsmooth version of Green's theorem. First, we define a notion of (weak) 
solutions to (1)-(5) for nonsmooth domains. 

2 I DEFINITION 3.1. A function u e Hioc(gt ) A H I ( ~ )  is said to be a (weak) solution of (1)-(5) i f  
it satisfies (5) and 

/ a  (#VuV~a - ~2u~a) dx = O, V~a G Hl2oc N H I ( ~ ' ) ,  
p 
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where 
1, x E f~+, m2(x ) = . x E 

~(x)= ,~, x c f l - ,  Ak~, z ~ - ,  

~Y = R 3 \ ~ ,  H ~ H 2 and  H~ denote  the  usual Sobolev  spaces, and H l ( f ~ )  - H ~ (fY (~ B R )  

where BR is a ball centered at the  origin o f  suf ih ' ient ly  large radius  R. Note  that  this  defini t ion 

,toes no t  require am." smoo thnes s  on the boundary. 

We also use the  following notat ion:  

Pl  = 0~'~1, F2 = 6qf~2, [ '12 = 69Q12, r 12 = 6qQ12; 

Fit = F1 \ Q'2, F~ = F2 \ ~'~1; 
~-~1 is a connected componen t  of f~l \ f~12 and f~3 = ~~12 \ ~-~12. 

Now, suppose  (u a, v j ) ,  j = 1, 2, are solutions of (1)-(5)  cor responding to the cores f~a and haw, 

the same  far field pa t t e rn ,  i.e., uloo = u2~o. Then,  by Rellich's l e m m a  [6,8], 'ul -~ ,.2 in f~+. By 
the b o u n d a r y  condit ion (3), it follows from Holmgren ' s  uniqueness theorem [13] t ha t  

'UI(X ) ~ V2(X ) :~- V(x), 3: E ~ -  \ ~'~12. (G) 

T h e  f lmction V Call be  cont inued analytically,  as a solution to (2), to the domains  f~3 and ~ \ f t l 2  

because ei ther  Vl or v2 is defined in these domains  and solve (2) there.  Except  possibly on F1 ~qF2, 
V satisfies the  N e u m a n n  b o u n d a r y  condit ion (5) on the  bounda ry  F3 of Q3. However,  we note 
t ha t  [ '3 is in general  not  smooth ,  and indeed, not even Lipschitz.  Thus ,  to comple te  the  proof,  

we need the  general izat ion of Green ' s  formula  to domains  with nonsmoo th  b o u n d a r y  [12,14 -17]. 
Before we s ta te  this result,  we recall some relevant concepts.  

DEFINITION 3.2. The  space  B V ( D )  o f  funct ions  o f  bounded variation on D c R "  consis ts  o f  

locally integrable  func t ions  on l )  whose f irst-order part ial  derivatives,  in the  sense o f  dis tr ibut ions .  

are  (signed) measures  wi th  f ini te total  variation. 

DEFINITION 3.3. A set  D C R n is said to have f inite per ime te r  i f  the  characteris t ic  func'tion 

K(D) belongs to B V ( R ' ~ ) .  The  pe r ime te r  is then defined to be the  total  variation o f  V \ (D',,. 

Next ,  we need the notion of the  normal  to a nonsmoo th  boundary.  For fixed x, ~J c R ' ,  ~ # 0, 
we denote  

A i := {y :  + ( y -  x ) . v  > 0}, A ° := {y :  ( y - x ) .  v = 0}. 

DEFINITION 3.4. A unit  vector  v is a normal  to OlD at the  po in t  x ¢ 0D in the  sense o f  Federer 

i f  

lim P - ~ f n  (D A Bp(x )  A A +) = O, 
p~0 

l im p - n g n ( D '  N Bp(x )  A A - )  : O, 
p--+O 

where f~ is the  Lebesgue  measure  on R n, Bp (x )  is the  ball centered at  x wi th  radius p. and 
"I)' = R n \ :D. 

Using this,  we can define the  reduced bounda ry  to a nonsmoo th  domain  ID. 

DEFINITION 3.5. The  set  o f  po in t s  x E c9~ for which the  normal  in the  sense o f  Federer ex is t s  is 

oalled the  reduced boundary  o f  l )  and is denoted  by 0"I9. 

WTe recall the  following result.  

LEMMA 3.1. (See [18].) I[  a set  Z) has f ini te per ime te r  and the  boundary  0~) ha,~ full 

( rt - 1)-dimensional  Hausdor f f  measure,  then the normM in the  sense o f  Federer is defined a lmost  

,wer wvhere  on 07) udth respect  to the  (n - l ) -dimensional  Hausdor f f  measure.  



158 P . Y . H .  PANG AND G. YAN 

THEOREM 3.1.  GREEN'S  THEOREM FOR NONSMOOTH DOMAIN. (See [12].) Le t  ft3 be a domain 

with ~nite  per ime ter  and let ~ be a function de~ned on f~3 whose ~rst derivatives a r e  in the space 

B V  such that  their rough traces a re  summable  on the reduced boundary  F~ o f  f~3 with respect  

to the (n - 1)-dimensional Hausdorf f  measure. Then  we have 

/ a  V " ~ ( x ) d x =  f r  ~b(x)~(x)ds(x) ,  (7) 

where . (x)  is the normal on F~. 
To complete the proof, consider the function 

:=  VlV~'2 - V2VQ'I, (8) 

where V 3 is the solution of (2) corresponding to the interior wavenumber koj extended to the 
domain ~3 (see (6)). It is a standard result that  ft3 has finite perimeter. Also, as solutions to 
the Helmholtz equation in domains with smooth boundaries, Vj E Hl(~3)  and 

V '  ~) = V1A~'2 - V2AV1 = (k21 - ~;22) V1V2. (9) 

I t  fo l lows t h a t  VIV2 C Ll (F t3)  a n d  V • ~b is a s igned  m e a s u r e  on  f~3. W e  refer  t h e  r e a d e r  to  [12] 

to  check  t h a t  ~b has  a s u m m a b l e  r o u g h  t r a c e  on F~. 

H e n c e ,  by  T h e o r e m  3.1, 

7~ 3 

as Vj satisfies the Neumann boundary condition on the reduced boundary F~. This implies that  
the functions Vj corresponding to different interior wavenumbers koj are orthogonal in the Hilbert 
space L2(ft3). Now, by Rellich's lemma, as u¢( -, d, koj) are distinct, so are Vj. This contradicts 
the separability of L2(ft3). We conclude that  
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