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Abstract——In this paper, we discuss the inverse scattering problem for a penetrable obstacle with
an impenetrable rigid core. Using a generalization of Schiffer's method to nonsmooth domains due
to Ramm, we prove that the rigid core is uniquely determined by the far field patterns for a range of
interior wavenumbers. (© 2000 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

This paper is concerned with the uniqueness of the multilayered obstacle inverse scattering prob-
lem for acoustic waves for a penetrable scatterer with an impenetrable core. In particular, we
consider the case where the core is rigid, or sound-hard, i.e., the Neumann boundary condition
holds. For discussions on other types of boundary conditions, such as Dirichlet (soft) and Robin
{impedance) conditions, and related inverse scattering problems, we refer to [1 5].

For the existence and uniqueness of the direct acoustic scattering problem by multilayvered
obstacles, we refer to [1,4,6-8]. Dassios developed the low-frequency theory for acoustic scattering
by a soft body [9] and by a penetrable body with either a soft or a rigid core [10]. Twersky
in [11] proved reciprocity and scattering theorems for both soft and hard obstacles. and using
low-frequency expansions, he obtained the leading term approximation of the real part of the
scattering amplitude by direct application of the scattering theorems.

-However, for the inverse problem for multilayered obstacles, few results have been found. In
this paper, we study whether and when the core can be uniquely determined by the far field
pattern of the scattered wave.

2. FORMULATION OF THE PROBLEM

Consider a finite body (the scatterer) in R? with C? boundary Sp. Let S; be the C* boundary
of another such body (the core) Q lying entirely within the scatterer Sp (Sp N S| = ¥). Denote
by 9% the region exterior to Sp, and Q~ the region between Sy and S;.
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The time-independent scattering problem of a plane acoustic wave by the penetrable body Sy
with the impenetrable rigid core S; may be formulated as follows:

Au(z) + k*u(z) = 0, zeQt, (1)
Av(z) + kjv(z) = 0, reN, (2)
u(z) = v(z), z € Sp, (3)

0
a';(y"”) =\ g(f), z € Sp. (4)
(—‘9% =0, T €5y, (5)

where % denotes the outward normal derivative. The constants k and kg are called the exterior
and interior wavenumbers, respectively, and the constant A, given by the ratio of the exterior
(1) and interior (27) densities, is known as the jump parameter.

The total field u in the region QT can be decomposed as

u(z) = u'(x) + u’(x),

where u*(z) = e**%¢ is the incident plane wave with incidence direction d, and u* is the scattered

wave. We assume that u® satisfies the Sommerfeld radiation condition

2
ds =0,

8
lim —1ku®
700 Sr

14

where S, is the sphere of radius 7 centered at 0. It follows that the scattered wave has the

asymptotic behavior
(@) ‘”ik'z'{ @+o(a)h
u¥(z) = —— S U (Z) + — , z| — oo,
|| |z|

uniformly in all directions £ = z/|z|. The function us, defined on the unit sphere S? is known
as the far field pattern or scattering amplitude. To emphasize the dependence of uy, on the
incidence direction d and interior wavenumber kg, we also denote it by ue (-, d, ko).

The well-posedness of the boundary value problem (1)—(5) using integral equation methods is
discussed in [1,4]. Our result is the following.

THEOREM 2.1. For the boundary value problem (1)-(5), let the scatterer Sy and the exterior
wavenumber k be fixed. Suppose that there are two rigid cores 1 and Q) which lead to the same
far field pattern u'(-,d, ko) for a given incident wave for any interior wavenumber ko € [a, ],
0 < a < b. Suppose also that u*(-,d, ko) # u*(-,d, I~€0) for kg # ko. Then the two cores Qy and
coincide, i.e.,

Ql = QQ.

3. PROOF

Our proof is inspired by a paper by Ramm [12] which uses a generalization of Schiffer’s method.
A main ingredient is a nonsmooth version of Green’s theorem. First, we define a notion of (weak)
solutions to (1)—(5) for nonsmooth domains.

DEFINITION 3.1. A function u € HZ (') N HY(QY,) is said to be a (weak) solution of (1)~(5) if
it satisfies (5) and

/Q (uVuVep — k?up) dz =0, Vo € HE, N HYY),
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() { 1, ze€Qt, 2(2) {k‘z, reQt,
Ir) = KlT) =
# A zTEQ, M2, zeQ,

Q= R3\Q, H', H?_, and H} denote the usual Sobolev spaces, and H (V) = H' (' N Bg).
where Bp is a ball centered at the origin of sufficiently large radius R. Note that this definition
"oes not require any smoothness on the boundary.

where

We also use the following notation:
Ql‘z = Ql U QQ, le = Ql N Qz;
[y =80y, Ty = 00y, Ty = 009, ['1? = 0017
Fll = F] \Qg F: = Fz\Ql;
€1 is a connected component of Q5 \ 2'2, and Q3 = Q5 \ Q'2.
Now, suppose (u,,v;), j = 1,2, are solutions of (1)-(5) corresponding to the cores Q, and have
rhe same far field pattern, i.e., ujo = u200. Then, by Rellich’s lemma [6,8], u; = us in QF. By
the boundary condition (3), it follows from Holmgren’s uniqueness theorem [13] that

v (z) = velx) := V(x), e Q7 \ Q. (6)

The function V' can be continued analytically, as a solution to (2), to the domains 23 and Q~\ Q2.
because either vy or v2 is defined in these domains and solve (2) there. Except possibly on I'y 7Ty,
V satisfies the Neumann boundary condition (5) on the boundary T's of Q3. However. we note
that 23 is in general not smooth, and indeed, not even Lipschitz. Thus, to complete the proof,
we need the generalization of Green’s formula to domains with nonsmooth boundary [12,14-17].
Before we state this result, we recall some relevant concepts.

DEFINITION 3.2. The space BV (D) of functions of bounded variation on D C R" consists of
Jocally integrable functions on D whose first-order partial derivatives, in the sense of distributions.
are (signed) measures with finite total variation.

DEFINITION 3.3. A set D C R"™ is said to have finite perimeter if the characteristic function
(D) belongs to BV(R™). The perimeter is then defined to be the total variation of V(D).

Next, we need the notion of the normal to a nonsmooth boundary. For fixed z,v € R™, v # 0,
we denote
At ={y:+y—z)-v >0}, A ={y:(y—x) v=0}

DEFINITION 3.4. A unit vector v is a normal to 9D at the point x € D in the sense of Federer
if

lim p™"¢n (DN B,(z)nAT) =0,

s

111% p M, (D' N By(z)NA™) =0,
p—

where ¢, is the Lebesgue measure on R", B,(x) is the ball centered at x with radius p. and
D' = R"\D.

Using this, we can define the reduced boundary to a nonsmooth domain D.
DEFINITION 3.5. The set of points x € 0D for which the normal in the sense of Federer exists is
called the reduced boundary of D and is denoted by 3*D.

We recall the following result.
LeEMMA 3.1. (See [18].) If a set D has finite perimeter and the boundary dD has full

{n — 1)}-dimensional Hausdorff measure, then the normal in the sense of Federer is defined almost
evervwhere on 0D with respect to the (n — 1)-dimensional Hausdorff measure.
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THEOREM 3.1. GREEN’S THEOREM FOR NONSMOOTH DOMAIN. (See [12].) Let §23 be a domain
with finite perimeter and let 1 be a function defined on Q3 whose first derivatives are in the space
BV such that their rough traces are summable on the reduced boundary I'} of Q3 with respect
to the (n — 1)-dimensional Hausdorff measure. Then we have

V-plz)de = | P(z)v(z)ds(z), (7)
Qs r;

where v(x) is the normal on T'§.

To complete the proof, consider the function
P :=ViVVh — LV, (8)

where V) is the solution of (2) corresponding to the interior wavenumber ko; extended to the
domain Q3 (see (6)). It is a standard result that 23 has finite perimeter. Also, as solutions to
the Helmholtz equation in domains with smooth boundaries, V; € H'(€3) and

V. = VIAV, — VoAV; = (kd, — ki) ViVa. (9)

It follows that V1V, € L1(Q3) and V - 4 is a signed measure on {23. We refer the reader to [12]
to check that ¢ has a summable rough trace on I';.
Hence, by Theorem 3.1,

/ (ViAV, — VoAVY) dx = (k§, — kgy) / ViVedz =0, (10)
Q3 Q3

as V; satisfies the Neumann boundary condition on the reduced boundary I';. This implies that
the functions V; corresponding to different interior wavenumbers k; are orthogonal in the Hilbert
space L2(€13). Now, by Rellich’s lemma, as u'(-,d, ko;) are distinct, so are V;. This contradicts
the separability of L?(€23). We conclude that

Ql = Q.
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