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Abstract

In this contribution, the range extension problem of electric vehicles is addressed. To this aim, an intelligent cruise control is 
developed based on the formulation of an optimal control problem. Solutions of this optimal control problem are energy efficient 
accelerator pedal position profiles. They can be computed numerically by a direct optimal control method using sequential 
quadratic programming. The approach is applied to two different driving scenarios. The results show that the energy efficiency is 
increased by using optimal control for both an artificial and a realistic scenario.
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1. Introduction

Alternative drive technologies have gained more and more attention during the last years. This is mainly due to 
an increasing awareness of the impact of CO2 emissions on climate change and the limitation of fossil fuels. Thus, 
research focuses, for instance, on electrically powered vehicles. Up to now, electric vehicles (EV) suffer from a 
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severely reduced range compared to conventional internal combustion engine powered vehicles. Firstly, this is 
caused by the high battery cost and, secondly, by the limited lithium ion battery storage density. Therefore, 
strategies to increase the EV range without enlarging the battery play an important role for electromobility (cf. e.g. 
[1], [2]).

In this contribution, an „intelligent cruise control“ is designed to optimize the drivetrain power uptake by taking 
into account topographic information of a prescribed travel route. Standard cruise controls, which have been 
originally developed for fossil-fueled vehicles, have been adapted in a number of recent publications. In [3] and [4], 
for instance, model predictive control is used for reducing the fuel consumption of heavy diesel trucks on a known 
topography. It is shown that the variation of the vehicle’s velocity – within certain limits – has the potential to 
decrease the overall energy consumption. Applying this method to EVs allows for larger travel distances and 
thereby overcomes range anxiety or increases the energy available for comfort functions such as air conditioning.

The task of minimizing the energy consumption on a given route can be formulated as an optimal control 
problem with the aim to determine the accelerator pedal position profile with respect to minimum battery depth of 
discharge (DOD). Different methods exist to solve such optimal control problems: Indirect methods make use of the 
necessary optimality conditions from the Pontryagin Maximum Principle while direct methods are based on a 
discretization by which the problem is transformed into a nonlinear constrained optimization problem (cf. Section 3
for details). An overview of appropriate control strategies in the case of hybrid electric vehicles can be found in [5]. 
Constraints on thermal conditions are additionally taken into account in [6].

Various strategies have also been considered for EVs. In [7], the solution of the optimal control problem is 
computed by dynamic programming techniques. This method allows the computation of control sequences for 
arbitrary starting points. However, due to the nature of this method, it is restricted to low-dimensional problems. For 
the solution of a higher dimensional problem, an indirect method exploiting the special geometric structure of the 
EV model is used in [8].

In contrast to that, we evaluate the use of a direct optimal control method in combination with black-box
simulations for this application. In order to apply this method to the EV optimal control problem, we neglect the 
virtual driver (cf. Section 2) and directly compute an optimal solution for the accelerator pedal position profile by 
discretizing it with respect to time. In combination with the vehicle dynamics simulation model the optimal control 
problem is transformed into a nonlinear restricted optimization problem. This time discretized accelerator pedal 
position profile leads to a large number of optimization parameters. This optimization problem is solved using a 
standard sequential quadratic programming (SQP) method (cf. e.g. [9]). We then compute several solutions for 
different slope profiles and investigate the influence of different discretizations and initial guesses on the quality of 
the solution.

The remainder of this article is organized as follows: In Section 2, the simulation model of an EV is described. 
The direct numerical method which is used for the solution of the corresponding optimal control problem is 
described in Section 3. In Section 4, the specific optimal control problem based on the simulation model is 
formulated and solved by the direct method introduced before. Finally, a conclusion can be found in Section 5.
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2. Electric vehicle dynamics

2.1. Electric vehicle model

The central components of the chosen EV are the drivetrain (DT) and the high voltage (HV) battery (see Figure 
1). In this article, HV refers to the traction circuit voltage level and low voltage (LV) refers to the 12 V circuit
voltage level. The DT consists of two identical electric motors with an inverter attached to each of them. The 
simulation model is realized in MATLAB/Simulink. Basically, the model consists of an ideal PI controller which 
acts as a virtual driver, an electronic control unit (ECU) which holds the energy management and the pedal map, and 
the vehicle model (VM). The driver model requires a time dependent velocity profile ( ) such as the New 
European Driving Cycle (NEDC) as input (see Figure 2). The actuating variable is the accelerator pedal position 

which is transformed into a torque request by the ECU. To prevent a possible windup of the PI controller, 
conditional integration (clamping) has been used.

Fig. 1. Overview of electric vehicle components [10]. Fig. 2. Closed control loop with ideal PI controller.

The error (cf. Figure 2), which is the difference between the actual velocity and the desired velocity ,
serves as an input for the ideal PI controller. It has been designed with a proportional gain of 80 and an integral gain 
of 0.05. This closed loop control system is validated in Section 2.2. However, the optimal control problem will be 
formulated for the open loop system with as the control variable (cf. Section 4). The VM consists of the 
submodels electrical system (ES), DT and vehicle resistance forces (VRF). The ES covers the HV and LV 
consumers, the LV battery, the DC/DC converter and the HV battery (see Figure 1). A detailed description of the ES 
can be found elsewhere [10]. The DT is represented by a backward simulation model. The link between the 
mechanical system and the electrical system is realized via a look-up table (LUT) which holds the motor efficiency 
map as a function of torque and speed . The electric motor power , is related to the mechanical 
motor power , by

, = , [ ( , )] = [ ( , )] . (1)

Similar to the motors, the inverters are realized by a LUT incorporating the efficiency as a function of the 
effective output (phase) current . The inverter power is linked to , by (2). is calculated using , , the 
HV battery voltage , the constant power factor and the so-called (variable) modification factor . The 
additional factor 3/2 serves as conversion factor from DC to AC.= , [ ( )] , = ,  3/2 (2)

The VRF submodel contains the vehicle longitudinal dynamics as explained in detail in [10]. Here, ODEs 
describe the motion influenced by air drag, rolling resistance, grade resistance, and propulsion. 
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2.2. Model validation

In order to validate the simulation model, several test drives have been recorded and compared to the 
corresponding simulation results. The general procedure was to log the HV battery state of charge (SOC), the 
velocity, the motor torque, the motor current, the DC/DC current, and the ambient temperature. Furthermore, a GPS 
tracker was used to record topography data. The test drives have either been performed on a temperature-controlled 
dynamometer or on public roads with moderate weather conditions and very low wind speeds. On the dynamometer 
the NEDC has been used. Input data to the simulation were the SOC at the beginning, the mean DC/DC current to 
eliminate the influence of LV consumers, the mean environmental temperature and, if present, the altitude as well as 
the actual velocity of the EV.

In this article, we focus on the model validation with regard to the HV battery SOC, since it expresses the quality 
of the simulation concerning the consumption most significantly. When comparing the measured and the simulated 
test drive, the mean deviation , as well as the absolute mean deviation , have been chosen as 
relevant quantities. Both evaluation parameters are relative values with regard to the test drive:

, = ( ) ( )  ( ( )) , , = | ( )|( )  ( ( ))  , (3)

with ( ) =  ( ) ( ) denoting the difference of the state of charge between measurement 
and simulation.

Further evaluation parameters are the relative difference , at the end of the test drive and the maximum 
deviation , over the entire test drive:

, = ( )( ( ))  ( ( )) ,  , = (| ( )|). (4)

The results of the validation for two test tracks with different topographies are given in Table 1. It can be 
observed that for track A there is a remarkable match of test drive measurements and simulations: is below 
1 % and both , and , are below 2 %. When additionally considering the topography data in the 
simulation, the accuracy is significantly improved (cf. Table 1, col. 1 versus col. 2 and col. 3 vs. col. 4): For track B 
(see Figure 3), , is reduced by a factor of more than 4 from 17.54 % to 3.76 %. The corresponding SOC 
profiles are visualized in Figure 4. Even for the rather flat track A an improvement can be seen with the topography 
data for , , , , and , . A reason for flat tracks having a lower deviation than hilly tracks (by 
more than a factor of 2) may lie in the inaccuracy of the topography data.

Table 1: Evaluation parameters showing the deviation of the SOC for four pairs of simulation and test drive comparisons in 
%. Track A represents a rather flat road, while track B represents a rather hilly road with altitude differences of more than
75 m. The computations in which the topography data has been used in the simulation are marked with (topo).

Test drive on 
track A

Test drive on 
track A (topo)

Test drive on 
track B

Test drive on 
track B (topo)

, 0.41 0.52 -16.56 2.25

, 1.71 1.00 16.57 2.58

, 1.63 1.30 -8.00 3.47

, 1.93 1.40 17.54 3.76

In conclusion, the simulation is in very good agreement with the measured values for the HV battery SOC. 
Furthermore, the implementation of topography data enables the simulation to adequately model drives on tracks 
with variable altitude. However, the results depend on the resolution of the topography data. 

In general, there is also a very good agreement between simulations and measurements concerning the vehicle 
velocity (results not shown due to space limitations). The mean and the absolute deviation of the velocity profile are 
strictly below 0.1 % and 3 %, respectively. Thus, it can be concluded as well that the driver model follows the given 
velocity profile adequately. This is another necessary condition for evaluating the simulation quality. Altogether, as 
the validation of the Simulink model shows, the model is adequate to be used for consumption optimization.
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Fig. 3. Altitude profile of tracks as function of time. Fig. 4. HV battery SOC of track B as function of time.

3. Optimal control

In this section, we introduce a formal mathematical problem setting and present state of the art numerical solution 
techniques for optimal control problems. Subsequently, these are applied to the range extension problem of an EV in 
Section 4.

3.1. Problem formulation

Optimal control aims at finding a control profile which solves the control problem, e.g. steering the system from 
an initial point to a desired final point in a given time, and which, at the same time, minimizes a given cost 
functional . Formally, an optimal control problem is stated as

min ( ,  ) = ( ( ),  ( )) +  ( ) (5)

with respect to ( ) = ( ),  ( )   [0, ], (6)(0),  ( ) = , (7)( ),  ( )   [0, ], (8)( )( )   [0, ]. (9)

As usual, the cost functional is given in integral formulation with an additional final cost function (cf. (5))
and depends on the system’s state trajectory as well as on the control . For a given control profile , the state 
trajectory can be obtained from the system’s controlled dynamics, which are determined by the ordinary differential 
equation (6). Further constraints that have to be taken into account are the boundary conditions (cf. (7)), e.g. fixed 
initial and final states, the path constraints (cf. (8)), i.e. technical constraints on states or controls given pointwise 
in time, or box constraints (cf. (9)) defined by maximal/minimal states and controls and  , respectively. 

Optimal control problems for complex, nonlinear dynamical systems have to be solved by appropriate numerical 
techniques. As discussed in Section 1, state of the art approaches can be divided into two classes, cf. [11] for an 
overview. Direct methods have proven to be well suitable for real world applications in the last years. We will 
describe this approach in more detail in the following and present the application to the EV-related optimal control 
problem subsequently. 

3.2. Direct numerical methods

A discretization of an optimal control problem starts with a discretization of the control profile. Therefore, a time 
grid = { = 0, , … , , = } is defined which leads to a discrete control trajectory = { } with 
being an approximation of ( ). Then, the + 1 controls , = 0, … , , form the optimization parameters of 
the nonlinear optimization problem (cf. (10)-(12)). The corresponding discrete state trajectory = { } is 
obtained from a numerical integration scheme applied to the differential equation (11), where is an 
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approximation of ( ). The quality of the approximation of the real continuous time solution depends on the order 
of the chosen integrator (cf. e.g. [12]). The integral of the cost functional (cf. (5)) can be approximated by 
quadrature rules on leading to the discrete cost function in (10). Together with a discretization of the path and 
box constraints (cf. (12)), we obtain the following nonlinear restricted optimization problem

                                        min ,  =  ,  +  ( ) (10)
with respect to         = ( , ), (11)

                                                  ( , ) = , ( , ) , . (12)

Sequential quadratic programming (SQP, cf. e.g. [9]) is an efficient method for solving high dimensional 
nonlinear optimization problems and is nowadays implemented in many software tools. The basic idea is to 
sequentially formulate auxiliary quadratic problems in order to approximate a (locally) optimal solution of the 
original problem. As for most nonlinear optimization methods, the solution obtained by SQP strongly depends on 
initial guesses. The SQP method requires derivatives of the cost function and the constraints. Since these cannot be 
computed analytically for large nonlinear dynamical systems, the derivatives either have to be computed by 
automatic differentiation or they can be numerically approximated by finite differences.

4. Intelligent cruise control

When allowing the vehicle velocity to vary, the formalism described in Section 3 can now be applied to the EV 
model in order to reduce its battery discharge (cf. Section 4.1). Therefore, the closed loop system is replaced by a 
system with the accelerator pedal position profile as an (open loop) control input. Neglecting recuperation (which 
only occurs when the pedal position is exactly zero), the dynamical behavior of the EV can be assumed to be 
sufficiently smooth so that the SQP method is applicable. In Section 4.2, an artificial track of four increasingly steep 
plateaus is used to identify the optimal control method’s potential as well as to show the local nature of the solution. 
In Section 4.3, the method is applied to the measured track that has been used for the validation in Section 2.2 to
show that it also yields a reduced energy consumption in a realistic scenario. Solutions for discretizations between 
one and 200 variables have been calculated. Due to space limitations, only a few representative results are shown.

4.1. Problem formulation

In the optimal control problem ((5) - (9)), one can set the control to the accelerator pedal position and the 
cost functional in (5) only consists of a final cost, i.e. = ( ), the negative state of charge at final time  (cf. 
(13)). Note that the SOC implicitly depends on the control as well as on the system’s internal states. The system 
dynamics (6) are represented by the Simulink model of the EV with states = ( , ), where and denote position 
and velocity, respectively. The differential equation is solved by the Simulink solver ode3. The velocity at the 
boundaries =   = is set to the average value of 25 m/s (cf. (15)). Similar to a standard cruise control, a 
certain minimal average velocity (  =  / ) is desirable. Consequently, for a fixed time interval [ , ], the 
EV has to travel a minimal distance , which leads to the constraint (16). Finally, the accelerator pedal position 
is limited at every time which is accounted for by the box constraint (17). Altogether, the following optimal 
control problem can be formulated: min ( ( )) (13)

with respect to ( ) = ( ),  ( )   [0, ], (Simulink model) (14)(0) = ( ) = 25 m/s, (15)( )  , (16)0 ( ) 100  [0, ]. (17)

The first step of the direct solution method is to define a time grid for the discrete control trajectory. In between 
the time nodes, the control is approximated by piecewise cubic Hermite interpolation, such that the differential 
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equations can be solved on a refined time grid. Then, since the dynamics is given by a Simulink model, the 
discretization is automatically performed by simulating the model with the approximated control trajectory , as 
the input and with the state of charge at time as well as the approximated state trajectory as output. Finally, the 
SQP method of the Matlab function “fmincon” is applied to the discretized problem. In the simulation, the first and 
second derivatives of the cost function and the boundary conditions with respect to states and control have 
been approximated numerically using finite differences. This may prove problematic when using a model with 
nonsmooth subfunctions, e.g. caused by look-up tables. Therefore, optimality cannot be guaranteed in a strict 
mathematical sense. Nevertheless, as the results show, a considerable DOD reduction is observed.

4.2. Numerical results for an artificial track

An artificial track consisting of four plateaus with consecutively steeper but constant slopes was developed (see 
bottom plots of Figure 5 (a) – (d)). The minimal average velocity within the defined time interval [0, ] with = 600 s was set to =  25 m/s . In Figure 5, four different solutions of this optimal control problem differing 
in discretization and initial guess are shown. The corresponding numerical results are compared in Table 2. In the 
simplest case, the optimization is performed with only one variable leading to a constant accelerator pedal position 
profile (see Figure 5 (a)). Here, the initial pedal position is reduced as much as the constraints allow for such that 
only the minimal distance ( = 15 km) is reached. Using this result as an initial guess for a profile discretization 
with 200 points leads to a reduction of the battery DOD of approximately 3.5 %. It is interesting to see that – as one 
might expect – an increased accelerator pedal position on positive slopes is beneficial for the EV efficiency. As a 
result, the variation in velocity is reduced. Based on the observation that this reduction of velocity variance seems 
favorable for the efficiency, another objective function was formulated, namely the minimization of the velocity 
variance in the discretization points: min ( ( ) )   min, 2 (( ) + ( ) ), (18)

where = is the average velocity and is the constant time step. Following this approach, a DOD 
reduction of 5.4 % is achieved (cf. Figure 5 (c) and Table 2). Due to the local nature of the SQP method, a second 
SOC optimization has been performed using the result from (18) as initial guess. Although the discretization is much 
coarser in this case, this profile leads to the highest DOD reduction of approximately 5.6 %.
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Table 2. Comparison of the different solutions of the optimal control problem; the case descriptions (a) to (d) refer to the plots in Figure 5.

(a) (b) (c) (d)

Cost functional min( ( )) min( ( )) min ( ) min( ( ))
Discretization = . = 200 = 200 = 30
Initial guess Const. value = 70 Solution of (a) Solution of (a) Solution of (c)

SOC(T) 0.9097 0.,9129 +0,.,9146 0.,9148
DOD(T) 0.0903 0.,0871 +0,.,0854 0.,0852
DOD to (a) -3.,5 % -5,.,4 % -5.,6 %

4.3. Numerical results for a real test track

Having demonstrated the capability of the method for an artificial track, the next step is to show that a DOD 
reduction can also be achieved for a realistic case. For this reason, the optimal control method presented above is 
applied to the track which has been measured during the model validation (cf. Section 2.2). The boundary conditions 
are chosen in order to match the test drive:

                  = 28.752 km;   = 1000 s  = 28.752 = 103.5 , (19)
                 (0) = ( ) = 25 .

Fig. 5. Accelerator pedal position (top), EV velocity (middle) and track inclination/height (bottom) over time on an artificial track for 
different cost functionals, discretizations and initial guesses; (a) = ( ), = ., initial guess: = 70 = .;
(b)  =   ( ), = 200, initial guess: (a); (c) = ( ) , = 200, initial guess: (a); (d)  = ( ), = 30, initial guess: (c).
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Fig. 6. Accelerator pedal position (top), EV velocity (middle) and track inclination/height (bottom) over time on a measured track for 
different discretizations and initial guesses; (a) = ( ); = 200; initial guess: = 65 = . (dashed line); (b) = ( );= 100; initial guess: min ( ) with = 100 (dashed line).

In Figure 6, the results of the optimization with two different initial guesses are shown, a comparison of the 
numerical results can be found in Table 3. As a result of the local nature of the SQP method, an initial guess = . (Figure 6 (a)) leads to an entirely different solution than an initial guess which results from the 
minimization of the velocity variance (Figure 6 (b)). In both cases, the differences between the initial guess and the 
optimized solution are fairly low in regions with low inclinations whereas stronger deviations occur at times where 
notable changes in the slope exist (e.g. at 800 ).

Table 3: Comparison of the different solutions of the optimal control problem to the measurements; the scenarios (a) and (b) refer to the plots 
in Figure 6 where scenarios 1 and 2 are the initial guess and the optimized solution, respectively

Measured Scenario (a 1)  Scenario (a 2) Scenario (b 1) Scenario (b 2)

Cost functional - min( ( )) min( ( )) min ( ) min( ( ))
Discretization - = . 200 points 100 points 100 points

SOC(T) 0.7538 0.,7877 0.,7923 0.,7912 0.,7935
DOD(T) 0.2462 0.,2123 0.,2077 0.,2088 0.,2065

DOD to Measured - -13.,6 % -15.,64 % -15.,19 % -16.,1 %
DOD to Sc. (a 1) - - -2.,17 % -1.,65 % -2.,7 %

Similar to Section 4.2, the best result in terms of DOD reduction is achieved by minimizing the cost function (13)
with a velocity variance minimizer (cf. (18)) as the initial guess (Scenario (b 2) in Table 3). In contrast to the results 
concerning the artificial track, using velocity variance minimization only (Scenario (b 1)) does not yield a result 
superior to the DOD minimization with a constant initial guess (Scenario (a 2)). The maximally achieved reduction 
of 2.7 % is less than for the artificial track, which is not surprising because the test track has mild slopes in most 
parts and parts with strong changes in the slope appear to offer the highest potential for the optimization method 
presented in Section 4.1.
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5. Conclusions

In this contribution, optimal control problems have been formulated and solved in order to minimize the depth of 
discharge of an electric vehicle on prescribed tracks. The direct optimal control solution method has proven to be 
well applicable since it has been possible to reduce the depth of discharge for the artificial as well as for the realistic 
scenario compared to a constant accelerator pedal position. However, one observes a strong dependence of the 
solutions on the initial guesses. Therefore, combined strategies with varying discretization points and even varying 
objectives have been tested, and this way, the highest depth of discharge reduction could be obtained. In future 
work, global optimization techniques will be used and the control problem can be studied with respect to several 
different objectives: Besides the energy efficiency, also the deviation from the mean velocity or the driven distance 
can serve as additional, probably conflicting objectives. These multiobjective optimization problems will be solved 
using the software package GAIO (cf. [13]).
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