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Abstract 

User review is a crucial component of open mobile app market such as Google Play Store. These markets allow users to submit 
feedback for downloaded apps in the form of a) start ratings and b) opinions in the form of text reviews. Users read these reviews 
in order to gain insight into the app before they buy or download it. The user opinion about the product also influence on the 
purchasing decisions of potential users; indeed play a key role in the generation of revenue for the developers. The mobile apps 
can contain large volumes of reviews and it is impossible for a user to skim through thousands of reviews to find the opinion of 
other users about the features he/she is interested in. Towards this end, we propose a methodology to automatically extract the 
features of an app from its corresponding reviews using machine learning technique. Moreover, our proposed methodology aid 
user to compare the features across multiple apps, using the sentiments, expressed in their associated reviews. The proposed 
methodology can be used to understand user’s preference to a certain mobile app and can uncover the relational behind why users 
prefer an app over other. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Conference Program Chairs. 
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1. Introduction 

The proliferation of smartphones attracts more and more software developers to devote to building mobile 
applications (“apps”). These developers place their app on popular distribution channels from mobile device software  
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such as APP Store and Google Play Store. The distribution platforms allows users to search, buy and deploy software 
apps for mobile devices with a few clicks. These platforms also allow users to share their opinion about the app in text 
reviews, where they can, e.g., express their satisfaction with a specific app feature or request a new feature. Recent 
empirical studies1,2,3 showed that app store reviews include information that is useful to analysts and app designers, 
such as user requirements, bug reports, feature requests, and documentation of user experiences with specific app 
features. This feedback can represent a "voice of the users" and be used to drive the development effort and improve 
forthcoming releases4,5. Moreover, the user opinion about the product also influence on the purchasing decisions of 
potential users; indeed play a key role in the generation of revenue for the developers.  

However, there are several limitations which prevent analysts and development teams from using the information 
in the reviews. First, app stores include a large amount of reviews, which require a large effort to be analyzed. A recent 
study found that iOS users submit on average 22 reviews per day per app6.Very popular apps such as Facebook get 
more than 4000 reviews per day. Second, the quality of the reviews varies widely, from helpful advice and innovative 
ideas to insulting comments. Third, a review typically contains a sentiment mix concerning the different app features, 
making it difficult to filter positive and negative feedback or retrieve the feedback for specific features. The usefulness 
of the star ratings in the reviews is limited for development teams, since a rating represents an average for the whole 
app and can combine both positive and negative evaluations of the single features. 

Therefore it is difficult for both consumers and developers compare two or more mobile apps that offer similar 
function but with different properties. Towards this end we propose a systematic approach to mine opinions from 
crowd sourced reviews, i.e., App store reviews. In particular, the paper see to answer the following three research 
questions:  

RQ. 1   What features can we extract from mobile app reviews? 
RQ. 2   What are people’s opinions about the products based on features extracted? 
RQ. 3   How do we make recommendation based on the sentiment analysis of the extracted features? 

2. Related Work 

Our approach is mostly relevant to Hu and Liu7 and Popescu and Etzioni8. In7, they use Part-of-Speech (POS) tagging 
to collect nouns or noun phrases since features are nouns mostly. They produced POS tags for each word (whether the 
word is a noun or a verb). After that, association rule mining is applied to filter out the frequent feature item sets. The 
result of their research shows a good performance in analyzing electronic products like DVD player, MP3 player, 
digital camera and cellular phone. Obviously, our research is related but di erent from theirs in many ways. POS 
tagging and association rules mainly focused on noun features which may skip some words of their inputs that can 
imply features. For instance, there are some email mobile app that people prefer, ‘multiple account support’ ones 
rather than single account. In such condition, people may talk about their preference about “multiple account” when 
they refer to an app’s feature. But “multiple account” is adjective in those sentences. Which means it would be filtered 
o  when they try to sum up all the features. Our system based on the feature extraction does not have this problem. 
We did not remove words by part of speech. Instead, we comprehensively analyze input words from both frequency 
and relationship between di erent words. Moreover, they use comments on mobile apps from ecommerce Web sites 
as input. While we use data from Google Play Store that have a large number of short text with sparse words, which 
makes association rules not applicable. They demonstrated their algorithm with a small data set (500 records), while 
we tested our algorithm with more than 8,000 mobile reviews of thirty email apps. Our work is also di erent from the 
feature extraction method in8, that they perform mining of consumer reviews and sentiment classification without 
comparing the pair of user-specified products based on the corresponding product features.  

 
 
 
 

Figure 1: Overview of our proposed methodology 
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2.1. Feature Extraction Methods 

When dealing with a large volume of text, we should scan through the text only once and generate a list of features 
or properties that can best represent the content of text. In doing so, we consider to extract the meaningful keywords 
and calculate their TFIDF9 to represent text as feature vectors for the computational purpose. Feature extraction is an 
important step in text processing to transform input text into feature vectors. Guyon et al. 10 provided a comprehensive 
review on feature extraction from text data and relevant applications. Insightful discussions can also be found in 7, 13 
and 13 Weka11 has provided open source tools for feature extractions.  

The task of feature extraction in this paper is to transform text data into a feature space that can best describe the 
interests of social network users who comment on the products or services. In brief, our feature extraction is to ex-
tract only product features7, 12 that have appeared in the app reviews. In the feature extraction process we need to firstly 
search for the relevant text from reviews where the given products are mentioned, then we apply the feature extraction 
algorithms on the text to derive the features for those specific products. 

In order to make products comparable to each other, the output product features need to be constructed as a tree 
structure which can be transformed from a concept lattice where some features are general and some features are 
specific. This requirement especially matches with the idea of discovering concept hierarchy by formal concept 
analysis (FCA) approaches13. 
 

  

Figure 2: Sentimental analysis of hot features of two email apps (Green dots- positive; Red dots- negative; blue 
dots,  neutral opinion) 

2.2. Formal Concept Analysis 

In Formal Concept Analysis, the elements of one type are called “formal objects”, the elements of the other type 
are called “formal attributes”. The adjective “formal” is used to emphasize that these are formal notions. “Formal 

Table 1: Formal Context (features) across different mail apps 

 Group Mail Multiple Accounts Signature Quick Filters Cloud Space Message Search Themes 

Yahoo Mail X X X  X X  

K-9 Mail  X X X  X X 
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objects” need not be “objects” in any kind of common sense meaning of “object”. But the use of “object” and 
“attribute” is indicative because in many applications it may be useful to choose object-like items as formal objects 
and to choose their features or characteristics as formal attributes. In an information retrieval application, documents 
could be considered object-like and terms considered attribute-like. Other examples of sets of formal objects and 
formal attributes are tokens and types, values and data types, data-driven facts and theories, words and meanings and 
so on. The sets of formal objects and formal attributes together with their relation to each other form a “formal 
context”, which can be represented by a cross table (see Table 1). The elements on the left side are formal objects; the 
elements at the top are formal attributes; and the relation between them is represented by the crosses. In this example, 
the formal objects are email app(s): Yahoo mail, K-9 mail, Gmail, Blue mail, Microsoft outlook and Cloud magic. 

The attributes listed in the Table 1 describe the features, i.e., formal context of the objects; Allow group mail, 
support multiple accounts, facilitate constructing signature, allows message search in a mail box, provide cloud 
storage, and have multiple themes to enhance user experience. This is, of course, a toy example but it is sufficient to 
explain the basic features of FCA. 

In our context, i.e., online reviews, the classical Formal Concept Analysis (FCA)3 builds up a concept hierarchy by 
comparing the subset relationships amongst the associated terms of a concept. In FCA a concept can be associated 
with a single term or a set of terms. A term is a regarded as a meaningful word not appearing in the stop word list. 
When a term is used in describing a concept it is considered as an attribute of that concept. All the attributes that are 
associated with all concepts can be organized in a two dimensional matrix: one dimension (columns) is to list all 
attributes and the other (rows) is to list all the concepts. Then FCA algorithm will check the columns that 
corresponding to the matrix and form a lattice from that. It has been proven that there is a one-to-one mapping between 
each matrix and its corresponding lattice13. It can be seen that the critical step in FCA algorithm is to generate the 
attribute matrix for every concept by scanning the text only once. 

3. Methodology 

In this section we describe our proposed methodology. To motivate the idea behind constructing the methodology, 
we provide a motivating example. For email client, an app developer, after launching it via google paly store may be 
curious about how well the app is received by the customer and how is the app penetrating into the market. Similarly, 
customer shopping for an app like to know how green is an app?, i.e., is it energy notorious  since once would not 

Table 2: Algorithm Feature Extraction 

Input: 
   TW: Pre-processes mobile app reviews 
Output: 
    T: Concept hierarchy of product features 
Description: 
    Begin 
       Count tf of each word (wi) in Tw 
       for (each word wi) (filter infrequent words appear in Tw) 
            If tf>0.01 (set this by experiments, words’ tf lower than 0.01 are not meaningful) 
               add wi to word set W 
for (wi1 in W) (the double loop analyses connections between any two words) 
    for (wi2 in W) 
         if (wi2 != wi1) { 
             review collection c1, every element of it contains wi1 tweets collection c2, every element of it contains wi2           
               if  (c1 \(\supset\) c2) 

wi2 is a sub-concept of wi1 
T add (wi1,wi2) 
For (any win that wi2 is a sub-concept of win) 
   if  (wi1 \(\supset\) win) 
      win is a sub-concept of wi1 
      wi2 is a sub-concept of win 
  else if (win \(\supset\) wi1) 

                      wi1 is a sub-concept of win  
           wi2 is a sub-concept of wi1 

               } 
       return t 
    end 
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use an app if it drains the mobile phone battery quickly, or does it support polling mail from multiple email accounts? 
or it provides quick search of messages in mail box.  

In order to answer such questions, we need to know the opinions of the people towards the features. App providers 
need to know what the most talked features among the customers are. We call them the ‘Hot Features’. The most talk 
features are the ones well received by customers as well as those features that customers complained a lot. Such a 
constructive feedback from users becomes extremely crucial for developers to fix bugs, implement new features, 
improve user experience agility as well polish the features of most interest to the users. Whereas, user need to know 
about the opinion of people towards the product feature. Such as opinion helps the user to locate and buy the best app 
when deciding among several app providing similar functionality.  

A straight forward proxy to find the features claimed to be supported by a mobile app is to read its detailed 
description as submitted by its developer. However, similar apps can have one or set of desired features in common. 
For example, Microsoft outlook, Gmail, Yahoo and Blue mail, all support features, such as ‘signatures’, ‘multiple-
account support’ and ‘message search’. Reading the app descriptions do not guarantee how well the feature is 
implemented, if it is free from bug or it will provide functionality/behavior matching what is listed in the app’s 
description14,15 . 

Like other mobile app markets, Google Play displays histograms of ratings and lists the comments/reviews by 
users, in addition to the app’s descriptions submitted by its developer. Despite the app reviews being shorter in length 
(since most of them are typed and submitted from smart phones), but can range from hundreds to thousands for each 
app, depending upon its popularity. Therefore manually analyzing such a large volume of comments, especially quality 
of ratings for specific features and then comparing then against the reviews of other popular app can be hectic, time 
consuming and a painful process.  

Towards this end to facilitate both app developers and customers to automatically compare the hot features among 
mobile apps, we propose our methodology. Given the set of mobile app reviews, the proposed methodology 
automatically extracts the hot features corresponding to the app and gauges the people opinions towards the mobile 
app features. The proposed system had three main steps, (1) feature extraction, (2) sentiment analysis and (3) 
recommendations. The input for our proposed methodology is set of reviews for one of more mobile apps. The output 
of the methodology is the counting of the people options toward the extracted features of the mobile apps and the set 
of recommendations. Below we detail the three major steps of our methodology. 

3.1. Feature Extraction 

Feature extraction step is the main contribution of the paper. The step extracts the ‘hot features’ of mobile app that 
people mostly talk/discuss and provide feedback. For the purpose all the comments/review of a particular apps are 
collected. The review do not suffice directly for applying our feature extraction algorithm listed in Table 2. This is 
due to the fact that large portion of reviews are submitted from mobile devices on which typing is not so easy. 
Therefore, we performed the following preprocessing steps: 

 Noun, verb, and adjective extraction. We use the part of speech (POS) tagging functionality of the 
Natural Language Toolkit, NLTK4, for identifying and extracting the nouns, verbs, and adjectives in the 
reviews. We assume that these parts of speech are the most likely to describe features as opposed to others 
such as adverbs, numbers, or quantifiers. A manual inspection of 100 reviews confirmed this assumption. 

 Stopword removal. We remove stopwords to eliminate terms that are very common in the English 
language (e.g., “and”, “this”, and “is”’). We use the standard list of stopwords provided by Lucene5 and 
expand it to include words that are common in user reviews, but are not used to describe features. The 
words we added to the stopword list are the name of the application itself, as well as the terms "app", 
"please", and "fix". 

 Lemmatization. We use the Wordnet16 lemmatizer from NLTK for grouping the different inflected forms 
of words with the same part of speech tag which are syntactically different but semantically equal. This 
step reduces the number of feature descriptors that need to be inspected later. With this process, for 
example, the terms describing the verbs "sees" and "saw" are grouped into the term "see". 
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 Explicit Sentence. Since people express opinions casually within app reviews, there may have either 
explicit or complete sentences17, which we can easily know what they mean; or there may have implicit 
sentences that are incomplete sentences or just some phrases. For example, an implicit sentence in 
following is di cult for identifying its feature: “This game continues for a long time”. In this case, it is 
di cult to tell whether this sentence is referring to the play time or battery life. Such sentences would 
have several di erent ways to express the same meaning which makes it even more di cult to find the 
patterns of features. Fortunately, we observed that those implicit sentences do not appear much in our data 
set (with less than 10% of the sentences). So we can focus on explicit statements in this paper and leave 
the process of implicit sentences to the future work. 

We then apply our algorithm listed in Table 1. The algorithm can filter those words that are popular but not regarded 
as product features. It analyzes the processed reviews/comments of an app and finds out the hierarchy of the high term 
frequency-inverse document frequency (TFIDF) words. Suppose there are two random words in app reviews: w1, w2. 
The reviews set that contains all the appearance of word w1 is namely set c1. Similarly, the reviews set that contains 
all the appearance of word w2 is namely set c2. If set c1 is a superset of set c2, then more likely, w2 is a sub-concept 
of w1. A tree structure is used to express the hierarchy like w1, w2 instead of a lattice as it can be seen from Figure 2. 

3.2. Sentiment Analysis 

Sentiment analysis, which is also called as opinion mining, is an approach that’s requires collection of people in 
real-time about a product, an event or a situation. Sentiment analysis is type of a reality check for events, people and 
products. People from different demographic areas have different views on certain issues. This gives a wider angle of 
thought to the initiator of the idea and also gives overall review on that subject or product. For example a new DSLR 
camera is launched with high specifications and improved technology and a website blog give all the positives of the 
product with all the new specifications in it7. But, when used by people around the world, the same product may get 
many negative reviews due to the DSLR’s heavy nature. So these networking sites give a clear picture of the situation 
taking into account small details of the specific subject.  

We used the approach, i.e., sentiment analysis as a part of our methodology to explore people’s opinion about the 
hot mobile app features (features extracted using our algorithm presented in section 3.1).  In general, the opinion of 
people can be classified into three category; positive, negative and natural. People use certain predictable words while 
giving comments or writing an app review to express their feelings. Here are two examples: 

1. “I hate the app. It keeps on crashing. Don’t waste your time on it”  
2. “This is awesome. Love it. Works with android the best” 

The first review express negative feelings towards and app. It uses a sentiments word ‘hate’ to express negative 
feeling. Whereas, the second review express positive feeling through an adjective “awesome” and a verb “love’. All 
these words are essential words that reflects the user’s sentiment. However, there are many slang words that have no 
meanings such as ‘Ummmm’, ‘Urrr’ . ‘phew’, ‘oh man’ and ‘huhh’. We removed such words since they act as noise 
and do not contribute towards sentiment analysis. Then, we narrow down these input words again by using WordNet16 
to eliminate the words that are seldom used. We also delete the none-existing words. By tagging the existing words, 
a bitmap is established (listing all those existing words, tagging the existing words appeared in a review with value 1 
the others with 0). Also tagging the orientation of each sentence is based on the sentimental orientation like positive, 
negative, or neutral. We show the result in the evaluation section. Besides, people’s emotion can be divided into more 
types. WordNet16 has divided some sentiment words into six types including disgust, anger, fear, sad, surprise and 
joy. Each of these six types shows di erent levels of emotions which may make the analysis more sophisticated. The 
taxonomy of product features provides an overview of hot features as well as the results of sentiment analysis of those 
features as shown in Figure 2 

3.3. Recommendations 

The last step of our methodology based on the qualitative and quantitative analysis on customers preferred features. 
The main motivation behind recommendation is that mobile app in similar category that have strong similarities. For 
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example, two email app(s), both support multiple accounts, signature and message search feature. If one customer 
likes one of these mobile app, probably he would like the other one as well. This step of our methodology employee 
Weighted-Tree Similarity Algorithm18 on the extracted hot features and corresponding customer’s sentiments. Due to 
space constraints, the recommendation algorithm is not listed in the paper. We collected six thousands reviews of two 
popular email apps, Microsoft outlook and Thunder. Using our methodology, we found that both of the email app are 
well received by the customers. Nevertheless, we use two thousands of reviews for each of the mobile app to plot the 
Figure 2.  

Our system is implemented in Python. We crawled thirty reviews of thirty popular email clients. Our review dataset 
consisted of six thousands reviews stored in MySQL Database. First we preprocessed all the reviews. Then extracted 
the features for each of the app to construct a feature tree. For each of the feature corresponding review are analyzed 
to find out the opinion of the customers, i.e., applied sentiment analysis technique. Finally, we explored the similarity 
between the feature trees using tree-similarity comparison algorithm. Each app received a similarity score (between 0 
and 1). For each app we recommended apps with the similarity threshold of 0.7 and above. Since the pool of our 
mobile email app is of managed size, i.e., thirty mobile app, we validated the results manually.   

4. Conclusions and Future work 

With the popularity of smartphones and mobile devices, mobile application (i.e., apps) market have been growing 
exponentially in terms of user and downloads. App developers spend considerable effort on collecting and exploiting 
user feedback to improve user satisfaction. On other hand, users use the comments/reviews to get insight into the 
experience, opinions and sentiments of other users about specific features and descriptions of experiences with these 
features. However, for many apps, the amount of reviews is too large to be process manually and their quality varies 
largely. Therefore, towards, this end, we proposed a methodology that automatically extracts the hot features of the 
mobile apps from the reviewers comment, mine the feelings of users towards those features and recommend them the 
mobile app with similar hot features.  

The future research will improve on the scalability and effectiveness of our proposed methodology of mining social 
opinions on wide category of apps from different App stores. 
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