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Mast cells may be regarded as prototypes of innate immune cells that can be controlled by neuronal
mediators. Their activation has been implicated in many types of neuro-inflammatory responses, and related
disturbances of gut motility, via direct or indirect mechanisms that involve several mechanisms relevant to
disease pathogenesis such as changes in epithelial barrier function or activation of adaptive or innate immune
responses. Here we review the evidence for the involvement of mast cells in the inflammation of the bowel
wall caused by bowel manipulation that leads to motility disturbances such as postoperative gastroparesis
and ileus. Also in IBD there is substantial evidence for the involvement of mast cells and a mast cell-mediated
neuroimmune interaction showing an increased number and an increased degranulation of mast cells. We
discuss the potential of mast cell inhibition as a bona fide drug target to relief postoperative ileus. Further
research on mast cell-related therapy either by stabilizing the mast cells or by blocking specific mast cell
mediators as adjunctive therapy in IBD is encouraged, bearing inmind that several drugs currently used in the
treatment of IBD possess properties affecting mast cell activities. This article is part of a Special Issue entitled:
Mast cells in inflammation.
cells in inflammation.
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1. Mast cells and gut functions: scope of this review

Inflammation of the gut wall as observed in postoperative ileus
(POI) or in inflammatory bowel diseases (IBD) can involve a complex
interplay between neurons, smooth muscle cells, interstitial cells of
Cajal, enteric glial cells, vascular tissue, mucosal epithelial cells, mast
cells, enteroendocrine cells and immunocytes [11,21,77,86]. In this
process mast cells are proposed to act as sentinels at the host–
environment interface, responding to allergens, bacteria, toxins,
parasites, neuropeptides and stress by initiating enhanced epithelial
secretion, peristalsis and alarm programs by releasing proinflamma-
tory mediators [3,8,9,60]. Mast cells in the gut can be sensitized
against foreign antigens but also play an important role in the innate
and adaptive immune responses that are very relevant to human
disease, such as in oral vaccination strategies, or snake and honeybee
responses [59]. Other more specific examples thereof are POI and IBD,
which are described in the current review. Elsewhere in this special
issue a critical role for mast cell activation in for instance the
pathogenesis of functional GI disorders such as IBS and eosinophilic
esophagitis is highlighted.
2. Mast cells in the gastrointestinal tract

Progenitor mast cells are derived from myeloid pluripotent hema-
topoietic progenitor cells in bone marrow; they circulate in the blood
flowandmigrate into peripheral tissueswhere they further differentiate
towards different subtypes of mature mast cells depending on the local
microenvironment [67,86]. Mast cells are derived from hematopoietic
Thy1+cKithigh mast cell-committed precursors [68], and their growth
and proliferation is regulated by growth factors such as the cKit ligand
stem cell factor (SCF), nerve growth factor (NGF) and interleukins (IL3,
IL4, IL9, and IL10) [36]. There are large species differences in mast cell
distribution as well as density, where especially the mouse GI tract is
generally low in intestinal mast cells. In other rodents, mast cells can be
found in the lamina propria of the intestine, but also associated with the
epithelium, the submucosa and the serosa, where subsets of mast cells
exist divided in different classes such as connective tissue mast cells,
located mainly in connective tissue around blood vessels and in the
peritoneal cavity andmucosal mast cells found in the intestinal mucosa.
Important differences exist in these subpopulations of mast cells for
instance regarding their activation and responses to basic secretagogues,
such as compound 48/80 and bee venom peptide 401 [5,6,27]. Specific
differences inmast cell subpopulations are highlightedmore extensively
in this review series and elsewhere, i.e. see [36] and for recent reviews
[35] and [9] amongst others.

In humans, mast cell contents are used to describe different
classes: tryptase and chymase containing mast cells (closely resemble
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connective tissue mast cells) and only tryptase containing mast cells
(closely resembling the rodent mucosal mast cells) [9,10,67]. Mast cell
regulators such as SCF and IL4 promote mast cell development and/or
regulatemediator release [9].Mast cells can be activatedvia the classical
IgE-mediated pathway but can also be activated by a variety of
substances such as cytokines, hormones, immunoglobulins, neuropep-
tides, and complement components. TLR triggering also activates mast
cells and activates cytokine productionmost likely viamechanisms that
require new protein synthesis [87]. Hence, functional activation ofmast
cells leads to degranulation of their mediators preformed and stored in
secretory granules or to de novo synthesis of mediators. Piecemeal
degranulation is an alternative form of secretion involving the selective
secretion of certain mediators (and therefore not the whole content) of
the secretory granules. The preformed mediators include tryptase,
histamine, serotonin (5-hydroxytryptamine), serine proteases, pro-
teoglycans and cytokines such as tumor necrosis factor α (TNFα).
Arachidonic acidmetabolites (prostaglandinsand leukotrienes), platelet
activating factor and several chemokines and cytokines (Il-1β and IL-6)
can be synthesized de novo. Cytokines also change the cytokine profile
released by mast cells: IL4 decreases the amount of proinflammatory
cytokines and increases the release of Th2 cytokines [35,89].

3. Neurogenic control of mast cells in the GI tract

Mast cells function as intermediaries between the inflammatory
cells and their mediators and the neuroenteric system. Both cell types
are affected by the inflammatory environment and upon activation
release mediators which affect the gastrointestinal neuromuscular and
secretory functions [7,8,19,75,78]. These mediators can stimulate
epithelial cells, residential macrophages and intrinsic and extrinsic
neurons amongst others. The closemorphological relationship between
mast cells and afferent nerve endings both in human and animal studies
supports the latter notion [78]. There is early evidence for bidirectional
communication between mast cells and neurons in the gastrointestinal
tract and themast cellmay be regarded as the classical immune cell that
is activated by neuronal factors and neurotransmitters. MacQueen et al.
demonstrated in 1989 that rats sensitized to a protein antigen in
combination to an audiovisual cue, and then re-exposed to an
audiovisual cue alone released a quantity of protease that was not
significantly different from animals re-exposed to both the cue and the
antigen [54]. These results support a role for the central nervous system
as a functional effector ofmast cell function [7,19,75,78]. In conjunction,
a positive feedback loop is described during which mast cell mediators
activate nerves that on their turn release neurotransmitters able to
enhance mast cell activity [74]. These effects might influence the
secretory response for instance in allergic or inflammatory conditions.
However mast cell activation and the subsequent activation of afferent
nervesmight also influencemotility or bloodflow viamediators such as
substance P, calcitonin gene related peptide (CGRP), proteases (PAR2)
[75]. These protective mechanisms affecting blood flow and motility,
triggered by sensory neurons, also orchestrate modifications of the
immune function [39]. Therefore, the mast cell induced secretion,
increased bloodflowand increasedpropulsivemotor activity actuallyfit
within a gastrointestinal defence program aiming at flushing and
eliminating the luminal antigens, microbes, toxins or harmful sub-
stances, as put forward by Wood [90].

4. The clinical features of postoperative ileus

Postoperative ileus (POI) is an almost inevitable phenomenon
occurring after each abdominal surgical procedure that includes bowel
manipulation, although POI may sometimes also be associated with
extra-abdominal operations. It clinically presents as the inability to
tolerate food with abdominal distension, absence of bowel sounds and
lack of flatus and defecation. Nausea and vomiting, pain and
postoperative fatigue further contribute to themorbidity and prolonged
hospitalization of patients. On average, this period lasts 2–4 days for
conventional abdominal procedures, but decreases to as little as 2 days
or less in case of laparoscopic surgery [22]. Some surgeons consider the
inability to tolerate food and absence of bowel sounds during the first
few postoperative days as a normal phenomenon, and only consider
“prolonged”or “pathologic paralytic ileus,”which lastsmore than3 days
after surgery, as clinically relevant. Others propose to prolong this
period to more than 6 days [1]. Transient inhibition of gastrointestinal
motility is well documented as underlyingmechanism and involves the
entire gastrointestinal tract. It is established that not all segments are
equally affected; small intestinal motility is on average disturbed for
approximately 24 h, gastric motility between 24 and 48 h, whereas
colonicmotility is impaired between 48 and 72 h (reviewed for instance
in [21,22,46]). It should be emphasized though that normalization of
motility, for example the return of the migrating motor complex in the
small intestine, does not necessarily imply that normal function and
transit have returned. Nevertheless, these studies underscore that
colonic motility is the main determinant of clinical recovery.

5. The pathophysiology of POI

Over the past decade, our insight in the pathophysiology has
increased exponentially. The general paralysis of the entire GI tract,
including the un-manipulated segments, is a commonly seen
characteristic of POI. This clinically important aspect of POI involves
the activation of an inhibitory neural reflex arch by local inflammatory
infiltrates [18], and was recently also shown to involve the production
of IFNγ by CCR9+T-cells that are activated at the site of manipulation
[28]. Although a role of gut-homing inflammatory cells triggered by
handling of the intestine is now put forward as the key event in the
widespread inflammatory response seen after local intestinal manip-
ulation in POI, see for instance [28], insight in the bidirectional
interaction between the immune system (mast cells, macrophages
and other leukocytes) and the autonomic nervous system (afferents
and efferents) has significantly contributed to a better understanding
of its pathophysiology [4,11]. Moreover, it has become clear that
inflammatory mediators released by leukocytes within the gut wall
also directly impair smooth muscle contractility [4,48,83].

The intestinal mucosa, submucosa, and muscularis externa are
densely populated with several subsets of resident phagocytes and
antigen presenting cells (APCs) of haematopoietic origin [32]. Under
healthy conditions, such resident macrophages are organized into a
network of intramuscular antigen presenting macrophage-like cells,
that reside at the level of the myenteric plexus (between the
longitudinal and circular muscle layer) and in the intestinal serosa
[60,61]. Most of these cells possess phagocytic properties, express LPS
binding receptor CD14 [32], express TLRs and are activated by LPS
[11,21,29,32,61]. The latter distinguishes these muscularis phagocytes
from those found in the lamina propria that are—at least in human—
generally negative for CD14 and most TLRs and display a surprising
tolerance towards TLR ligation [76].Moreover, muscularismacrophages
stain formacrophage scavenger receptor CD163, that has been shown to
possess bacteria binding and sensing capacities [31]. Thus, this
phagocyte population in the muscularis externa has an interesting
nature and most likely consists of different subsets of APCs, including
macrophage-like cells expressing F4/80 and dendritic cell-like cells
expressing most common DCmarkers such as CD11c and DEC205 [32].
However inmouse bowel wall, MHCII-positive cells outnumber F4/80+

cells indicating that the majority of these resident muscularis
macrophages function as APC. Hence, the exact cellular constituent of
thephagocyte population is yet to bedefinedbut their importance in the
development of the intestinal inflammation following intestinal
manipulation was first demonstrated in earlier studies done by Kalff
et al. [43,44]. In a rodent model, surgical manipulation caused an
increased expression of intergrins on muscularis macrophages, as well
as an increase in resident phagocytes that stained for the activation
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marker lymphocyte function-associated antigen (LFA-1). In a series of
elegant bone marrow transfer experiments it was shown that these
monocyte derived muscularis APCs contribute to the pathogenesis of
POI via release of NO [48]. Furthermore, in a mouse model of genetic
depletion of macrophages (due to a spontaneous mutation in the
colony-stimulating factor-1 gene (csf1) that is required for early
embryonic macrophage development (Csf1op/op) mice) [50], it was
shown that intestinal manipulation failed to induce inflammatory
mediators and subsequent recruitment of leukocytes into the muscu-
laris. These mice had near normal in vitro jejunal circular muscle
function and gastrointestinal transit despite surgical manipulation,
whichmay be indicative of the importance ofmacrophages in POI.With
regards to these experiments caution should be taken in interpretation
of these data as it should be mentioned that osteoclasts are the prime
cell type affected in these mice so the genetic deletion is likely to affect
the development of other cell types with APC capacity.

6. Mast cells in pathophysiology in POI in rodent models

Next to a neurogenic component in the early phase of POI [20,21], an
inflammatory component is a key pathogenic factor in the late phase of
POI and in endotoxin-induced or septic ileus. The importance of mast
cells in the inflammatory cascade triggered by intestinal manipulation
was demonstrated in experiments using mast cell stabilizers [17]. In
addition to the afore-mentioned residential APC population in the
intestinal wall, mast cells are proposed as key players in the initiation
and maintenance of this inflammatory circuitry. For instance, degran-
ulation of connective tissue mast cells after intestinal manipulation was
shown by an increase of mast cell protease in the peritoneal fluid
inducing an inflammatory infiltrate in the murine intestine and
gastroparesis [17]. Both events could be prevented by mast cell
stabilizers such as ketotifen and doxantrazole and could not be elicited
in mast cell deficient Kit/Kitv or KitWsh/Wsh mice ([17] and unpublished
data, 2011). Reconstitution of these mast cells deficient mutant mice
with wild-type mast cells restored the capacity to recruit leucocytes in
response to intestinal manipulation [17]. Conversely, incubation of
intestinal loops in solution containing the mast cell secretagogue
compound 48/80 induces an inflammatory response and POI, further
indicating the involvement of connective tissuemast cells in this process
given the unresponsiveness of mucosal mast cells to Compound 48/80
[6]. A scheme summarizing these experimental data is given in Fig. 1.
Also in an endotoxin-induced ileus model there is evidence for an
increased number and activity mast cells next to residential macro-
phages (personal communication) [14]. However more studies on the
role ofmast cells and theirmediators in sepsis-induced ileus are awaited.

Alternative strategies to stabilize mast cells have been explored
based on their expression of cholinergic receptors [42,78,79,88]. More
recently, additional experimental evidence has been obtained implicat-
ing cholinergic receptors expressed on mast cells as anti-inflammatory
therapy for POI. It was shown that vagal stimulation reduced the period
of intestinal hypomotility. Activation of nicotinic receptors on—
presumably—mast cells by vagal input was put forward to attenuate
mast cell activationby intestinalmanipulation [51,78] and thuspromote
gastrointestinal postoperativemotility. An interesting non-invasive and
physiological intervention to activate this neuroimmune pathway is
enteral administration of lipid-rich nutrition. Perioperative administra-
tion of lipid-rich nutrition reduced manipulation-induced local inflam-
mation of the intestine and accelerated recovery of bowel movement
[15,16]. It is likely that the cell types that are targeted by this nutritional
activation of CCK-dependent vagal signalling include mast cells,
explaining the amelioration of POI pathogenesis by high-lipid nutrition.

7. Evidence for the role of mast cells in human POI

In conjunction to the observed inflammatory response to intestinal
manipulation in rodent models, inflammation induced by handling of
the intestine is also demonstrated in human tissue. Intestinal tissue
removed during surgery shows activation of resident macrophages
and time-dependent induction of IL6, IL1β, TNFα, iNOS, COX-2, ICAM-
1 and LFA-1 [43–45,80]. In line with this, increased levels of the
cytokines TNFα, IL6, IL8 and IL10 have been documented in the
peritoneal fluid and blood of patients undergoing abdominal surgery
[80,81,85]. In conjunction, influx of leukocytes was clearly demon-
strated in intestinal tissue removed at the end of the surgical
procedure and in tissue obtained from re-operated patients [80,81].
In addition, in vivo recruitment of radio-labelled leukocytes to the
intestine was demonstrated in patients undergoing conventional
abdominal surgery, but not in patients undergoing a laparoscopic
procedure [80].

The importance of mast cells in the pathogenesis of POI could be
verified in human studies as well. Mast cell mediators are detected in
peritoneal lavage fluid very early during surgery that involved bowel
inspection and handling. Intestinal manipulation during abdominal
hysterectomy resulted in an immediate release of tryptase in the
peritoneal fluid followed by an increase of IL6 and IL8 [80]. The degree
of intestinal handling correlated with the degree of mast cell
activation and the subsequent inflammatory response. Even very
gentle inspection of the intestines at the beginning of the abdominal
procedure increased the level of peritoneal mast cell-derived tryptase
in this study [80,81]. Similar data were obtained by others that
showed that intestinal handling triggered mast cell activation [80] as
well as leukocyte infiltration in large bowel resection material [45].

Stabilization of mast cells has been proven successful in our mouse
model of POI [17]. Pre-treatment with the mast cell stabilizers
ketotifen and doxantrazole significantly reduced the release of mast
cell mediators in the peritoneal cavity, impaired the inflammatory
response to intestinal handling and prevented POI. Based on these
findings, we conducted a dose-finding pilot study on 60 patients
undergoing major abdominal surgery for gynaecological malignancy
with standardized anaesthesia, randomized to oral treatment with
ketotifen (4 or 12 mg) or placebo [81]. Gastric retention 1 h after
liquid intake was significantly reduced by the highest dose compared
to placebo. Abdominal cramps improved significantly in patients
treated with 12 mg ketotifen, whereas other clinical parameters were
unaffected. This study indirectly supports the mast cell-inflammation
cascade as key event in postoperative ileus, providing proof-of-
concept for further investigation of mast cell stabilizers as a
therapeutic approach for postoperative ileus.

8. Mast cells affecting barrier function in POI

Intestinal manipulation induces barrier dysfunction that is likely to
perpetuate the inflammatory response, acting via a mechanism that is
likely to be dependent on mast cells. In patients, barrier dysfunction
frequently occurs during abdominal surgery and has been associated
with increased postoperative septic morbidity in surgical patients
undergoing laparotomy [52,53,63,66]. In addition to a key role for
mast cells in intestinal manipulation (IM) induced inflammation in
this model of POI [17], as well as in humans [80,81], mast cell
activation has been associated with disturbed intestinal barrier
function in several disease entities such as stress-induced hypersen-
sitivity of the bowel [69] and endotoxemia [62]. Hence, mast cell
activation may be a contributing factor in the pathogenesis of POI by
inducing barrier disturbances after IM. Mast cells degranulate within
seconds to a few minutes upon chemical physical and pathogenic
stimuli. The quick release of mediators is responsible for a rapid loss of
barrier function in in vivo models of helminth infection [56], stress
[69] and endotoxemia [23].

The exact mechanistic role mast cells have in POI pathogenesis
remains to be demonstrated but in the above mentioned models, the
release of serine proteases, including tryptase, following triggering of
mast cells is responsible for an increase in epithelial permeability,
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possibly via the activation of protease activated receptor-2 (PAR-2) that
is expressedonepithelial cells (see Fig. 2). Apurported role formast cell-
related barrier disturbance in POI is not so far-fetched.Within the serosa
and mesentery, mast cells are found close to blood vessels before
entering the gut wall, often in pairs or threes, and particularly closely
associated with afferent nerve fibers (b25 μm) [13]. Mast cells are vital
for the recruitment of neutrophils and the elimination of bacteria from
the peritoneal cavity, which is exemplified by the fact that mast cell
deficient mice show a significantly increased mortality and impaired
bacterial clearance in a model of acute septic peritonitis [24].

As indicated, the exact nature of the mast cell mediator that affects
barrier function in POI remains to be elucidated, but it likely involves
similar rapid mechanisms and neuromediator release. Neuropeptides
such as substance P or CGRP released from activated afferent nerves
could be involved and once activated, vasoactive and proinflamma-
tory substances such as histamine, and proteases are released by mast
cells in the peritoneal cavity. As described above, both in rodents and
human, these agents can indeed be detected in the peritoneal fluid
immediately after intestinal manipulation. Other mediators, such as
IL1β, are presently considered as candidate mast cell-derived
cytokines involved in the pathogenesis of POI. Given the anatomical
location of mesenteric mast cells, i.e. adjacent to the mesenteric blood
vessels where these enter the intestinal wall [13], mast cell mediators
will easily diffuse into the mesenteric blood vessels. Despite the
involvement of T cell responses in POI [28], mast cell activity could
explain the diffuse increase in mucosal permeability observed after
intestinal manipulation [84]. When fluorescent LPS and fluorescent
microbeads are introduced into the intestine prior to surgery,
intestinal handling results in translocation of fluorescent material
through the mucosa into the intestinal wall. Once the beads enter the
intestinal wall, they are phagocytosed by the resident macrophages or
transported to the lymph nodes via the lymphatics and travel back to
the gut tissue [71,72,84]. As such, mast cell activation could represent
a key event that triggers the next stage of the inflammatory cascade,
i.e. activation of muscularis APCs and the subsequent widespread
inflammatory response [28]. Mast cells therefore should be consid-
ered as sentinels of the peritoneal cavity providing protection against
potential threats.

9. The option of mast cells inhibition measured against current
treatment of human POI

The preventive techniques and treatment of POI are reviewed
elsewhere [46]. Important to stress however is that for new drugs to
enter the clinic, they will have to prove their clinical benefit against or
in combination with the current new and exciting initiatives in peri-
operative patient care. In particular the fast track program, a
multimodal approach for patients undergoing colonic surgery, has
proven to significantly reduce the rate of peri-operative morbidity,
hospital stay and costs [46]. In this program, several peri-operative
measures, i.e. restricted fluid management, optimised analgesia,
forced patient mobilisation and early oral feeding, are introduced
into patient management with impressive results. Most likely fluid
restriction and an effective epidural analgesia are the key factors
determining the outcome. To what extent a similar improvement is
achieved in other types of surgery and whether the fast track program
can easily be implemented in a general surgical ward remains to be
awaited. Hence, it should be noted that that postsurgical recovery can
be significantly improved with relatively simple and cheap measures
rather than pharmacological intervention.

10. The role of mast cells in GI disease

10.1. Inflammatory bowel diseases

Inflammatory bowel diseases (IBD) includes ulcerative colitis
(UC), Crohn's disease (CD) and indeterminate colitis. It is generally
assumed that IBD results from an uncontrolled immune response in
genetically predisposed subjects towards a normal microbial gut flora
[64,91]. There is substantial evidence for the involvement of mast cells
and a mast cell-mediated neuroimmune interaction during IBD as
demonstrated both by experimental animal studies and humandata a.o.
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reviewed in [49,67]. Coldwell et al. showedan increasednumberofmast
cells close to afferent fibers containing CGRP in the inflamed serosa in a
rat model of dextrane sulphate sodium (DSS)-induced colitis, as well as
an increased percentage of colonic splanchnic afferentfibers responding
to 5-HT during acute inflammation (day 7) and in the recovery period
(21 days) [13]. In the trinitrobenzene sulfuric acid (TNBS)-induced rat
model of colitis an increase in mast cell number and activation is also
shown by others [58,92]. However, Menozzi et al. showed a differential
role of mast cells numbers in TNBS colitis in rats with a decrease in the
acute periodandan increase atday60 suggestinga role for themast cells
in the late phase in tissue repair [58]. A role for mast cells in fibroblast
proliferation, collagen production and contractile activity was also
shown by Xu et al. in a rat model of TNBS colitis [92]. Interestinglymast
cells seem not be essential in the development of TNBS colitis in rats as
TNBS induced similar degrees of colonic inflammation and adhesions in
mast cell deficient rats [34]. This conclusionwas supported by evidence
in an IL10 deficientmice,which are highly susceptible to developing IBD
for instance after exposure to the non-steroidal anti-inflammatory drug
piroxicam. IL10 deficient mice with mast cell deficiency developed
moderate to severe colitis after exposure to piroxicam to the same
degree asmast cell-sufficient IL10−/−mice, indicating that the absence
of mast cells did not affect the severity of IBD [12]. However, mast cell
deficiency predisposed the mice to develop spontaneous colitis
(without exposure to piroxicam) associated with increased intestinal
permeability indicating a protective role of mast cells probably related
by enhancing the efficacy of the intestinal barrier [12].

Another commonly used inflammatory model in rats is the DSS
colitis model. Also in this DSS colitis model, there is evidence for mast
cell proliferation and increased degranulation [40]. Also in cats with
enterocolitis an elevated number of mast cells were identified mainly
in the inflamed segments [47]. Eliakim et al. provided evidence for
mast cell involvement in an acetic acid-induced and a TNBS-induced
colitis model in rats by the use of the mast cell stabilizer ketotifen
[25,26,40]. Ketotifen significantly decreased macroscopic damage to
the colon accompanied by a decrease in platelet activating factor
(PAF), prostaglandin E2, thromboxane B2, leukotriene B4 and C4
generation and nitric oxide synthase activity [25,26]. The effect of
ketotifen was also shown in a model of Trichinella spiralis infection in
the rat by a reduction of mast cell hyperplasia, mast cell protease
activity and hypermotility in ketotifen-treated rats [73].
Concerning evidence for mast cells in human IBD, data are
reviewed the last years [19,38,67], showing an increased number of
mast cells in the colorectal mucosa, in the lamina propria and in the
submucosa from patients with CD and UC. Next, not only the mast cell
content but also the degranulation of mast cells was markedly altered
in the mucosa of IBD patients as evidenced by an increased expression
of TNFα, IL6, substance P and elevated histamine, prostaglandins,
leukotrienes and tryptase levels [2,65,70]. Together, these studies
suggest that mast cells are involved in chronic inflammation of the
gut. Also in IBD, the bidirectional communication between mast cells
and nerves stands as mediators from both cell types are capable of
stimulating or inhibiting each other's function. Mast cell and neuronal
mediators can increase vascular permeability, influx of inflammatory
cells, gut motility and hyperalgesia [67]. Nevertheless, direct evidence
for the interaction between mast cells and nerves is limited in the
pathogenesis of IBD as it is the case for ileus. Limitations are the
difficulty of studying this interaction directly in human colon and the
search for the first trigger for activation of mast cells or nerves also
remains a key question.

The therapeutic potential of mast cell stabilizers in the treatment of
IBD merits further investigations. This potential is supported by the
followingevidence. On the onehand someof thedrugs currently used in
the treatment of IBD possess properties affecting mast cell activities
such as 5-aminosalicylic acid, steroid therapy and methotrexate as
evidenced by in vitro research [38]. 5-Aminosalicylic acid inhibits
histamine and prostaglandin D2 release in stimulated intestinal mast
cells in vitro [33]. And it has beenknown for decades that corticosteroids
reduce the number ofmast cells in rectal biopsies of IBD patients treated
with corticosteroids independent of the degree of inflammation [37],
whereas dexamethasone was shown to affect the growth and
differentiation of bonemarrow derivedmucosal mast cells in vitro [57].

On the other hand some preliminary data on ketotifen in the
treatment of IBD are available [38]. Marshall and Irvine describe 3 case
reports with a benefit from ketotifen in the treatment of respectively a
patient with Crohn's disease, colitis ulcerosa and collagenous colitis
[55], whereas Jones et al. report the beneficial effect of ketotifen in 5
out of 10 children with mild to moderate ulcerative colitis [41].
Although this evidence is rather anecdotal, a more recent open-label
phase II multicentre pilot study in 56 patients with mild to moderate
active ulcerative colitis showed a beneficial effect of APC 2059, a
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tryptase inhibitor, as evidenced by an improvement or normalization
of the disease activity index in more than half of the patients with
continuing symptoms despite oral 5-aminosalicylate therapy [82].
The tryptase inhibitor proved to be safewith asmost common adverse
events reported in more than 10% of the patients headache (19.6%),
injection site erythema (12.5%), and injection site burning (10.7%)
[82].

11. Concluding remarks

Both the experimental data and the clinical data support further
research on mast cell-related therapy either by stabilizing the mast
cells or by blocking specific mast cell mediators as adjunctive therapy
in IBD or motility disturbances associated with intestinal inflamma-
tion. In accepting that the “inflammatory” or “secondary prolonged”
phase of POI is clinically most relevant, therapy should preferentially
aim to prevent or reduce the inflammatory response to intestinal
handling. Needless to stress though that interference with the
immune response—or mast cell stabilization—may have devastating
effects on the first defence against bacterial infection and perhaps
even more importantly on wound healing. The latter is of clinical
importance as increased risk on anastomotic leak is the most feared
consequence of any immune modulating therapy. Even if drugs prove
to be safe, ideally, handling of the intestine should be prevented or
minimized, most likely explaining the shortened POI reported after
minimal invasive or laparoscopic procedures. Moreover, one would
rather like to prevent than to treat inflammation, again provided that
treatment does not interfere with the healing process or does not lead
to an increased risk of infectious complications. Interference early in
the inflammatory cascade may also be more effective compared to
drugs administered at a later stage when inflammation is well
established and a variety of inflammatory mediators are released.
Therefore, given the fact that mast cells and macrophages initiate and
to a large extent orchestrate the cascade of events, these immune cells
seem to be the most interesting targets for treatment.

It remains an intriguing question whether the main initiators of
the inflammatory cascade are residential macrophages or mast cells.
The role of residential APCs (dendritic cells or macrophages) is
undoubtedly proven [18,28–30,44,48] and some authors support their
role as first responders and conductors orchestrating the inflamma-
tory events after surgical manipulation or endotoxin exposure [4].
Recently, a hypothesis was proposed suggesting a first responder role
for peritoneal mast cells adjacent to mesenteric blood vessels.
According to this hypothesis neuropeptides, such as substance P and
calcitonin gene-related peptide (CGRP), released from the adjacent
afferent neurons activate mast cells that on their turn release
proinflammatory mediators into the peritoneal cavity. Via the blood
circulation, these mediators increase mucosal permeability, allowing
luminal bacteria and/or bacterial products to enter the gastrointes-
tinal wall and activate the resident macrophages triggering intracel-
lular signalling pathways, leading to transcription of inflammatory
molecules, cytokines, chemokines and adhesion molecules. This
hypothesis needs to be proven experimentally and meanwhile it
remains necessary to further investigate the interplay between these
initiating cells and the nervous system as both the mediators released
from mast cells and from residential macrophages are able to affect
neuronal pathways within the gastrointestinal wall and from the
gastrointestinal wall towards higher brain centres.

Also in IBD mast cells might participate in the neuroimmune
interactions leading to visceral sensitivity and motility disturbances.
Although it is generally believed that mast cells might not be the crucial
initiators of pathology in IBD, mast cell stabilizing drugs or drugs
interfering with mast cell mediator activity might be a adjunctive
therapeutic possibility in the treatment of IBD. These hypotheses support
further research in the interplay betweenmast cells, immunological cells
and the neuronal pathways.
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