
ELSEVIER Theoretical Computer Science 182 (1997) 159-I 70

Theoretical
Computer Science

On the computational power of self-stabilizing systems ’

James Abello ‘J, Shlomi Dolev b,*

a Departmeni of’ Computer Science, Tesas A&M University, College Station, TX 77843, USA

b Depurtment qf’ Mathemntics und Computer Science, Ben-Gurion Urkersity of’ the Negev.

Beer-Shevu, Israel

Received July 1994; revised June 1995

Communicated by MS. Paterson

Abstract

The computational power of self-stabilizing distributed systems is examined. Assuming avail-
ability of any number of processors, each with (small) constant size memory we show that any
computable problem can be realized in a self-stabilizing fashion.

The result is derived by presenting a distributed system which tolerates transient faults and
simulates the execution of a Turing machine. The total amount of memory required by the
distributed system is equal to the memory used by the Turing machine (up to a constant factor).

1. Introduction

Our motivation to explore the power of interconnected processors with constant size

memory was first triggered by the following questions: What is the relation between

the computational power of a single powerM computer and a distributed system of

limited power and memory processors that are subject to transient faults? The approach

is different from the one taken by the parallel algorithm community [13]. The concern

in this work is the fault tolerance of the algorithm rather than the time it takes to

execute its task. We view a distributed system as a stand-alone system (as opposed to

a single-site parallel machine that can be locally controlled) that runs on-going tasks

and is able to overcome faults.

In particular, we are interested in self-stabilizing systems. A self-stabilizing system is

a system that can be started in any possible global state. A transient fault is a fault that

cause the state of a processor to change arbitrarily. Self-stabilizing systems can tolerate

* Corresponding author. E-mail: dolev@cs.bgu.ac.il. Part of this work was done while this author was at the

department of computer science, Texas A&M University, College Station, TX 77843. Supported in part by

TAMU Engineering Excellence funds and NSF Presidential Young Investigator Award CCR-9158478.

’ An extended abstract of this paper was presented at the 6th International Conference on Computing and

Information, Canada, May 1994.

’ E-mail: abello@cs.tamu.edu. Supported in part by NSF grant CCR-9304081.

0304-3975/97/$17.00 @ l997-Elsevier Science B.V. All rights reserved

PII SO304-3975(96)00150-S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82614828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

160 J. Abello. S. Dolevl Theoretical Computer Science 182 (1997) 159-l 70

transient faults. When the intermediate period between two successive transient faults is

long enough the system stabilizes. Following its stabilization the system demonstrates

its desired predefined behavior.

In this paper we consider a distributed system of processors each with a constant

amount of memory. In order to understand the inherent behavior of the system we

examine the extreme case where each processor is equipped with only few bits of

memory. The reference powerful computer is modeled by a Turing machine. Theoreti-

cally there is no upper bound on the amount of memory needed for storing the program

that a computer needs to execute. This fact is also true in terms of Turing machines -

where the program corresponds to the transition table. In order to eliminate the table

size factor we consider only a specific deterministic universal Turing machine (denoted

in the sequel by TM) [lo].

Input and output are given in a distributed fashion. Each processor may receive part

of the input, and should output part of the output. Since the processors have constant

memory size, the input consists of no more than a constant number of bits. Note

that the input length might be shorter than the number of processors in the system. To

simplify presentation, when the number of processors is II and the input length is I < n,

we concatenate the word I”-’ to the original input word to obtain an input of length

n. The output of the processors must (eventually) be correct with respect to the inputs.

Note that the input can be changed during the execution of the algorithm. In this paper,

we only focus on long enough periods of time in which the input is fixed and require

that the output will correspond to the input some time after each such period begins.

Our distributed system is connected in a chain topology. The chain is only an abstrac-

tion of a predefined marked chain over any general graph. In particular, a system with a

predefined ring (as is the case for token ring protocols) and a predefined leader fits this

model. Each processor in the chain could be a communication port processor with lim-

ited resources of memory and computation. The number of processors in the chain is not

a priori restricted. Obviously, any existing hardware is finite and the number of proces-

sors in the system is also finite. However, in order to have a base for comparison with

the infinite tape of a Turing machine we do not a priori restrict the number of proces-

sors. For any given n we construct a self-stabilizing distributed system with n constant

memory processors. A distributed system of 12 processors accepts (rejects) the input iff

the corresponding Turing machine accepts (rejects, respectively) the same input using

no more than n memory cells of its working tape. When the Turing machine uses more

than n memory cells during the computation (or uses less memory cells but does not

halt) the processors of the distributed system outputs, ‘L’, as a “don’t know” symbol.

Certainly, a TM can simulate the execution of any distributed system using the same

amount of memory (up to a constant factor). Interestingly enough, the main result of

this paper shows that processors with (small) constant amount of memory can tolerate

transient faults and obtain the same result as a fault free execution of a TM. Namely,

we show that a distributed system of interconnected constant-size memory processors

can simulate the computation of a TM in the presence of transient faults. The total

amount of memory required by the distributed system during the computation with the

J Abello, S. Doleri Theoretical Computer Scienw 182 (1997) 159-170

input word w is equal to the memory used by the TM with the input word

a constant factor).

The study of self-stabilizing algorithms started with the fundamental

161

w (up to

paper of

Dijkstra, [4], where three self-stabilizing algorithms for the mutual exclusion problem

were presented. Recently, an extensive effort has been directed towards finding time

and memory efficient self-stabilizing algorithms (cf. [l, 5,6, 141). Most recent works

assume the existence of distinct identifiers (cf. [l, 51). The use of distinct identifiers

yields a lower bound of Q(logn) bits for the size of memory per processor. Thus,

those solutions do not apply to systems with constant memory size processors. Other

recent works use randomization in order to break symmetry (cf. [2,8, 11, 12,151). In

this paper we neither assume distinct identifiers nor use randomization. We restrict the

system topology to be a directed chain with a leader processor at one endpoint and a

tuil processor in the other. Our system simulates a Turing machine computation in a

self-stabilizing fashion.

In [9], it is proposed to use simulation in proving the possibility to force or preserve

the self-stabilization property for different systems. The simulation of a TM by another

system is not considered. In [161, the question of whether a polynomial self-stabilizing

finite state program exists for decision problems is considered. Our goal is different, we

simulate a Turing machine by a self-stabilizing distributed system of constant-memory

processors in order to examine the computation power of the fault-tolerant distributed

system. The remainder of the paper is organized as follows. In the next section we

formalize the assumptions and requirements. Section 3 contains the description of our

algorithm. Concluding remarks are in Section 4.

2. Distributed system

We consider distributed systems that consist of processors Pt, Pz,. . , P,, that are

connected in a chain. The processors are anonymous, the subscripts 1 to n are used

only for convenience. No processor knows n the number of processors. Processors have

sense of direction, i.e. for j > 1, Pi-1 is the left neighbor of Pj and for j < n, Pj,,

is the right neighbor of P,. PI is the leader processor, P, is the tail processor and the

rest of the processors are intermediate processors.

The reader may refer to [6, S] for the full (standard) definitions we use for config-

uration, atomic step, fair execution, and asynchronous round. Processors communicate

by the use of shared communication registers. 3 Two neighboring processors fi and 4,

communicate by two shared registers yi, and Yj;. E (Pj) writes in rg (rJi) and reads

from Yj; (~0). In addition to accessing its neighbors communication registers, each

processor E can repeatedly read one symbol of input from Ii, its input register, and

3 In the context of self-stabilizing algorithms the use of shared communication simplifies the presentation

with respect to the message passing model. However, our results can be applied to message passing systems

as well by using methods presented in [7].

162 J. Abello, S. DolevlTi~eoretical Computer Science 182 (1997) 159-170

repeatedly write one symbol of output to its output register Oi. The content of I, and

Oi is either 0, 1 or 1. We view the concatenation of the input symbols as a fixed

word in (0, 1)’ I”-’ where n > 1.

The state of a processor fully describes its internal state and value written in its

registers including the output and input registers. A conjiguration is a vector of states

of all processors. Processors execute atomic steps. An atomic step consist of some local

computation followed by either a read from a communication register and input symbol

or a write in a communication register and the output symbol. An execution of the

system is a sequence of configurations E = (cl, cl,. . .) such that for i = 1,2,. . . , Ci+l is

reached from ci by a single atomic step of some processor. Given an execution E, the

first round of E is finished immediately after each processor has executed one atomic

step; the second round is finished after each processor has executed one atomic step

following the termination of the first round, and so on and so forth.

The requirements for self-stabilizing algorithms state the conditions under which the

system has to stabilize when started in an arbitrary configuration and specifies the

required behavior of the system following the stabilization period. Next we define the

self-stabilization requirements for our distributed algorithm d. Let w be a word in

(0, I}‘. An algorithm d is self-stabilizing if for any finite n, when d is executed by

a system of n processors and is started in uny possible configuration, c, with input

word w I”-’ (n 2 I) then: (1) any fair execution that starts with c has a suffix in

which the output of every processor fi is constant and, (2) this constant output is 1

(0, respectively), if the TM accepts (rejects) w using no more than n working tape

cells, otherwise the output is i.

3. The reduction

A self-stabilizing mutual exclusion algorithm serves as a building block in our al-

gorithm. The self-stabilizing mutual exclusion algorithm guarantees that starting with

any possible configuration, after a finite number of asynchronous rounds every con-

figuration contains exactly one processor which is executing the critical section. The

mutual exclusion algorithm of [6] and the coloring algorithm of [8] use only constant

number of states per processor and ensure that in every fair execution following the

stabilization period the single token repeatedly “travels” from the leader to the tail and

back. For simplicity we consider a processor that executes the critical section as hold-

ing a token. We use the terms send token and receive token to indicate transfer of the

privilege to execute the critical section from one processor to another. Note that before

a processor P transfers the privilege to execute the critical section, P can write in its

shared communication register a “content” for the token. Thus, we view the token as

an entity with a value that is transferred from one processor to another.

The (eventual) behavior of the token is used to ensure that the chain of proces-

sors will repeatedly write only the correct output, The processors repeatedly simulate

the execution of the TM. Whenever a simulation of the TM computation is over, the

J. Abello, S. Dolevl Theoretical Compufer Science 182 (1997) 159-170 163

processors are initialized to start a new simulation. The initialization does not effect the

value of the output registers. The result of the simulation is overwritten to the output

registers. Once the result of the simulation is correct any further write operation into

the output registers (which is also a result of a correct simulation) does not change

the value stored in these registers. A single step of the TM is simulated each time the

token travels from the leader to the tail and back. Each processor contains the infor-

mation of a single working tape cell. In every configuration of a correct simulation

(one that follows correct initialization) there exists a single processor that is marked

to hold the head of the TM. Whenever the token reaches the processor that holds the

head of the TM the value of the working tape cell and the current state of the TM are

used to calculate the transition of the TM. The transition includes modification of the

contents of the working tape cell, change of the TM state and movement of the head

mark to a neighboring processor.

Due to the self-stabilizing setting the simulation might not terminate. The following

observation is used to ensure detection of a non-terminating simulation: A TM that

reaches the same configuration twice in a single computation does not ever halt. Since

our system is finite we propose to count the number of the TM configurations during

the computation. To do so with a constant amount of memory per a processor we

suggest using a distributed binary counter. Each processor maintains only two bits of

the counter. The distributed counter is incremented by one in every step of the TM.

The tail processor that holds the least significant bits starts to increment the counter

whenever the token arrives to it. Indication of a carry is sent to the left neighbor when

appropriate. If a counter overflow occurs before the TM accepts or rejects the input

then the system is initialized.

In more detail, each processor fi maintains two bits of the distributed counter in

CntBits,. When a token arrives to P,, P, computes the new value for CntBits, and the

carry. Then P, writes the carry value in TknCr to its neighbor P,_I. Whenever the

leader PI, detects a counter overtlow the leader resets the system. The following activi-

ties occur during this reset (1) every processor 8 writes its input to WrkSym, which is

the i’th cell of the virtual TM working tape, (2) every processor 9 set a flag HdMrki

to be false, the only exception is the leader (PI) which sets HdMrki to be true, (3) the

binary counter bits of each processor are set to 00. Following the first reset the chain

implements a virtual TM. The computation of the TM is simulated during the traversal

of the token from the leader to the tail; when a processor Pi with HdMrk, = T receives

a token that traverses in this direction the (constant space) TM table is used to deter-

mine the value for WrkSym,, the movement of the head and the new TM state. Then

the system reaches the new TM configuration by changing the virtual working tape, the

head marker location and the TM state accordingly. Note that the token continues to

the right. Hence, in case the direction of the head movement is towards the leader, the

transition of the TM head is delayed until the token arrives from the direction of the tail.

Next we briefly describe the conventions, variables, functions and statements that are

used in the code of the algorithm. Upon arrival of a token the code of a processor is

executed sequentially from its beginning to its end; the labels that appear in the code

164 J. Ahello. S. Doleal Theoretical Computer Science IX2 (1997) 159-170

(e.g. Ll, L2) are used only for the sake of readability. The symbols ‘{’ and ‘}’ are

used to denote the beginning and the end, respectively, of the portion of the code that

is executed when the condition of the appropriate if statement is satisfied.

The token value: The token is a combination of three field values. TknCr: is used

to indicate carry for the binary increment. Its value is either 0 or 1. TknRst: indicates

a reset execution. Its value is either T or F. TknTMSta: encodes the current state of

(the universal) TM. Every possible state (of the constant number of states of TM) can

be encoded in TknTMSta. In addition I is used to represent “no-state” during reset

executions.

Local variables used by each processor: There are five local variables. RTkn:

Stores the value of the token received. CntBits: This variable contains two bits of the

distributed counter. HdMrk: Indication on the presence of the TM head. The value of

HdMrk is eithr T or F. HdMov: Indicates the computed movement of the head. either

Left, Right or Stay. WrkSym: The working tape symbol, every possible working symbol

(of the constant number of working symbols of TM) can be encoded in WrkSym.

The functions used in the code: TM(Initia1) - results with the initial state of TM.

TknTMSta, WrkSymi, HdMovi := TM(Tkn.TMSta, WrkSymi): uses the current Tkn.

TMSta and WrkSym, and TM transition table to compute the next TknTMSta, WrkSym,

and HdMovi. Note that we define the result of the statement TM(I, WrkSym) to be

the same as that of TM(TM(Initial), WrkSym).

The program of the leader 9: Upon arrival of a token (from 4) statements Ll

to L6 of Fig. 1 are executed sequentially. Ll: The value of the received token is

stored in RTkn before it is modified. L2: This statement checks whether a counter

overflow occurs, then checks whether the computation is over and initiates a reset if

either happens. Following the examination for overflow, CntBitsi are incremented by

1 (in case of overflow the result is 00). L3: This statement is executed when a head

mark of TM is presented in PI. In such a case the transition function is computed using

the state of the TM as received with the token and the work tape symbol WrkSym,.

When the next head movement is towards 9, PI clears the indication on the presence

of the head and prepares TknHdMrk to indicate on the transition of the head to P2. PI

assigns Tkn.Rst := T, when the next head movement causes failure of the head from

the working tape. L4: When an indication on head movement from 9 to PI is received,

PI assigns HdMrk := T and clears the head transition indication in TknHdMrk. L5:

A reset indication (due to L2, L3 or arrival of a token with TknRst = T) triggers

initialization of the work tape symbol, the head marker (at PI), the counter bits and

the Turing machine state. If the last computation has been terminated “normally” then

the output symbol is the result of the computation and the Turing machine state is the

initial state. Otherwise, the Turing machine state and the output symbol are set to I

to indicate “abnormal” termination. L6: PI sends the token to 9.

J. Ahello, S. Dolevl Theoretical Computer Science 182 (1997) 159-170 165

Fig. 1. Algorithm for the leader Pt

The program of the tail P,,: Upon arrival of a token (from P,_I) statements Tl to

T7 of Fig. 2 are sequentially executed. Tl : The value of the received token is stored

in RTkn before it is modified. T2: Similar to L3. The difference is in the case of head

failure - a right movement implies head failure. T3: Similar to L4. T4: When a token

arrives with a TknRst = T the work tape symbol, head marker and counter bits are

initialized. In addition the TknRst is assigned by F to indicate the completion of the

reset. This last assignment is not executed when P, initiates the reset (in T2). In such

a case TknRst is sent to the leader which in turn resets the entire system. T5: The

output is assigned according to Tkn.TMSta when the computation results with accept,

reject or when a reset is initiated (i.e. Tkn.TMSta=_L). T6: The counter is incremented

by 1. T7: The token is sent to P,_ I.

The program of intermediate processor P,: Upon arrival of a token from Pi- I state-

ments 11 to I5 (Fig. 3) are executed sequentially. 11: The value of the received token

is stored in RTkn before it is modified. 12: Similar to L3 and T2, with no head failure

possibility. 13: Similar to L4 and T3. 14: A token with Tkn.Rst=T causes initialization

of the working tape, head marker and counter bits. 15: The token is sent to Pi+l.

Upon arrival of a token from Pi+l, statements 16 to 111 (Fig. 4) are executed

sequentially. 16: The value of the received token is stored in RTkn before it is modified.

17: The counter is incremented (when the token moves from the tail to the leader). 18:

The head of the Turing machine moves from Pi+, to Pi. The assignment HdMov:=Stay

166 J. Abello, S. Dolevl Theoretical Computer Science 182 (1997) 159-170

ReceiveLead(Tkn)
Tl: R:I‘kn:=Tkn
T’: if Hd!vlrk,,=‘r thrn

{‘Tkn.TMSta.t~rkSynl,,.Htll\lo~,,:=
?‘M(Tkn.TMSta.~~rkS~tll,,)}

if Hdhlov,,=Left, then
{Tkn.HdMrk:=‘I’; HdMrk,,:= F)

if HdWov,,=Hight thrn
{Tku.Rst:=T: HdClrk,:= F]

T3: if RTkn.HdMrk = T thru
{Hd.\lrk,,:=T: Tkn.HdMrk:= F)

T4: if Tkn.Hst.=T l.1~1
{ WrkSym,,:=l,,: HdMrk,, :=F:
(‘i>tBits,, :=W)
if RTkn.Rst=l‘ t.hrr~

(‘l‘kn.Rst:=F)
T5: if Tkn.TMSta E (occepl.~jccl.l) lhcn

{O,:=TM(Tkn.T.\ISta))
‘T6: if CntBits,,= I1 theu

{Tkn.Cr:= I)
clsr {Tkn.Cr:=U)
CntBits,:=(‘ntBits,, + I

Ti: SendLead(Tkn)

Fig. 2. Algorithm for the tail P,,.

RcceiveLead(Tkn)
II: RTkn:=Tku
IL?: if HdMrki=T the11

{Tkn.TMSt,a.~~rkSym,,HdMovi:=
TM(Tkn.TMSta.\VrkSym,)}

if HdMov,=Right then
{Tkn.HdMrk:=T; HdMrk,:= F)

13: if RTkn.HdMrk = T t~hen
{HdMrk,:=T; Tkn.HdMrk:= F;
HdMov,:=Stay}

14: if Tkn.R.st=T then
{WrkSym,:=I,; HdAIrk,:=F:
CntBits,:=OO}

1.i: SendTail(Tkn)

ReceiveTail(Tkn)
16: RTkn:=Tkn
17: if Tkn.Cr=l and CntBit.s,= I I then

{Tkn.Cr:=l)
else {Tkn.Cr:=O}
CntBits,:=CntBits, + Tkn.(.‘r

18: if RTkn.HdMrk = T then
{HdMrki:=T; Tkn.Hdhlrk:= F;
HdMov,:=Stay)

19: if HdMrk,=T and HdMov,=Lrft t.hen
{Tkn.HdMrk:=T; HdMrk,:= F}

110: if Tkn.TMSta E (occepl.rcjrc/.J_) then
{O,:=TM(Tkn.TMSta)}

111: SendLead(Tkn)

Fig. 3. Algorithm for intermediate P,, token to- Fig. 4. Algorithm

wards tail. wards leader.

makes sure that 19 is not executed. 19: The transition of the

occurs when the token arrives from Pi+, . 110: Similar to T5.

Pi_,.

3.1. Correctness proof

for intermediate P,, token to-

head of the TM to Pi-1

I1 1: The token is sent to

The correctness hinges on the existence of a self-stabilizing mutual exclusion algo-

rithm. In particular, the coloring algorithm of [8] guarantees that in any fair execution,

after O(n) rounds, a safe conj@uratiun for the mutual exclusion algorithm, cme, is

reached such that, in any configuration that appears after c,,,,, there exists at most one

J. Abello. S. Dolevl Theoretical Computer Science 182 (1997) 159-I 70 167

processor that executes the critical section. Moreover, following c,, the processors re-

peatedly execute the critical section in a fixed order, from the leader to the tail and

back; at least one transfer of the token from a processor to its neighbor is made in ev-

ery two successive rounds. Note that before the safe configuration c,, is reached there

can be many tokens. In this period of time our algorithm does not operate correctly.

Thus, when the mutual-exclusion algorithm stabilizes, the other part of the algorithm

(that assumes the existence of a token that travels nicely from the leader to the tail

and back) is in an arbitrary state. For example in such an arbitrary state more than one

processor can have HdMrk=T. We prove that this part of the algorithm stabilizes too.

Lemma 3.1. In every fair execution that starts with a safe configuration c,, of the

mutual exclusion algorithm, the leader assigns Tkn.Rst:=T at least once in every

4n2’” rounds.

Proof. Assume towards contradiction that the leader does not initiate a reset for 4n22”

rounds. Let cl be the configuration in the beginning of those 4n22”. cl follows c,,

thus during those rounds the single token repeatedly travels from the leader to the tail

and back, each such traversal takes no more than 4n rounds (i.e. two rounds for each

move). In each traversal from the tail to the leader the binary counter is incremented

by one. The value of the binary counter in CI is an arbitrary non-negative number.

Thus, if the leader does not initiate a reset during 4n22” steps following c,, then an

overflow of the counter occurs and triggers a reset initialization. This contradiction

proves the lemma. 0

It is easy to see that following c me whenever the leader sends a token with

Tkn.Rst:=T the token initializes the working tape bits, the counter bits, the place

of the TM’s head, and the TM state.

Lemma 3.2. In any fair execution that starts with a safe configuration c,, of the

mutual exclusion algorithm, after the leader assigns Tkn. Rst:=T and sends the token,

the token travels to the tail and every processor that receives the token initiates its

variables.

Let C be the number of states of a TM. Note that, by [10, pp. 1731 and [171, C < 56.

The next lemma is proved by a simple counting argument.

Lemma 3.3. The number of different TM configurations with u tape of size n and

{O,l} alphabet is at most Cn22”.

Proof. There are n possibilities for the place of the first _L in the working tape and

at most 2” possible working tape contents until the place of the first 1. There are n

possibilities for the location of the Turing machine head and C possibilities for the

current TM state. 0

168 J. Abello, S. Dolevl Theoretical Computer Science 182 (1997) 159-170

Define a reset initialization configuration, cinit, to be a configuration that follows

c,, such that cinit immediately follows an atomic step of the leader in which it assigns

Tkn.Rst:=T. For every reset initialization configuration, cinir, we define a reset termi-

nation configuration, cterm to be the first configuration after cinit that follows an atomic

step of the leader in which the leader receives the token.

Lemma 3.4. In the second reset termination configuration after c,,, all the output

registers are identical. Moreover the outputs are 1 (0, respectively) ifs TM accepts

(rejects, respectively) w with a working tape of size n. Otherwise, the output is 1.

Proof. First note that if a TM is in a certain machine configuration more than once

before TM accepts or rejects then the TM does not halt. This observation is straight-

forward since the TM is deterministic and it repeats the same execution forever. Thus,

if the execution encodes more than Cn*2” configurations and the TM does not accept

or reject w then the TM reached a certain configuration at least twice and it will never

halt. By Lemma 3.2 and by the algorithm following the first reset termination configu-

ration that follows cme the distributed system simulates the TM computation and counts

the TM configurations. Thus, a reset is triggered when either (1) the TM reaches a

state in which it accepts or rejects w or (2) when the counter reaches 2’” > Cn22” (for

n > 14) or (3) when the head of the TM attempts to move to the left of the leader

or to the right of the tail. Hence, before the second reset termination configuration the

outputs of the processors are correctly set. 0

Theorem 3.5. In every fair execution after 0(n22n) rounds, in every configuration

the output of each processor is accept (reject) if the TM accepts (rejects) w with

working tape of size n. Otherwise, the output is 1.

Proof. By Lemma 2 of [8], c,, is reached within O(n) rounds. By Lemma 3.1, the

first cterm appears during the first 4n22” rounds that follows c,,. By Lemma 3.4 during

an additional 4n22” rounds each processor either receives a token with TMSta that

indicates acceptance or rejection or with Tkn.TMSta=_L. Since any further computation

that begins with a later reset is identical, the output is not changed. 0

4. Concluding remarks

In this paper we investigated the computational power of self-stabilizing systems

with constant memory size processors. Interestingly, interconnected processors with a

(small) constant amount of memory can tolerate transient faults and obtain the same

result as a fault free execution of a TM. This implies that when there is an embedded

ring with a leader in a system with constant memory size processors, the system copes

with transient faults and still has the computational power of a TM with the same total

amount of memory (up to a constant factor).

J. Ah&o, S. Dolecl Theorrrical Computer Science 182 (1997) 159-170 169

The algorithm presented in Section 3 requires 0(n22n) rounds to stabilize. The al-

gorithm can be accelerated by the use of an upper bound on the execution time of the

TM. When an upper bound t(w) on the execution time of the TM (for an input word

w) is known, and could be given as a part of the input, then our algorithm can stabilize

within O(nt(w)) time. The use of a counter to reinitiate the system by counting the

steps in the execution and comparing with a given bound had been previously used

in, e.g., [3,9, 161. To accelerate the algorithm, we suggest implementing the counter

in a distributed fashion using constant memory per processor. The modified algorithm

will compare the input step bound with the step counter and give an indication to the

leader when the step counter exceeds the step bound.

Acknowledgements

We would like to thank the editor Mike Paterson and the anonymous referees for

their constructive comments. We also thank Alex Ribman for simulating the code.

References

[I] B. Awerbuch, S. Kutten, Y. Mansour, B. Pa&Shamir and G. Varghese, Time optimal self-stabilizing

synchronization, Proc. 25th Annual ACM Symp. on Theory of’ Computing (1993) 652-661.

[2] B. Awerbuch and R. Ostrovsky, Memory-efficient and self-stabilizing network reset, Proc. Z3th Ann&

ACM Symp. on Principles of Distributed Computing (1994) 254-263.

[3] B. Awerbuch and G. Varghese, Distributed program checking: a paradigm for building self-stabilizing

distributed protocols, Proc. 32nd IEEE Symp. on Foundations of’ Computer Science (1991) 258-267.

[4] E.W. Dijkstra, Self-stabilizing systems m spite of distributed control, Comm. ACM 17 (I I) (I 974)

643-644.

[5] S. Dolev, Optimal time self-stabilization in dynamic systems, Proc. 7th Internut. Workshop on

Distributed Algorithms (1993) 160-I 73

[h] S. Dolev, A. Israeli and S. Moran, Self stabilization of dynamic systems assuming only read/write

atomicity, Proc. Ninth Ann& ACM Symp. on Principles qf Distributed Computation, Montreal

(1990) 103~117; Distrih. Cornput. 7 (1993) 3-16.

[71 S. Dolev, A. Israeli and S. Moran, Resource bounds for self-stabilizing message driven protocols, Proc.

Tenth Annual ACM Sysp. on Priwiples qf Distributed Computation, Montreal (1991) 28 l-294;

a journal version to appear in SIAM J. Comput.

[8] S. Dolev, A. Israeli and S. Moran, Uniform dynamic self-stabilizing leader election, Proc. 5th Internat.

Work.vhop on Distributed A!yorithms, Delphi (I 991) 163-l 80; Part of the results appears in IEEE

Trans. Sq/twure Eng. 21 (5) (1995) 429-439 and TR 94-039, Dept. of Computer Science. Texas

A&M Univ.

[9] M.G. Gouda, R.R. Howell and L.E. Rosier, The instability of self-stabilization, Acta Injtirm. 27 (I 990)

697-124.

[IO] J.E. Hopcroft and J.D. Ullman, Introduction to Automutu Theory. Lunguuyrs and Computution

(Addison-Wesley, Reading, MA, 1979).

:I I] A. Israeli and M. Jalfon, Token management schemes and random walks yield self stabilizing mutual

exclusion, Proc. Ninth Annual ACM Sy77p. on Principles oj’ Distributed Computation, Montreal

(1990) 119-130.

[12] G. ltkis and L. Levin, Fast and lean self-stabilizing asynchronous protocol, Proc 36th Annual IEEE

Sump. on Foundations of Computer Science (1994) 226-239.

170 J. Abello, S. Dolevl Theoretical Computer Science I82 (1997) 159-l 70

[13] R. Karp and V. Ramachandran, A survey of parallel algorithms for shared memory machines, Technical

Report UCB/CSD 881408, Computer Science Division, Univ. California, 1988; also in Handbook of
Theoretical Computer Science, J. van Leeuwen, ed. (Elsevier, Amsterdam, 1990) 869-941.

[I41 L. Lamport, The mutual exclusion problem: Part II - Statement and solutions, J. ACM 33 (1986)

327-348.

[15] A. Mayer, Y. Ofek, R. Ostrovsky and M. Yung, Self-stabilizing symmetry breaking in constant-space,

Proc. 24th ACM Conf: on Theory of Computing (1992) 667-678.
[16] M. Schneider, Self-stabilizing real-time decision systems, Responsive Computer Systems: Steps Toward

Fault-Tolerant Real-Time Systems (Kluwer Academic, Dordrecht, 1995).

[171 C.E. Shannon, A universal Turing machine with two internal states, Automata Studies (Princeton Univ.

Press, Princeton, NJ, 1956) 157-167.

