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Abstract

Given two regular languages R1 and R2 with R1 ⊆ R2, one can e1ectively determine the
number of nonterminals in a nonterminal-minimal (generalized) right linear grammar generating
a regular language R with R1 ⊆ R ⊆ R2, and the number of states in a state-minimal (generalized)
nondeterministic 4nite automaton accepting a regular language R with R1 ⊆ R ⊆ R2. c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

A (generalized) right linear grammar (in short, an rl grammar) G is a quadruple,
〈V; �; P; S〉, where V is a 4nite set of nonterminals, � is a 4nite alphabet, P is a 4nite
set of production rules, and S ∈V is the start symbol. Here, any rule in P is of one of
the following forms: A→ uB or A→ v for some A; B∈V and u; v∈�∗. L(G) denotes the
language generated by G, and n(G) denotes the cardinality of V; |V |. For any regular
language R, we de4ne n(R) by n(R)= min{n(G) |G is an rl grammar generating R}.
An rl grammar G is R-nonterminal-minimal if L(G)=R and n(G)= n(R).
Ibarra [3] posed the following problem.

Problem A. Is it decidable to determine n(R) for any given regular language R?
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In [2], the author presents an a%rmative answer to this problem by presenting an
algorithm for determining n(R) for any given regular language R.
In this note, we shall study the following problem. Let R1 and R2 be two regular

languages. We de4ne n(R1; R2) by n(R1; R2)= min{n(R) |R is a regular language with
R1⊆R⊆R2} if R1⊆R2 and n(R1; R2)=∞ otherwise.
An rl grammar G is (R1; R2)-nonterminal-minimal if R1⊆L(G)⊆R2 and n(G)=

n(R1; R2).

Problem B. Is it decidable to determine n(R1; R2) for any given two regular languages
R1; R2?

The main result of this note is Theorem 2:1 below from which an a%rmative answer
to Problem B follows easily.
Analogously, one can study the corresponding problem about 4nite automata. A (gen-

eralized) 4nite automaton (in short, an nf automaton)A is a quintuple, 〈�; D; Q; �; S; F〉,
where D⊆�∗ is a 4nite set called the input domain, Q is a 4nite set of states,
� :Q × D→ 2Q is a transition function, and S ⊆Q and F ⊆Q the sets of initial and
4nal states, respectively. � is extended to � :Q ×�∗ → 2Q and � : 2Q ×�∗ → 2Q in the
standard way. L(A) denotes the language accepted by A; {w∈�∗ | �(S; w)∩F �= ∅},
and we de4ne s(A) by s(A)= |Q|, where ∅ denotes the empty set.
For any regular language R, we de4ne s(R) by s(R)= min{s(A) |A is an nf automa-

ton accepting R}. An nf automaton A is R-state-minimal if L(A)=R and s(A)= s(R).
In [2], an a%rmative answer is presented to the following problem.

Problem C. Is it decidable to determine s(R) for any given regular language R?

Analogous to the notion of n(R1; R2), one can de4ne the following. Let R1 and
R2 be two regular languages. De4ne s(R1; R2) by s(R1; R2)= min{s(R) |R is a regular
language with R1⊆R⊆R2} if R1⊆R2, and s(R1; R2)=∞ otherwise. An nf automaton
A is (R1; R2)-state-minimal if R1⊆L(A)⊆R2 and s(A)= s(R1; R2).

Problem D. Is it decidable to determine s(R1; R2) for any given two regular languages
R1; R2?

Clearly, Problems A and C have certain similar characters, and so do Problems B
and D. The following two facts can be seen easily.

Fact 1 (Hashiguchi [2]). Let R be any regular language.
(1) n(R)6s(R) and s(R)6n(R) + 1.
(2) If R is 4nite; then n(R)= 1.
(3) If R is 4nite; then

(3:1) s(R)= 1 if R= ∅ or {�}; where � is the null word.
(3:2) s(R)= 2 otherwise.
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Fact 2. Let R1 and R2 be two regular languages with R1⊆R2.
(1) n(R1; R2)6s(R1; R2) and s(R1; R2)6n(R1; R2) + 1.
(2) If R1 is 4nite; then n(R1; R2)= n(R1)= 1.
(3) If R1 is 4nite; then

(3:1) s(R1; R2)= 1 if R1 = ∅ or R1 = {�}.
(3:2) s(R1; R2)= 2 otherwise.

(4) If R1 =R2; then n(R1; R2)= n(R1) and s(R1; R2)= s(R1).

In Section 2, we shall present outlines of two algorithms for determining n(R1; R2)
and s(R1; R2), respectively, for any given two regular languages R1; R2. To do this, we
need Theorems 2:1 and 2:2 below which can be proved by similar ideas as the ones
used for proving Theorems 1 and 2 in [2]. For readability, we shall present a detailed
proof for Theorem 2:1 (including the proof of Lemma 2:3 which appears in [2]) in
this note.

2. Main results

Firstly, we shall present several de4nitions.

De�nition 2.1. Let k; m be integers with 06k6m. An rl grammar G= 〈V; �; P; S〉 is
in (k; m)-form if the following hold:
(1) For any S → u∈P with u∈�∗; |u|6m.
(2) For any S → uB∈P with u∈�∗ and B∈V; k6|u|6m.
(3) For any A→ uB∈P or A→ v∈P with A∈V − {S}; B∈V and u; v∈�∗, k6|u|;

|v|6m holds.

De�nition 2.2. (1) For any rl grammar G= 〈V; �; P; S〉; �(G) and �(G) are de4ned by

�(G) = {w ∈ �∗ |A → wB ∈ P or A → w ∈ P for some A; B ∈ V};

�(G) = max{|w| |w ∈ �(G)}:

(2) For any two regular languages R1 and R2 with R1⊆R2; �(R1; R2) is de4ned by
�(R1; R2)= min{�(G) |G is an (R1; R2)-nonterminal-minimal rl grammar}.

Lemma 2.3. For any rl grammar G= 〈V; �; P; S〉 and any integer k¿0; there exists
an rl grammar G′ in (k; �(G) + 2k)-form such that L(G)=L(G′) and n(G′)= n(G).

Proof. When k =0, the assertion is trivial. Let k¿1. We de4ne G′= 〈V; �; P′; S〉 as
follows:

P′=P0 ∪ P1 ∪ P2, where P0 = {S → u | u∈�∗; S ∗⇒G u and |u|62k + �(G)}; P1 =
{A→ uB |A; B∈V; u∈�∗; A ∗⇒G uB and k6|u|62k+�(G)}, and P2 = {A→ u |A∈V
− {S}; u∈�∗; A ∗⇒G u and k6|u|62k + �(G)}.
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It su%ces to prove that L(G)=L(G′). Clearly, L(G′)⊆L(G). Conversely, consider
any w∈L(G). If |w|62k + �(G), then clearly w∈L(G′). Otherwise, there exists a
derivation of w such that S ⇒G u1A1⇒G · · · ⇒G u1u2 · · · un−1An−1⇒G u1u2 · · · un=w
with n¿2. Since |ui|6�(G) for all 16i6n, one can see that there exists a derivation of
the form S ∗⇒G v1B1

∗⇒G v1v2B2
∗⇒G · · · ∗⇒G v1v2 · · · vm−1Bm−1

∗⇒G v1v2 · · · vm=w such
that 16m6n; k6|vj|6k + �(G) for all 16j6m − 1, and k6|vm|62k + �(G). These
imply w∈L(G′).

Now consider any two regular languages R1 and R2 with R1⊆R2. For i=1; 2, let
Mi be the syntactic monoid of Ri and �i be the canonical morphism from �∗ onto Mi.
Thus, for any u; v∈�∗; �i(u)= �i(v) i1 (for any x; y∈�∗; xuy∈Ri i1 xvy∈Ri). Now
we de4ne a congruence relation ≡ over �∗ as follows:
For any u; v∈�∗

u≡ v ⇔ (�1(u)= �1(v) and �2(u)= �2(v)).
Let M denote the quotient monoid �∗=≡ and � be the canonical morphism from

�∗ onto M . Thus, it holds that for any u; v∈�∗

�(u)= �(v)⇔ (�1(u)= �1(v) and �2(u)= �2(v)).
Let m denote the cardinality of M . The following lemma can be proved as Lemma 5:1

in [1].

Lemma 2.4. For any w∈�+ of length ¿m(m+ 2); there exist x; y; z ∈�+ such that
w= xyz; �(x)= �(xy) and �(yz)= �(z).

The following theorem is one of the main results of this note.

Theorem 2.1. Let R1 and R2 be two regular languages with R1⊆R2 and m be as
above. Then there exists an (R1; R2)-nonterminal-minimal rl grammar G such that
R1⊆L(G)⊆R2 and �(G)62m(m+ 2)(4m(m+ 2) + 3).

Proof. Let G= 〈V; �; P; S〉 be an (R1; R2)-nonterminal-minimal rl grammar such that
R1⊆L(G)⊆R2, n(G)= n(R1; R2), and �(G)= �(R1; R2). Assume that �(G)¿2m(m +
2)(4m(m + 2) + 3). Then R1 is not 4nite since �(G)¿m implies that there exists
w∈R1 with |w|¿m. (If R1 is 4nite, then n(R1; R2)= 1 and it su%ces to let G be
such that L(G)=R1.) We shall derive a contradiction. By Lemma 2:3, there exists a
nonterminal-minimal rl grammar G′= 〈V; �; P′; S〉 in (2m(m+ 2); �(G) + 4m(m+ 2))-
form with L(G′)=L(G). We de4ne a set X by

X = {(x; y; z) | x; y; z ∈�+; |xyz|=m(m+ 2); �(xy)= �(x) and �(yz)= �(z)}.
Now consider any w∈R1 with |w|¿2m(m+ 2). w has a decomposition of the form

w = x1y1z1x2y2z2 · · · xpypzpw0;

where for 16i6p; (xi; yi; zi)∈X and |w0|¡m(m+2). Then the word w′= x1y1y1z1x2
y2y2z2 · · · xpypypzpw0 is also in R1, and w′ has a derivation in G′. In this derivation
of w′, if we delete each one of yi(16i6p), then we could obtain a derivation of w
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in another rl grammar G′′. Thus, we shall construct an rl grammar G′′= 〈V; �; P′′; S〉
in the following way.
For each w∈ �(G′), we de4ne a set Y (w) (by which w will be replaced in P′ to

obtain P′′), as follows:

Y (w) = C1(w) ∪ C2(w);

where
(1) C1(w)= {v∈�∗||v|62m(m+ 2) and �(v)= �(w)}.
(2) C2(w)= {v∈�∗ | for some k¿1; u0; u1 ∈�∗ with length ¡m(m+2), and (xi; yi; zi)

∈X for 16i6k; v satis4es one of the following, (2.1)–(2.4)}.
(2.1) w= u0x1y1y1z1 · · · xkykykzku1 and v= u0x1y1z1 · · · xkykzku1,
(2.2) w= u0y1z1x2y2y2z2 · · · xkykykzku1 and v= u0y1z1x2y2z2 · · · xkykzku1 or

v= u0z1x2y2z2 · · · xkykzku1,
(2.3) w= u0x1y1y1z1 · · · xk−1yk−1yk−1zk−1xkyku1 and v= u0x1y1z1 · · · xk−1yk−1

zk−1xkyku1 or v= u0x1y1z1 · · · xk−1yk−1zk−1xku1,
(2.4) w= u0y1z1x2y2y2z2 · · · xk−1yk−1yk−1zk−1xkyku1 and v= u0y1z1x2y2z2 · · ·

xk−1yk−1zk−1xkyku1 or v= u0z1x2y2z2 · · · xk−1yk−1zk−1xkyku1 or v= u0y1z1
x2y2z2 · · · xk−1yk−1zk−1xku1 or v= u0z1x2y2z2 · · · xk−1yk−1zk−1xku1.

One can see the following.
(3) C2(w) may be empty, but C1(w) is not empty, and so Y (w) is not empty.
(4) For any v∈Y (w), either |w|; |v|¡�(G), or else 2m(m+ 2)(4m(m+ 2) + 3)6�(G)

6|w|6�(G) + 4m(m+ 2) and

|v|6 |w| − |w| − 4m(m+ 2)
2m(m+ 2)

6 �(G) + 4m(m+ 2)− 2m(m+ 2)(4m(m+ 2) + 3)− 4m(m+ 2)
2m(m+ 2)

¡ �(G):

We de4ne P′′ by

P′′ = {A → v |A → w ∈ P′ for some A ∈ V and w ∈ �∗; and v ∈ Y (w)}
∪{A → vB|A → wB ∈ P′ for some A; B ∈ V and

w ∈ �∗; and v ∈ Y (w)}:
It is clear that �(G′′)¡�(G) and n(G′′)= n(G). To derive a contradiction, it su%ces

to show R1⊆L(G′′)⊆R2. Due to the de4nitions of � and P′′, it is easy to see that
L(G′′)⊆R2. To show R1⊆L(G′′), consider any w∈R1. If |w|62m(m+2), then clearly
w∈L(G′′). Otherwise, we consider a decomposition of w; w= x1y1z1 · · · xpypzpw0 and
the corresponding w′ as above, and can see that w∈L(G′′).

Now we shall present an algorithm for Problem B brieMy. Assume that two regular
languages R1 and R2 are given. We may assume without loss of generality that we
are given two rl grammars G1 and G2 which generate R1 and R2, respectively. Decide
whether or not R1⊆R2. If R2 − R1 �= ∅, then n(R1; R2)=∞. Otherwise, we construct
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the syntactic monoids M1 and M2 of R1 and R2, respectively, the congruence monoid
M =�∗= ≡ and the canonical morphism � as above. Put m= |M |, and construct the
following 4nite family F(R1; R2) of rl grammars:

F(R1; R2)= {G |G is an rl grammar, R1⊆L(G)⊆R2; �(G)62m(m+2)(4m(m+2)
+ 3) and n(G)6min{n(G1); n(G2)}}.
Then n(R1; R2) can be determined by

n(R1; R2) = min{n(G) |G ∈ F(R1; R2)}:

Now we shall study Problem D.

De�nition 2.5. Let k; m be integers with 06k6m. An nf automaton A= 〈�; D;
Q; �; S; F〉 is in (k; m)-form if for any (q; w)∈Q × D, the following (1)–(3) hold.
(1) If q∈ S and �(q; w)⊆F , then |w|6m.
(2) If q∈ S and �(q; w)− F �= ∅, then k6|w|6m.
(3) If q∈Q − S and �(q; w) �= ∅, then k6|w|6m.

De�nition 2.6. (1) For any nf automaton A= 〈�; D; Q; �; S; F〉; D(A) is de4ned by

D(A) = max{|w| |w ∈ D}:

(2) For any two regular languages R1 and R2 with R1⊆R2; D(R1; R2) is de4ned
by D(R1; R2)= min{D(A) |A is an (R1; R2)-state-minimal nf automaton with
R1⊆L(A)⊆R2}.

Lemma 2.7. For any nf automaton A= 〈�; D; Q; S; F〉 and any integer k¿0; there
exists an nf automaton A′ in (k; D(A) + 2k)-form such that L(A′)=L(A) and
s(A′)= s(A).

Proof. When k =0, the assertion is trivial. Let k¿1. We de4ne A′= 〈�; D′; Q; �′; S; F〉
as follows:
(1) D′=D0 ∪ D1, where D0 = {w∈L(A) | |w|¡k} and D1 = {w∈�+ | k6|w|6

2k + D(A)},
(2) �′(p; w)= �(p; w)∩F for any p∈ S and w∈D0,
(3) �′(q; w)= �(q; w) for any q∈Q and w∈D1,
(4) For any other (q; w)∈D′; �′(q; w)= ∅.
Here, � is extended to � :Q × �∗ → 2Q in the standard way. Now it su%ces to show
L(A′)=L(A). Clearly, L(A′)⊆L(A). Conversely, consider any w∈L(A). If |w|6
2k +D(A), then clearly w∈L(A′). Otherwise, there exists an accepting transition se-
quence of w in A; p→ v1 q1→ v2 q2→ · · · → qn−1 →vn qn, where p∈ S; n¿2; qi ∈Q
for all i; qn ∈F and w= v1 · · · vn. As in the proof of Lemma 2:31, one can see that
there exists an accepting transition sequence of w in A′ and so w∈L(A′).

One can prove the following theorem similarly as Theorem 2.1.
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Theorem 2.2. Let R1 and R2 be two regular languages and m be the integer as in
Theorem 2:1. Then; there exists an (R1; R2)-state-minimal nf automaton A such that
R1⊆L(A)⊆R2 and D(A)62m(m+ 2)(4m(m+ 2) + 3).

As in the case of Problem B, one can construct an algorithm for determining
n(R1; R2) for any given two regular languages R1 and R2. This provides an a%rmative
answer to Problem D.
In [2], the following problem is presented as an open problem.
Is it decidable to determine the smallest number of star operators which are su%cient

for denoting a given regular language in a (restricted) regular expression?
As far as the author knows, this problem still remains open.
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