Some integral inequalities for functions with $(n-1)$ st derivatives of bounded variation

Aimin Xu*, Dezao Cui
Department of Mathematics, Zhejiang University, Hangzhou 310027, PR China

Received 18 November 2005; received in revised form 6 April 2006; accepted 8 May 2006

Abstract

In this paper, we generalize Cerone's results, and a unified treatment of error estimates for a general inequality satisfying $f^{(n-1)}$ being of bounded variation is presented. We derive the estimates for the remainder terms of the mid-point, trapezoid, and Simpson formulas. All constants of the errors are sharp. Applications in numerical integration are also given. (C) 2007 Elsevier Ltd. All rights reserved.

Keywords: Bounded variation; Appell type polynomial; Bernoulli polynomial; Ostrowski’s inequality; Trapezoidal inequality

1. Introduction

In 2000, Cerone, Dragomir and Pearce [1] proved the following trapezoid type inequalities.
Theorem 1. Let $f:[a, b] \rightarrow R$ be a function of bounded variation. Then we have the inequality

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) \mathrm{d} t-[(x-a) f(a)+(b-x) f(b)]\right| \leq\left[\frac{b-a}{2}+\left|x-\frac{a+b}{2}\right|\right] \bigvee_{a}^{b}(f) \tag{1.1}
\end{equation*}
$$

for all $x \in[a, b]$, where $\bigvee_{a}^{b}(f)$ denotes the total variation of f on the interval $[a, b]$.
The inequality (1.1) is a perturbed generalization of the trapezoidal inequality for mapping of bounded variation. Using (1.1), Cerone et al. further obtained the following error estimate for the composite quadrature rule.

Theorem 2. Let f be defined as in Theorem 1; then we have

$$
\begin{equation*}
\int_{a}^{b} f(t) \mathrm{d} t=\sum_{i=0}^{n-1}\left[\left(\xi_{i}-x_{i}\right) f\left(x_{i}\right)+\left(x_{i+1}-\xi_{i}\right) f\left(x_{i+1}\right)\right]+R(f) . \tag{1.2}
\end{equation*}
$$

[^0]The remainder term $R(f)$ satisfies the estimate

$$
\begin{equation*}
|R(f)| \leq\left[\frac{\nu(l)}{2}+\max _{i=0,1, \ldots, n-1}\left|\xi_{i}-\frac{x_{i}+x_{i+1}}{2}\right|\right] \bigvee_{a}^{b}(f) \leq \nu(l) \bigvee_{a}^{b}(f), \tag{1.3}
\end{equation*}
$$

where $v(l):=\max \left\{l_{i} \mid i=0,1, \ldots, n-1\right\}, l_{i}=x_{i+1}-x_{i}$ and $\xi_{i} \in\left[x_{i}, x_{i+1}\right]$.
In this paper, following the main ideas of Vinogradov [2], we give a unified treatment of error estimates for a general quadrature rule satisfying $f^{(n-1)}$ being of bounded variation. Using the perturbed inequality, we obtain the error bounds for the mid-point, trapezoid and Simpson quadrature formulas. We also generalize Euler trapezoid formulas [3].

2. The main results

A sequence of polynomials $\left\{u_{k}\right\}_{0}^{\infty}$ is called a sequence of Appell type polynomials if $u_{0}=1, u_{k}^{\prime}=u_{k-1}\left(k \in Z_{+}\right)$.
Lemma 1. Let $f:[a, b] \rightarrow R$ be such that $f^{(n-1)}$ is a function of bounded variation on $[a, b]$ for some $n \geq 1, n \in Z_{+}$. Moreover, if $n=1, f(t)$ is continuous at $x, x \in[a, b]$. Suppose that $\left\{r_{k}\right\},\left\{s_{k}\right\}$ are sequences of Appell type polynomials on $[a, x)$ and $\left\{u_{k}\right\},\left\{v_{k}\right\}$ are sequences of Appell type polynomials on $(x, b]$. Let $m \in N, m \leq n$,

$$
k_{n}(x, t)= \begin{cases}p_{n}(t)=r_{n-m}(t) s_{m}(t), & t \in[a, x) \\ q_{n}(t)=u_{n-m}(t) v_{m}(t), & t \in(x, b] .\end{cases}
$$

Then we have the following equality:

$$
\begin{array}{rll}
\int_{a}^{b} f(t) \mathrm{d} t-\frac{(-1)^{n}}{C_{n}^{m}} \int_{a}^{b} k_{n}(x, t) \mathrm{d} f^{(n-1)}(t) & \\
\quad= \begin{cases}\frac{1}{C_{n}^{m}} \sum_{k=0}^{n-1}(-1)^{n-1-k}\left[q_{n}^{(k)}(b) f^{(n-1-k)}(b)\right. & x=a ; \\
\left.-q_{n}^{(k)}(a+) f^{(n-1-k)}(a)\right], & \\
\frac{1}{C_{n}^{m}} \sum_{k=0}^{n-1}(-1)^{n-1-k}\left[\left(p_{n}^{(k)}(x-)-q_{n}^{(k)}(x+)\right) f^{(n-1-k)}(x)\right. \\
\left.+q_{n}^{(k)}(b) f^{(n-1-k)}(b)-p_{n}^{(k)}(a) f^{(n-1-k)}(a)\right], & x \in(a, b) ; \\
\frac{1}{C_{n}^{m}} \sum_{k=0}^{n-1}(-1)^{n-1-k}\left[p_{n}^{(k)}(b-) f^{(n-1-k)}(b)\right. & \\
\left.-p_{n}^{(k)}(a) f^{(n-1-k)}(a)\right], & x=b,\end{cases}
\end{array}
$$

where $C_{n}^{m}=\frac{n!}{m!(n-m)!}$.
Proof. Integrating by parts in the sense of Riemann and Stieltjes, we can easily obtain Lemma 1.
Remark 1. Actually, $f^{(n-1)}$ is continuous if it is of bounded variation when $n>1$. If $k_{1}(x, t)$ is continuous at x, we can weaken the conditions of Lemma 1 . In this case, it is not necessary that $f(t)$ is continuous at x.

Theorem 3. Let f be defined as in Lemma 1. Suppose that $m \in N, n \in Z_{+}, m \leq n$ and $\lambda \in[0,1]$. Then we have

$$
\begin{aligned}
& \left\lvert\, \int_{a}^{b} f(t) \mathrm{d} t-\frac{1}{C_{n}^{m}} \sum_{j=0}^{n-1}\left[\sum_{i=L}^{U} C_{j}^{i} C_{n-j}^{n-m-i}(1-\lambda)^{m-j+i}\right] \frac{(b-x)^{n-j}-(a-x)^{n-j}}{(n-j)!} f^{(n-1-j)}(x)\right. \\
& \left.\quad-\frac{1}{C_{n}^{m}} \sum_{j=n-m}^{n-1} C_{j}^{n-m} \lambda^{n-j} \frac{(x-a)^{n-j} f^{(n-1-j)}(a)-(x-b)^{n-j} f^{(n-1-j)}(b)}{(n-j)!} \right\rvert\,
\end{aligned}
$$

$$
\begin{equation*}
\leq \frac{\sup _{0<\tau<1} \tau^{n-m}|\tau-\lambda|^{m}}{n!} \bigvee_{a}^{b}\left(f^{(n-1)}\right) \max \left\{|x-a|^{n},|x-b|^{n}\right\} \tag{2.1}
\end{equation*}
$$

where $U=\min \{j, n-m\}, L=\max \{0, j-m\}$.
Proof. Let

$$
k_{n}(x, t)= \begin{cases}p_{n}(t)=\frac{(t-a)^{n-m}(t-\alpha)^{m}}{(n-m)!m!}, & t \in[a, x) \\ q_{n}(t)=\frac{(t-b)^{n-m}(t-\beta)^{m}}{(n-m)!m!}, & t \in(x, b]\end{cases}
$$

and $\alpha=\lambda x+(1-\lambda) a, \beta=\lambda x+(1-\lambda) b$.
Thus, it follows from a straightforward calculation that

$$
\begin{aligned}
& p_{n}^{(j)}(x+)=\sum_{i=L}^{U} C_{j}^{i} C_{n-j}^{n-m-i} \frac{(1-\lambda)^{m-j+i}(x-a)^{n-j}}{(n-j)!} \\
& q_{n}^{(j)}(x-)=\sum_{i=L}^{U} C_{j}^{i} C_{n-j}^{n-m-i} \frac{(1-\lambda)^{m-j+i}(x-b)^{n-j}}{(n-j)!}
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\left|\int_{a}^{b} k_{n}(x, t) \mathrm{d} f^{(n-1)}(t)\right|= & \left|\int_{a}^{x} \frac{(t-a)^{n-m}(t-\alpha)^{m}}{m!(n-m)!} \mathrm{d} f^{(n-1)}(t)+\int_{x}^{b} \frac{(t-b)^{n-m}(t-\beta)^{m}}{m!(n-m)!} \mathrm{d} f^{(n-1)}(t)\right| \\
\leq & \frac{\sup _{a<t<x}\left|(t-a)^{n-m}(t-\alpha)^{m}\right|}{m!(n-m)!} \int_{a}^{x}\left|\mathrm{~d} f^{(n-1)}(t)\right| \\
& +\frac{\sup _{x<t<b}\left|(t-b)^{n-m}(t-\beta)^{m}\right|}{m!(n-m)!} \int_{x}^{b}\left|\mathrm{~d} f^{(n-1)}(t)\right| \\
= & \frac{\sup _{0<\tau<1} \tau^{n-m}|\tau-\lambda|^{m}}{m!(n-m)!}\left[\bigvee_{a}^{x}\left(f^{(n-1)}\right)|x-a|^{n}+\bigvee_{x}^{b}\left(f^{(n-1)}\right)|x-b|^{n}\right] \\
\leq & \frac{\sup _{0<\tau<1} \tau^{n-m}|\tau-\lambda|^{m}}{(n-m)!m!} \bigvee_{a}^{b}\left(f^{(n-1)}\right) \max \left\{|x-a|^{n},|x-b|^{n}\right\} .
\end{aligned}
$$

According to Lemma 1, we derive (2.1) and the proof is completed.
Remark 2. Theorem 3 contains many classical formulas. The advantage of this theorem is that we have three parameters λ, x and m to choose.

Corollary 1. Let f be defined as in Theorem 3. Suppose that $n \in Z_{+}, \lambda \in[0,1]$. Then we have

$$
\begin{align*}
& \left\lvert\, \int_{a}^{b} f(t) \mathrm{d} t-\frac{1}{n}\left\{\lambda(x-a) f(a)+\lambda(b-x) f(b)+\sum_{j=0}^{n-1}\left(\sum_{i=\max \{0, j-1\}}^{j} C_{j}^{i} C_{n-j}^{n-1-i}(1-\lambda)^{i+1-j}\right)\right.\right. \\
& \left.\quad \cdot \frac{(b-x)^{n-j}-(a-x)^{n-j}}{(n-j)!} f^{(n-1-j)}(x)\right\} \mid \leq C_{n} \bigvee_{a}^{b}\left(f^{(n-1)}\right) \max \left\{|x-a|^{n},|x-b|^{n}\right\} \tag{2.2}
\end{align*}
$$

where

$$
C_{n}= \begin{cases}\max \{\lambda, 1-\lambda\}, & n=1 \\ \frac{1}{n!} \max \left\{\frac{n-1}{n^{n}} \lambda^{n}, 1-\lambda\right\}, & n>1\end{cases}
$$

Proof. Let $g(\tau)=\tau^{n-1}(\tau-\lambda), \tau \in[0,1]$. Hence

$$
g^{\prime}(\tau)= \begin{cases}1, & n=1 \\ \tau^{n-2}(n \tau-\lambda), & n>1\end{cases}
$$

Clearly, we can obtain the following inequality:

$$
|g(\tau)| \leq \begin{cases}\max \{|g(0)|,|g(1)|\}=\max \{\lambda, 1-\lambda\}, & n=1 ; \\ \max \left\{\left|g\left(\frac{\lambda}{n}\right)\right|,|g(1)|\right\}=\max \left\{\frac{n-1}{n^{n}} \lambda^{n}, 1-\lambda\right\}, & n>1 .\end{cases}
$$

Therefore, setting $m=1$ in Theorem 3 we have (2.2) and the proof is completed.
Corollary 2. Let f be defined as in Theorem 3. Suppose that $n \in Z_{+}$and $0^{0}=1$. Then we have

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) \mathrm{d} t-\frac{1}{n}\left\{(b-a) f(x)+\sum_{j=1}^{n-1} \frac{n-j}{j!}\left[(x-b)^{j} f^{(j-1)}(b)-(x-a)^{j} f^{(j-1)}(a)\right]\right\}\right| \\
& \quad \leq \frac{(n-1)^{n-1}}{n^{n} n!} \bigvee_{a}^{b}\left(f^{(n-1)}\right) \max \left\{|x-a|^{n},|x-b|^{n}\right\} \tag{2.3}
\end{align*}
$$

Proof. We consider the case $m=n-1, \alpha=\beta=x$ in Theorem 3. In this case, we can get $\lambda=1$. Let $g(\tau)=\tau(\tau-1)^{n-1}, \tau \in[0,1]$. Hence

$$
g^{\prime}(\tau)= \begin{cases}1, & n=1 \\ (\tau-1)^{n-2}(n \tau-1), & n>1\end{cases}
$$

We can obtain the following inequality:

$$
|g(\tau)| \leq \begin{cases}1, & n=1 ; \\ \left|g\left(\frac{1}{n}\right)\right|=\frac{(n-1)^{n-1}}{n^{n}}, & n>1 .\end{cases}
$$

Therefore, by (2.1) the corollary is proved.
Corollary 3. Let f be defined as in Theorem $3, n \in Z_{+}, \lambda \in[0,1]$. Then

$$
\begin{align*}
& \left\lvert\, \int_{a}^{b} f(t) \mathrm{d} t-\sum_{j=0}^{n-1} \frac{(1-\lambda)^{n-j}\left[(b-x)^{n-j}-(a-x)^{n-j}\right]}{(n-j)!} f^{(n-1-j)}(x)\right. \\
& \left.\quad-\sum_{j=0}^{n-1} \frac{\lambda^{n-j}}{(n-j)!}\left[(x-a)^{n-j} f^{(n-1-j)}(a)-(x-b)^{n-j} f^{(n-1-j)}(b)\right] \right\rvert\, \\
& \quad \leq \frac{1}{n!} \max \left\{\lambda^{n},(1-\lambda)^{n}\right\} \bigvee_{a}^{b}\left(f^{(n-1)}\right) \max \left\{|x-a|^{n},|x-b|^{n}\right\} . \tag{2.4}
\end{align*}
$$

Proof. We take $m=n$ in Theorem 3, and the corollary is proved.
Remark 3. For $n=1$, we have

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) \mathrm{d} t-(1-\lambda)(b-a) f(x)-\lambda(x-a) f(a)-\lambda(b-x) f(b)\right| \\
& \quad \leq \max \{\lambda, 1-\lambda\} \bigvee_{a}^{b}(f)\left[\frac{b-a}{2}+\left|x-\frac{a+b}{2}\right|\right] . \tag{2.5}
\end{align*}
$$

Choosing $\lambda=1$, we can obtain (1.1). Furthermore, when $x=(a+b) / 2$, for $\lambda=0, \lambda=1$ and $\lambda=\frac{1}{3}$ we obtain the estimates for the errors of the mid-point rule, trapezoid rule and Simpson rule respectively.

Theorem 4. Suppose that $X:=\left\{x_{i} \mid i=0,1, \ldots, k-1, k \in Z_{+}\right\}$is a set of k points satisfying $a \leq x_{0}<x_{1}<$ $\cdots<x_{k-1} \leq b$. Let $p_{i} \geq 0, \sum_{i=0}^{k-1} p_{i}=1$, and $f^{(n-1)}$ be a function of bounded variation. Moreover, when $n=1$, $f(t)$ is continuous at $x_{i}, i=0,1, \ldots, k-1$, then we have

$$
\begin{align*}
& \left|\int_{a}^{b} f(t) \mathrm{d} t-(b-a) \sum_{i=0}^{k-1} p_{i} f\left(x_{i}\right)+\sum_{j=1}^{n-1} \frac{(b-a)^{j}\left[f^{(j-1)}(b)-f^{(j-1)}(a)\right]}{j!} \sum_{i=0}^{k-1} p_{i} B_{j}\left(\frac{x_{i}-a}{b-a}\right)\right| \\
& \quad \leq K_{n}(b-a)^{n} \bigvee_{a}^{b}\left(f^{(n-1)}\right), \tag{2.6}
\end{align*}
$$

where

$$
K_{n}=\frac{1}{n!} \sup _{a<t<b}\left|\sum_{i=0}^{k-1} p_{i}\left[B_{n}^{*}\left(\frac{x_{i}-t}{b-a}\right)-B_{n}\left(\frac{x_{i}-a}{b-a}\right)\right]\right|
$$

and B_{n}^{*} is a 1-periodic function that coincides with the Bernoulli polynomial B_{n} on $[0,1)$.
Proof. To prove this theorem, we set $m=0$ in Lemma 1 and take

$$
k_{n}(x, t)=(-1)^{n} \frac{(b-a)^{n}}{n!} B_{n}^{*}\left(\frac{x-t}{b-a}\right) .
$$

Hence we have

$$
\begin{aligned}
\int_{a}^{b} f(t) \mathrm{d} t= & f(x)(b-a)-\sum_{j=1}^{n-1} \frac{(b-a)^{j}}{j!} B_{j}\left(\frac{x-a}{b-a}\right)\left[f^{(j-1)}(b)-f^{(j-1)}(a)\right] \\
& +\frac{(b-a)^{n}}{n!} \int_{a}^{b}\left[B_{n}^{*}\left(\frac{x-t}{b-a}\right)-B_{n}\left(\frac{x-a}{b-a}\right)\right] d f^{(n-1)}(t)
\end{aligned}
$$

Making the change of variables $x=x_{i}, i=0,1, \ldots, k-1$, and using $\sum_{i=0}^{k-1} p_{i}=1$, we obtain

$$
\begin{aligned}
\int_{a}^{b} f(t) \mathrm{d} t= & (b-a) \sum_{i=0}^{k-1} p_{i} f\left(x_{i}\right)+\sum_{j=1}^{n-1} \frac{(b-a)^{j}\left[f^{(j-1)}(b)-f^{(j-1)}(a)\right]}{j!} \sum_{i=0}^{k-1} p_{i} B_{j}\left(\frac{x_{i}-a}{b-a}\right) \\
& +\frac{(b-a)^{n}}{n!} \int_{a}^{b} \sum_{i=0}^{k-1} p_{i}\left[B_{n}^{*}\left(\frac{x_{i}-t}{b-a}\right)-B_{n}\left(\frac{x_{i}-a}{b-a}\right)\right] \mathrm{d} f^{(n-1)}(t) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \int_{a}^{b} \sum_{i=0}^{k-1} p_{i}\left[B_{n}^{*}\left(\frac{x_{i}-t}{b-a}\right)-B_{n}\left(\frac{x_{i}-a}{b-a}\right)\right] \mathrm{d} f^{(n-1)}(t) \\
& \quad \leq\left.\sup _{a<t<b}\right|_{i=0} ^{k-1} p_{i}\left[B_{n}^{*}\left(\frac{x_{i}-t}{b-a}\right)-B_{n}\left(\frac{x_{i}-a}{b-a}\right)\right]| |_{a}^{b}\left|\mathrm{~d} f^{(n-1)}(t)\right| \\
& \left.\quad=\left.\sup _{a<t<b}\right|_{i=0} ^{k-1} p_{i}\left[B_{n}^{*}\left(\frac{x_{i}-t}{b-a}\right)-B_{n}\left(\frac{x_{i}-a}{b-a}\right)\right] \right\rvert\, \bigvee_{a}^{b}\left(f^{(n-1)}\right),
\end{aligned}
$$

We can easily derive (2.6) and the proof is completed.
We define $h=(b-a) / k$. Setting $p_{i}=1 / k, x_{i}=a+(i+x) h, i=0,1, \ldots, k-1$, in Theorem 4, we obtain the Euler-Maclaurin formula;

$$
\begin{aligned}
& \left|\int_{a}^{b} f(t) \mathrm{d} t-h \sum_{i=0}^{k-1} f(a+(i+x) h)+\sum_{j=1}^{n-1} h^{j} \frac{f^{(j-1)}(b)-f^{(j-1)}(a)}{j!} B_{j}(x)\right| \\
& \quad \leq \frac{(b-a)^{n}}{n!k^{n}} \sup _{0<t<1}\left|B_{n}(t)-B_{n}(x)\right| \bigvee_{a}^{b}\left(f^{(n-1)}\right)
\end{aligned}
$$

As regards applications of the Euler-Maclaurin formula, one can see [4]. Now, we consider the general quadrature

$$
\begin{equation*}
\int_{a}^{b} f(t) \mathrm{d} t=(b-a) \sum_{i=0}^{k-1} p_{i} f\left(x_{i}\right)+R_{n}(f) \tag{2.7}
\end{equation*}
$$

and obtain the following corollary.
Corollary 4. Let $x_{i} \in[a, b]$ and $p_{i} \geq 0$ be such that

$$
\begin{equation*}
\sum_{i=0}^{k-1} p_{i} x_{i}^{j}=\frac{b^{j+1}-a^{j+1}}{(j+1)(b-a)}, \quad j \in\{0,1, \ldots, n-1\} \tag{2.8}
\end{equation*}
$$

i.e. (2.7) is exact for any polynomial of degree less than n; then we have

$$
\begin{equation*}
\left|\int_{a}^{b} f(t) \mathrm{d} t-(b-a) \sum_{i=0}^{k-1} p_{i} f\left(x_{i}\right)\right| \leq K_{n}(b-a)^{n} \bigvee_{a}^{b}\left(f^{(n-1)}\right) \tag{2.9}
\end{equation*}
$$

where $K_{n}=\frac{1}{n!} \sup _{a<t<b} \sum_{i=0}^{k-1}\left|B_{n}^{*}\left(\frac{x_{i}-t}{b-a}\right)-B_{n}\left(\frac{x_{i}-a}{b-a}\right)\right|$.
Proof. We first note that $B_{j}((t-a) /(b-a))$ is a polynomial of degree j. By (2.8), we obtain

$$
\sum_{i=0}^{k-1} p_{i} B_{j}\left(\frac{x_{i}-a}{b-a}\right)=\frac{1}{b-a} \int_{a}^{b} B_{j}\left(\frac{t-a}{b-a}\right) \mathrm{d} t=0, \quad j \in\{1,2, \ldots, n-1\} .
$$

According to (2.6), we derive (2.9) and complete the proof.
Remark 4. It is worth mentioning that the result was derived by Wang [5] in 1978. Further, if f is discontinuous at x_{i} when $n=1$, Corollary 4 also holds. We can generalize it to the functions of bounded p-variation [6]. Theorem 4 generalizes the classical Euler-Maclaurin formula as can be found in [7,8]. It is also a generalization of Euler trapezoid formulas [3]. In particular, we can evaluate the error constants for some quadrature formulas which are well known.
(1) Mid-point rule: $k=1, p_{0}=1, x_{0}=\frac{b+a}{2}, K_{1}=\frac{1}{2}, K_{2}=\frac{1}{8}$.
(2) Trapezoid rule: $k=2, p_{0}=p_{1}=\frac{1}{2}, x_{0}=a, x_{1}=b, K_{1}=\frac{1}{2}, K_{2}=\frac{1}{8}$.
(3) Simpson rule: $k=3, p_{0}=p_{2}=\frac{1}{6}, p_{1}=\frac{2}{3}, x_{0}=a, x_{1}=\frac{a+b}{2}, x_{2}=b, K_{1}=\frac{1}{3}, K_{2}=\frac{1}{24}, K_{3}=\frac{1}{324}, K_{4}=$ $\frac{1}{1152}$.
All constants of the errors are sharp. It is obvious that $f(t)$ is of bounded variation if $\left|f^{\prime}(t)\right|<\infty$ or $f(t)$ is Lipschitz continuous. For further investigation of these cases, one can refer to Ostrowski's inequality and its extensions ([9-13]).

We define $\widehat{h}=(b-a) / r, a_{j}=a+j \widehat{h},(j=0,1, \ldots, r)$. We apply Corollary 4 on the interval $\left[a_{j}, a_{j+1}\right]$ and we have the following corollary.

Corollary 5 (Cf.[5]). Let $0 \leq t_{0}<t_{1}<\cdots<t_{k-1} \leq 1$. Suppose that the following quadrature rule:

$$
\int_{0}^{1} f(t) \mathrm{d} t=\sum_{i=0}^{k-1} p_{i} f\left(t_{i}\right)
$$

is exact for any polynomial of degree less than n. Let $f:[a, b] \rightarrow R$ be such that $f^{(n-1)}$ is a function of bounded variation. Then we have

$$
\begin{equation*}
\int_{a}^{b} f(t) \mathrm{d} t=\widehat{h} \sum_{j=0}^{r-1} \sum_{i=0}^{k-1} p_{i} f\left(a_{j}+t_{i} \widehat{h}\right)+R(f), \tag{2.10}
\end{equation*}
$$

where

$$
R(f)=\widehat{h}^{n} \int_{a}^{b} G_{n}\left(r \frac{t-a}{b-a}\right) \mathrm{d} f^{(n-1)}(t)
$$

and

$$
G_{n}(t)=\frac{1}{n!} \sum_{i=0}^{k-1} p_{i}\left(B_{n}^{*}\left(t_{i}-t\right)-B_{n}\left(t_{i}\right)\right)
$$

Moreover,

$$
|R(f)| \leq \frac{1}{n!}\left(\frac{b-a}{r}\right)^{n} \bigvee_{a}^{b}\left(f^{(n-1)}\right) \sup _{0<t<1}\left|\sum_{i=0}^{k-1} p_{i}\left(B_{n}^{*}\left(t_{i}-t\right)-B_{n}\left(t_{i}\right)\right)\right|
$$

References

[1] P. Cerone, S.S. Dragomir, C.E.M. Pearce, Generalizations of the trapezoid inequality for mappings of bounded variation and applications, Turkish J. Math. 24 (2) (2000) 147-163.
[2] O.L. Vinogradov, V.V. Zhuk, Estimates of errors of quadrature formulas by linear combinations of the uniform norm and oscillation of derivatives with both sharp constants, J. Math. Sci. 117 (3) (2003) 4065-4095.
[3] Lj. Dedić, M. Matić, J. Pečarić, On Euler trapezoid formulae, Appl. Math. Comput. 123 (2001) 37-62.
[4] C.L. Wang, X.H. Wang, A refined approximation of the remainder of the Euler-Maclaurin summation formula and its applications, Congr. Numer. 31 (1981) 287-297.
[5] X.H. Wang, Remarks on some quadrature formulas, Math. Numer. Sin. (3) (1978) 76-84 (in Chinese).
[6] X.H. Wang, Remarks on some quadrature formulas continued, Numer. Math. J. Chinese Univ. 1 (1) (1979) 102-119 (in Chinese).
[7] L.C. Hsu, X.H. Wang, Examples and Methods in Mathematical Analysis, Higher Education Press, 1983 (in Chinese).
[8] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 1993.
[9] A. Ostrowski, Über die Absolutabweichung einer differenzierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv. 10 (1938) 226-227.
[10] S.S. Dragomir, P. Cerone, J. Roumeliotis, A new generalization of Ostrowski integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Appl. Math. Lett. 13 (1) (2000) 19-25.
[11] Q.B. Wu, S.J. Yang, A note to Ujević's generalization of Ostrowski's inequality, Appl. Math. Lett. 18 (2005) 657-665.
[12] N. Ujević, A generalization of Ostrowski inequality and application in numerical integration, Appl. Math. Lett. 17 (2004) $133-137$.
[13] D.S. Mitrinović, J.E. Pečarić, A.M. Fink, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic, Dordrecht, 1994.

[^0]: * Corresponding author.

 E-mail address: xuaimin1009@yahoo.com.cn (A. Xu).

