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Abstract

In this paper, we generalize Cerone’s results, and a unified treatment of error estimates for a general inequality satisfying f (n—=1)
being of bounded variation is presented. We derive the estimates for the remainder terms of the mid-point, trapezoid, and Simpson
formulas. All constants of the errors are sharp. Applications in numerical integration are also given.
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1. Introduction

In 2000, Cerone, Dragomir and Pearce [1] proved the following trapezoid type inequalities.

Theorem 1. Let f : [a, b] — R be a function of bounded variation. Then we have the inequality

b—a a+b b
5[ 5 +‘x— 5 H\a/(f) (1.1)

forall x € [a, b, where \/Z( f) denotes the total variation of f on the interval [a, b].

b
/ f(@)ydt —[(x —a)f(a) + (b —x) f(D)]

The inequality (1.1) is a perturbed generalization of the trapezoidal inequality for mapping of bounded variation.
Using (1.1), Cerone et al. further obtained the following error estimate for the composite quadrature rule.

Theorem 2. Let f be defined as in Theorem 1; then we have

b n—1
[ fdr = Z[(&' — X)) f(xi) + (Xip1 — &) f (gD ]+ ROf). (1.2)
a i=0
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The remainder term R( f) satisfies the estimate

v(l) xi+xis1 1\ b
IR()] < [— e 'a - } \/(f) <) \a/(f), (1.3)
where v(l) == max{l;|i =0,1,...,n— 1}, [; = xj+1 — x; and & € [x;, xj41].

In this paper, following the main ideas of Vinogradov [2], we give a unified treatment of error estimates for a
general quadrature rule satisfying f~1 being of bounded variation. Using the perturbed inequality, we obtain
the error bounds for the mid-point, trapezoid and Simpson quadrature formulas. We also generalize Euler trapezoid
formulas [3].

2. The main results
A sequence of polynomials {u; }(° is called a sequence of Appell type polynomials if ug = 1, u} = ux_1(k € Z).
Lemmal. Let f : [a,b] — R be such that f"Y is a function of bounded variation on [a,b] for some

n>1,n € Zi. Moreover, if n = 1, f(t) is continuous at x, x € [a, b]. Suppose that {ri}, {sk} are sequences of Appell
type polynomials on [a, x) and {uy}, {vi} are sequences of Appell type polynomials on (x, b]. Let m € N, m < n,

qn(t) = tp_pm (O)vy (1), t € (x,b].

Then we have the following equality:

b (_l)n b »
/ fdi— = / ke (e, 1) df D)

n

kn(x, 1) = {pn(t) = Fp—m ()sy (1), t € la,x);

1 n—1 -
o DT e o e
n k=0 -

al @) P @), x=a
n—1

cn Z( D1 [ o) — g e 7071 R )

+ q“‘)(b)ﬂ" =) - p @ f 1P @] x € (a.b);
o Z( D" [P =) f 10wy
n k=0
~ @t k>(a>] x=b,
where C' = —m!(,:’im)!.

Proof. Integrating by parts in the sense of Riemann and Stieltjes, we can easily obtain Lemma 1. [

Remark 1. Actually, f (n=1) {5 continuous if it is of bounded variation when n > 1. If k; (x, ) is continuous at x, we
can weaken the conditions of Lemma 1. In this case, it is not necessary that f(¢) is continuous at x.

Theorem 3. Let f be defined as in Lemma 1. Suppose thatm € N,n € Z1, m <n and A € [0, 1]. Then we have

‘/ f@)ydr — C—Im Z |:Z C’ c i = )m—j+i] (b —x)"") — (‘a —x)" FO=1=D) ()

— (n— )

_ Z Cn myn— j (x — a)nijf(nilij)(a) —(x = b)nijf("*lfj)(b)
m =)

”j_nm
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sup "7t — A"

S T VD) max{lx — al", |x = bI"), 2.0
where U = min{j, n —m}, L = max{0, j — m}.
Proof. Let
() = (t_a)nim(t_a)m, t €la, x);
k(. 1) = O
R Gt i G L
(n—m)!m!

anda = Ax + (1 —Xa, B =Aix + (1 — A)b.
Thus, it follows from a straightforward calculation that

)L)m*jJri ()C _ a)nfj

’

(I)()C—i-) thcn m—i

in=j (n— )
) i ~n—m— l(l_k)’n_j—'—i(x_b)n_j
- =§ cic
) i=L yns (n— !

On the other hand, we have

/X t —a)" "t —a)" aFOD ) 4 /" t —b)y" "™t — )" 4D

m!(n —m)! m!(n —m)!

b
/ ke, ) dF 0D ()| =

sup [(t —a)" ™" (1 — o)™

a<t<x o (n—1)
< P P— f 1df=D )]
sup [t — byt — B,
+ Etsb / [df D)
ml(n — m)! g

sup "Mt — A"

= == [\/(f(" Dl —al" +\/(f(" Dl — ﬂ

m!(n —m)!

sup T"7"T — A",

< == \/ (£ D)y max{lx —al”, [x — bI"},
a

(n —m)!\m!

According to Lemma 1, we derive (2.1) and the proof is completed. [

Remark 2. Theorem 3 contains many classical formulas. The advantage of this theorem is that we have three
parameters A, x and m to choose.

Corollary 1. Let f be defined as in Theorem 3. Suppose thatn € Z, A € [0, 1]. Then we have

b 1 = ! n i i+1—7
faf(t)dt—r—l{x(x—a)f(a)+x(b—x)f(b)+z< Y. o coiTia—nt ,)

Jj=0 \i=max{0,j—1}
b—x)""J —(a- b
R ! po-i- f><x>} < G \/(f" ) max{lx —al", |x — b") 22
(n— jH! a
where
max{A, 1 — A}, n=1,;
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Proof. Let g(v) = "~ '(t — 1), T € [0, 1]. Hence

1 n=1;
!/ . 9 b
g = {r"z(nr -, n> 1.

Clearly, we can obtain the following inequality:

max {|g(0)], [g(1)|} = max{A, 1 — A}, n=1;
g@l=t [ (* N
g p ,lg(D]§ = max Mol —Ag, n> 1.

Therefore, setting m = 1 in Theorem 3 we have (2.2) and the proof is completed.

nl’l

Corollary 2. Let f be defined as in Theorem 3. Suppose that n € Z and 0° = 1. Then we have

J

_ =t

n"n!

b
\ Yy max{lx —al”, |x — bI"}.

Proof. We consider the case m = n — 1, = B = x in Theorem 3. In this case, we can get A

g(t)=1(r — )" !,z € [0, 1]. Hence

o L n=1;
EO =1 o2 —1). a1

We can obtain the following inequality:

1, n=1;
< 1 -1 n—1
5(0)] = ’g (_)‘z (-t

n n"

Therefore, by (2.1) the corollary is proved. [

Corollary 3. Let f be defined as in Theorem 3, n € Z, A € [0, 1]. Then

b S A= —x)" —(a—x)" '
/a f(t)dz‘zg( — (nx—)j)! @07 pomi-i )
p
n—1 n—j
-y (n}\— ;')" [ =@y £ (@) — @ = by f ("_l_j)(b)]‘
Jj=0 '

b
< Smax(d”, (1= 2" \/(FOD) max(l - al’, 1x - b1").
n! M

Proof. We take m = n in Theorem 3, and the corollary is proved. [J

Remark 3. For n = 1, we have

b
/ f@ydr =1 =2)0 —a)f(x) —ilx —a)f(a) —A(b—x)[f(b)

b _
< max{k,l—k}\/(f)[bza+’x—a;bu-

O

/ fad - {(b —af@+ Y e =0 I B) — (- a)ff“‘”(a)]}
a j=1 *

(2.3)

1. Let

(2.4)

(2.5)

Choosing A = 1, we can obtain (1.1). Furthermore, when x = (a + b)/2,forA =0,A =l and A = % we obtain the

estimates for the errors of the mid-point rule, trapezoid rule and Simpson rule respectively.
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Theorem 4. Suppose that X = {x; | i =0,1,...,k — 1,k € Z,} is a set of k points satisfying a < xo < x1 <
- < Xg—1 < b. Let p; >0, Zi-:(} pi = 1, and Y be a function of bounded variation. Moreover, when n = 1,
f () is continuous at xj, i =0, 1, ...,k — 1, then we have
b k—1 n=1 2 NirrG=D(py _ £G—1 k—1 )
(b—a)![fY77(b) — [ (a)] xXi—a
/ fOdt—b—a)) pifGi)+) - > piBj (=
a — — j! . b—a
i=0 j=1 i=0
b
< Kb —a)"\/(f" ). (2.6)
a
where
k—1
xi—1t Xi—a
K,=— s | Bf(——)-B i ,
" n!a<ltlgb ;pl[n<b_a> n<b_a

and B} is a 1-periodic function that coincides with the Bernoulli polynomial By, on [0, 1).

Proof. To prove this theorem, we set m = 0 in Lemma 1 and take

o1y = (1 2= e (x _t>'

n! b—a

Hence we have

n—1 (b_a)jB. (x

b — . .
/ fydt = f)b—a)—)_ B b_Z) [fufl)(b) _f(jfn(a)]
a j:1 *

b—a (P7 ,(x—1t Xx—a (n—1)
it Al L =) R ) |

Making the change of variables x = x;,i =0, 1, ...,k — 1, and using Zf;& pi = 1, we obtain

b k=1 n=lop VT FU=Dp)y — £G-D k=1 -
/ fyde = (b—a)Zpif(xi)+Z( TR Ol Y piB; (x a)
a i=0 j=1

J! = b—a

_ . pbk=l o L
TRl ,,,a) / > pi [B: (2’_;)—& (2_;’)} o).
: a =0
bkl o Xi —1 i —a (n—1)
me[&(b_a)—Bn(b_a)]df (1)
a -=0

i
k—1 b
Xi —t X —a —1)
sup | D pi B*( ) - B ( )] / ldf V@)
a<t<b§ l|:n b—a " b—a a
sup kilpi [B* (x" _t) — By (x" _“>] \b/<f‘"—“>,
a<t<b | "\b—a b—a M

We can easily derive (2.6) and the proof is completed. [

Since

=

IA

We define h = (b —a)/k. Setting p; = 1/k,x; =a+ (@ +x)h,i =0,1,...,k— 1, in Theorem 4, we obtain the
Euler—-Maclaurin formula;
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b k=1 ol eG=Dpy — £G-D
/ f(z)dt—hZf(a+(i+x)h)+Zh1f (b)j'f (a)Bj(x)
a i=0 j=1 :
n b
S sup 1By(t) = By(x) Vo).
<t< a

nlk"

As regards applications of the Euler—-Maclaurin formula, one can see [4]. Now, we consider the general quadrature

b k=1
/ f)dt = —a))y_ pif i)+ Ru(f) 2.7

i=0

and obtain the following corollary.

Corollary 4. Let x; € [a, b] and p; > 0 be such that

k=1 i pitl _ g+l

Zpixi :m, jE{O,l,...,n—l}, (28)

i.e. (2.7) is exact for any polynomial of degree less than n; then we have

b k—1 b
/ f@ydt— b —a)Y pifG)| < Kab —a)"\/(f"V), (2.9)

i=0
B (=) - 8 (52|

Proof. We first note that B;((t — a)/(b — a)) is a polynomial of degree j. By (2.8), we obtain

§ O LA 1 /bB' t—a G=0. jell 2 y
i:Opl '\b-—a) b-a a I\Nb—a =Y J , 2, ..., n .

According to (2.6), we derive (2.9) and complete the proof.  [J

1 k—1
where Kn = SUPg; <1 <b Zi:o

Remark 4. It is worth mentioning that the result was derived by Wang [5] in 1978. Further, if f is discontinuous at
x; when n = 1, Corollary 4 also holds. We can generalize it to the functions of bounded p-variation [6]. Theorem 4
generalizes the classical Euler—Maclaurin formula as can be found in [7,8]. It is also a generalization of Euler trapezoid
formulas [3]. In particular, we can evaluate the error constants for some quadrature formulas which are well known.

(1) Mid-point rule: k = 1, pg = 1, x¢ #, K| = %, K> = %_

oo|—

(2) Trapezoidrule: k =2, pg = p1 = %,xo =a,x; =b, K,
1
6

1 1
7K2=ﬂ7K3=maK4=

=
=)

|
2
=

I

a -
I\.)|+
S

=
[3e]

I
S
x

I

wal—

(3) Simpson rule: k = 3, pg = p2 =
1

1152

All constants of the errors are sharp. It is obvious that f (¢) is of bounded variation if | f'(z)| < oo or f(¢) is Lipschitz
continuous. For further investigation of these cases, one can refer to Ostrowski’s inequality and its extensions ([9-13]).

We define 71 = b—-a)/raj =a+ jiz\, (j =0,1,...,7). We apply Corollary 4 on the interval [a;, a;j11] and we
have the following corollary.

Corollary 5 (Cf. [5]). Let0 <ty <t < --- < tp—1 < 1. Suppose that the following quadrature rule:

1 k—1
fo f@yde=Y"p;ft)
i=0
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is exact for any polynomial of degree less than n. Let f : [a, b] — R be such that "~V is a function of bounded
variation. Then we have

b r—1k—1 R
[ fOde =1y "% piflaj+th)+ R(f), (2.10)
a j=0i=0
where
o~ b —a
R(H=T" [ G, ( - a) are=
and
k—1
Gult) = Zpl(B (ti — 1) = Bu(t:)).
! i=0
Moreover,
1 (b—
IR(f)] < ;( ) \/(f<" 1))Osup1 Zp,(B (1 — 1) — Ba(1))] -
. <t< i=0
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