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Abstract

In this paper, we generalize Cerone’s results, and a unified treatment of error estimates for a general inequality satisfying f (n−1)

being of bounded variation is presented. We derive the estimates for the remainder terms of the mid-point, trapezoid, and Simpson
formulas. All constants of the errors are sharp. Applications in numerical integration are also given.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Bounded variation; Appell type polynomial; Bernoulli polynomial; Ostrowski’s inequality; Trapezoidal inequality

1. Introduction

In 2000, Cerone, Dragomir and Pearce [1] proved the following trapezoid type inequalities.

Theorem 1. Let f : [a, b] → R be a function of bounded variation. Then we have the inequality∣∣∣∣∫ b

a
f (t) dt − [(x − a) f (a) + (b − x) f (b)]

∣∣∣∣ ≤

[
b − a

2
+

∣∣∣∣x −
a + b

2

∣∣∣∣] b∨
a

( f ) (1.1)

for all x ∈ [a, b], where
∨b

a( f ) denotes the total variation of f on the interval [a, b].

The inequality (1.1) is a perturbed generalization of the trapezoidal inequality for mapping of bounded variation.
Using (1.1), Cerone et al. further obtained the following error estimate for the composite quadrature rule.

Theorem 2. Let f be defined as in Theorem 1; then we have∫ b

a
f (t) dt =

n−1∑
i=0

[(ξi − xi ) f (xi ) + (xi+1 − ξi ) f (xi+1)] + R( f ). (1.2)
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The remainder term R( f ) satisfies the estimate

|R( f )| ≤

[
ν(l)

2
+ max

i=0,1,...,n−1

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣] b∨
a

( f ) ≤ ν(l)
b∨
a

( f ), (1.3)

where ν(l) := max{li |i = 0, 1, . . . , n − 1}, li = xi+1 − xi and ξi ∈ [xi , xi+1].

In this paper, following the main ideas of Vinogradov [2], we give a unified treatment of error estimates for a
general quadrature rule satisfying f (n−1) being of bounded variation. Using the perturbed inequality, we obtain
the error bounds for the mid-point, trapezoid and Simpson quadrature formulas. We also generalize Euler trapezoid
formulas [3].

2. The main results

A sequence of polynomials {uk}
∞

0 is called a sequence of Appell type polynomials if u0 = 1, u′

k = uk−1(k ∈ Z+).

Lemma 1. Let f : [a, b] → R be such that f (n−1) is a function of bounded variation on [a, b] for some
n ≥ 1, n ∈ Z+. Moreover, if n = 1, f (t) is continuous at x, x ∈ [a, b]. Suppose that {rk}, {sk} are sequences of Appell
type polynomials on [a, x) and {uk}, {vk} are sequences of Appell type polynomials on (x, b]. Let m ∈ N , m ≤ n,

kn(x, t) =

{
pn(t) = rn−m(t)sm(t), t ∈ [a, x);

qn(t) = un−m(t)vm(t), t ∈ (x, b].

Then we have the following equality:∫ b

a
f (t) dt −

(−1)n

Cm
n

∫ b

a
kn(x, t) d f (n−1)(t)

=



1
Cm

n

n−1∑
k=0

(−1)n−1−k
[
q(k)

n (b) f (n−1−k)(b)

− q(k)
n (a+) f (n−1−k)(a)

]
, x = a;

1
Cm

n

n−1∑
k=0

(−1)n−1−k
[
(p(k)

n (x−) − q(k)
n (x+)) f (n−1−k)(x)

+ q(k)
n (b) f (n−1−k)(b) − p(k)

n (a) f (n−1−k)(a)
]
, x ∈ (a, b);

1
Cm

n

n−1∑
k=0

(−1)n−1−k
[

p(k)
n (b−) f (n−1−k)(b)

− p(k)
n (a) f (n−1−k)(a)

]
, x = b,

where Cm
n =

n!

m!(n−m)!
.

Proof. Integrating by parts in the sense of Riemann and Stieltjes, we can easily obtain Lemma 1. �

Remark 1. Actually, f (n−1) is continuous if it is of bounded variation when n > 1. If k1(x, t) is continuous at x , we
can weaken the conditions of Lemma 1. In this case, it is not necessary that f (t) is continuous at x .

Theorem 3. Let f be defined as in Lemma 1. Suppose that m ∈ N , n ∈ Z+, m ≤ n and λ ∈ [0, 1]. Then we have∣∣∣∣∣
∫ b

a
f (t) dt −

1
Cm

n

n−1∑
j=0

[
U∑

i=L

C i
j C

n−m−i
n− j (1 − λ)m− j+i

]
(b − x)n− j

− (a − x)n− j

(n − j)!
f (n−1− j)(x)

−
1

Cm
n

n−1∑
j=n−m

Cn−m
j λn− j (x − a)n− j f (n−1− j)(a) − (x − b)n− j f (n−1− j)(b)

(n − j)!

∣∣∣∣∣
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≤

sup
0<τ<1

τ n−m
|τ − λ|

m

n!

b∨
a

( f (n−1)) max{|x − a|
n, |x − b|

n
}, (2.1)

where U = min{ j, n − m}, L = max{0, j − m}.

Proof. Let

kn(x, t) =


pn(t) =

(t − a)n−m(t − α)m

(n − m)!m!
, t ∈ [a, x);

qn(t) =
(t − b)n−m(t − β)m

(n − m)!m!
, t ∈ (x, b],

and α = λx + (1 − λ)a, β = λx + (1 − λ)b.
Thus, it follows from a straightforward calculation that

p( j)
n (x+) =

U∑
i=L

C i
j C

n−m−i
n− j

(1 − λ)m− j+i (x − a)n− j

(n − j)!
,

q( j)
n (x−) =

U∑
i=L

C i
j C

n−m−i
n− j

(1 − λ)m− j+i (x − b)n− j

(n − j)!
.

On the other hand, we have∣∣∣∣∫ b

a
kn(x, t) d f (n−1)(t)

∣∣∣∣ =

∣∣∣∣∫ x

a

(t − a)n−m(t − α)m

m!(n − m)!
d f (n−1)(t) +

∫ b

x

(t − b)n−m(t − β)m

m!(n − m)!
d f (n−1)(t)

∣∣∣∣
≤

sup
a<t<x

|(t − a)n−m(t − α)m
|

m!(n − m)!

∫ x

a
| d f (n−1)(t)|

+

sup
x<t<b

|(t − b)n−m(t − β)m
|

m!(n − m)!

∫ b

x
| d f (n−1)(t)|

=

sup
0<τ<1

τ n−m
|τ − λ|

m

m!(n − m)!

[
x∨
a

( f (n−1))|x − a|
n

+

b∨
x

( f (n−1))|x − b|
n

]

≤

sup
0<τ<1

τ n−m
|τ − λ|

m

(n − m)!m!

b∨
a

( f (n−1)) max{|x − a|
n, |x − b|

n
}.

According to Lemma 1, we derive (2.1) and the proof is completed. �

Remark 2. Theorem 3 contains many classical formulas. The advantage of this theorem is that we have three
parameters λ, x and m to choose.

Corollary 1. Let f be defined as in Theorem 3. Suppose that n ∈ Z+, λ ∈ [0, 1]. Then we have∣∣∣∣∣
∫ b

a
f (t) dt −

1
n

{
λ(x − a) f (a) + λ(b − x) f (b) +

n−1∑
j=0

(
j∑

i=max{0, j−1}

C i
j C

n−1−i
n− j (1 − λ)i+1− j

)

·
(b − x)n− j

− (a − x)n− j

(n − j)!
f (n−1− j)(x)

}∣∣∣∣∣ ≤ Cn

b∨
a

( f (n−1)) max{|x − a|
n, |x − b|

n
} (2.2)

where

Cn =

max{λ, 1 − λ}, n = 1;

1
n!

max
{

n − 1
nn λn, 1 − λ

}
, n > 1.
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Proof. Let g(τ ) = τ n−1(τ − λ), τ ∈ [0, 1]. Hence

g′(τ ) =

{
1, n = 1;

τ n−2(nτ − λ), n > 1.

Clearly, we can obtain the following inequality:

|g(τ )| ≤

max {|g(0)|, |g(1)|} = max{λ, 1 − λ}, n = 1;

max
{∣∣∣∣g (λ

n

)∣∣∣∣ , |g(1)|

}
= max

{
n − 1

nn λn, 1 − λ

}
, n > 1.

Therefore, setting m = 1 in Theorem 3 we have (2.2) and the proof is completed. �

Corollary 2. Let f be defined as in Theorem 3. Suppose that n ∈ Z+ and 00
= 1. Then we have∣∣∣∣∣

∫ b

a
f (t) dt −

1
n

{
(b − a) f (x) +

n−1∑
j=1

n − j
j !

[(x − b) j f ( j−1)(b) − (x − a) j f ( j−1)(a)]

}∣∣∣∣∣
≤

(n − 1)n−1

nnn!

b∨
a

( f (n−1)) max{|x − a|
n, |x − b|

n
}. (2.3)

Proof. We consider the case m = n − 1, α = β = x in Theorem 3. In this case, we can get λ = 1. Let
g(τ ) = τ(τ − 1)n−1, τ ∈ [0, 1]. Hence

g′(τ ) =

{
1, n = 1;

(τ − 1)n−2(nτ − 1), n > 1.

We can obtain the following inequality:

|g(τ )| ≤


1, n = 1;∣∣∣∣g (1

n

)∣∣∣∣ =
(n − 1)n−1

nn , n > 1.

Therefore, by (2.1) the corollary is proved. �

Corollary 3. Let f be defined as in Theorem 3, n ∈ Z+, λ ∈ [0, 1]. Then∣∣∣∣∣
∫ b

a
f (t) dt −

n−1∑
j=0

(1 − λ)n− j
[(b − x)n− j

− (a − x)n− j
]

(n − j)!
f (n−1− j)(x)

−

n−1∑
j=0

λn− j

(n − j)!

[
(x − a)n− j f (n−1− j)(a) − (x − b)n− j f (n−1− j)(b)

]∣∣∣∣∣
≤

1
n!

max{λn, (1 − λ)n
}

b∨
a

( f (n−1)) max{|x − a|
n, |x − b|

n
}. (2.4)

Proof. We take m = n in Theorem 3, and the corollary is proved. �

Remark 3. For n = 1, we have∣∣∣∣∫ b

a
f (t) dt − (1 − λ)(b − a) f (x) − λ(x − a) f (a) − λ(b − x) f (b)

∣∣∣∣
≤ max{λ, 1 − λ}

b∨
a

( f )

[
b − a

2
+

∣∣∣∣x −
a + b

2

∣∣∣∣] . (2.5)

Choosing λ = 1, we can obtain (1.1). Furthermore, when x = (a + b)/2, for λ = 0, λ = 1 and λ =
1
3 we obtain the

estimates for the errors of the mid-point rule, trapezoid rule and Simpson rule respectively.
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Theorem 4. Suppose that X := {xi | i = 0, 1, . . . , k − 1, k ∈ Z+} is a set of k points satisfying a ≤ x0 < x1 <

· · · < xk−1 ≤ b. Let pi ≥ 0,
∑k−1

i=0 pi = 1, and f (n−1) be a function of bounded variation. Moreover, when n = 1,
f (t) is continuous at xi , i = 0, 1, . . . , k − 1, then we have∣∣∣∣∣

∫ b

a
f (t) dt − (b − a)

k−1∑
i=0

pi f (xi ) +

n−1∑
j=1

(b − a) j
[ f ( j−1)(b) − f ( j−1)(a)]

j !

k−1∑
i=0

pi B j

(
xi − a
b − a

)∣∣∣∣∣
≤ Kn(b − a)n

b∨
a

( f (n−1)), (2.6)

where

Kn =
1
n!

sup
a<t<b

∣∣∣∣∣k−1∑
i=0

pi

[
B∗

n

(
xi − t
b − a

)
− Bn

(
xi − a
b − a

)]∣∣∣∣∣ ,
and B∗

n is a 1-periodic function that coincides with the Bernoulli polynomial Bn on [0, 1).

Proof. To prove this theorem, we set m = 0 in Lemma 1 and take

kn(x, t) = (−1)n (b − a)n

n!
B∗

n

(
x − t
b − a

)
.

Hence we have∫ b

a
f (t) dt = f (x)(b − a) −

n−1∑
j=1

(b − a) j

j !
B j

(
x − a
b − a

)[
f ( j−1)(b) − f ( j−1)(a)

]
+

(b − a)n

n!

∫ b

a

[
B∗

n

(
x − t
b − a

)
− Bn

(
x − a
b − a

)]
d f (n−1)(t).

Making the change of variables x = xi , i = 0, 1, . . . , k − 1, and using
∑k−1

i=0 pi = 1, we obtain∫ b

a
f (t) dt = (b − a)

k−1∑
i=0

pi f (xi ) +

n−1∑
j=1

(b − a) j
[ f ( j−1)(b) − f ( j−1)(a)]

j !

k−1∑
i=0

pi B j

(
xi − a
b − a

)

+
(b − a)n

n!

∫ b

a

k−1∑
i=0

pi

[
B∗

n

(
xi − t
b − a

)
− Bn

(
xi − a
b − a

)]
d f (n−1)(t).

Since ∫ b

a

k−1∑
i=0

pi

[
B∗

n

(
xi − t
b − a

)
− Bn

(
xi − a
b − a

)]
d f (n−1)(t)

≤ sup
a<t<b

∣∣∣∣∣k−1∑
i=0

pi

[
B∗

n

(
xi − t
b − a

)
− Bn

(
xi − a
b − a

)]∣∣∣∣∣
∫ b

a
| d f (n−1)(t)|

= sup
a<t<b

∣∣∣∣∣k−1∑
i=0

pi

[
B∗

n

(
xi − t
b − a

)
− Bn

(
xi − a
b − a

)]∣∣∣∣∣ b∨
a

( f (n−1)),

We can easily derive (2.6) and the proof is completed. �

We define h = (b − a)/k. Setting pi = 1/k, xi = a + (i + x)h, i = 0, 1, . . . , k − 1, in Theorem 4, we obtain the
Euler–Maclaurin formula;
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∫ b

a
f (t) dt − h

k−1∑
i=0

f (a + (i + x)h) +

n−1∑
j=1

h j f ( j−1)(b) − f ( j−1)(a)

j !
B j (x)

∣∣∣∣∣
≤

(b − a)n

n!kn sup
0<t<1

|Bn(t) − Bn(x)|

b∨
a

( f (n−1)).

As regards applications of the Euler–Maclaurin formula, one can see [4]. Now, we consider the general quadrature∫ b

a
f (t) dt = (b − a)

k−1∑
i=0

pi f (xi ) + Rn( f ) (2.7)

and obtain the following corollary.

Corollary 4. Let xi ∈ [a, b] and pi ≥ 0 be such that

k−1∑
i=0

pi x j
i =

b j+1
− a j+1

( j + 1)(b − a)
, j ∈ {0, 1, . . . , n − 1}, (2.8)

i.e. (2.7) is exact for any polynomial of degree less than n; then we have∣∣∣∣∣
∫ b

a
f (t) dt − (b − a)

k−1∑
i=0

pi f (xi )

∣∣∣∣∣ ≤ Kn(b − a)n
b∨
a

( f (n−1)), (2.9)

where Kn =
1
n!

supa<t<b
∑k−1

i=0

∣∣∣B∗
n

(
xi −t
b−a

)
− Bn

(
xi −a
b−a

)∣∣∣.
Proof. We first note that B j ((t − a)/(b − a)) is a polynomial of degree j . By (2.8), we obtain

k−1∑
i=0

pi B j

(
xi − a
b − a

)
=

1
b − a

∫ b

a
B j

(
t − a
b − a

)
dt = 0, j ∈ {1, 2, . . . , n − 1}.

According to (2.6), we derive (2.9) and complete the proof. �

Remark 4. It is worth mentioning that the result was derived by Wang [5] in 1978. Further, if f is discontinuous at
xi when n = 1, Corollary 4 also holds. We can generalize it to the functions of bounded p-variation [6]. Theorem 4
generalizes the classical Euler–Maclaurin formula as can be found in [7,8]. It is also a generalization of Euler trapezoid
formulas [3]. In particular, we can evaluate the error constants for some quadrature formulas which are well known.

(1) Mid-point rule: k = 1, p0 = 1, x0 =
b+a

2 , K1 =
1
2 , K2 =

1
8 .

(2) Trapezoid rule: k = 2, p0 = p1 =
1
2 , x0 = a, x1 = b, K1 =

1
2 , K2 =

1
8 .

(3) Simpson rule: k = 3, p0 = p2 =
1
6 , p1 =

2
3 , x0 = a, x1 =

a+b
2 , x2 = b, K1 =

1
3 , K2 =

1
24 , K3 =

1
324 , K4 =

1
1152 .

All constants of the errors are sharp. It is obvious that f (t) is of bounded variation if | f ′(t)| < ∞ or f (t) is Lipschitz
continuous. For further investigation of these cases, one can refer to Ostrowski’s inequality and its extensions ([9–13]).

We define ĥ = (b − a)/r, a j = a + j ĥ, ( j = 0, 1, . . . , r). We apply Corollary 4 on the interval [a j , a j+1] and we
have the following corollary.

Corollary 5 (Cf. [5]). Let 0 ≤ t0 < t1 < · · · < tk−1 ≤ 1. Suppose that the following quadrature rule:∫ 1

0
f (t) dt =

k−1∑
i=0

pi f (ti )
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is exact for any polynomial of degree less than n. Let f : [a, b] → R be such that f (n−1) is a function of bounded
variation. Then we have∫ b

a
f (t) dt = ĥ

r−1∑
j=0

k−1∑
i=0

pi f (a j + ti ĥ) + R( f ), (2.10)

where

R( f ) = ĥn
∫ b

a
Gn

(
r

t − a
b − a

)
d f (n−1)(t)

and

Gn(t) =
1
n!

k−1∑
i=0

pi (B∗
n (ti − t) − Bn(ti )).

Moreover,

|R( f )| ≤
1
n!

(
b − a

r

)n b∨
a

( f (n−1)) sup
0<t<1

∣∣∣∣∣k−1∑
i=0

pi (B∗
n (ti − t) − Bn(ti ))

∣∣∣∣∣ .
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[11] Q.B. Wu, S.J. Yang, A note to Ujević’s generalization of Ostrowski’s inequality, Appl. Math. Lett. 18 (2005) 657–665.
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