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a b s t r a c t

The inexact GMRES algorithm is a variant of the GMRES algorithm where matrix–vector
products are performed inexactly, either out of necessity or deliberately, as part of a trading
of accuracy for speed. Recent studies have shown that relaxing matrix–vector products in
this way can be justified theoretically and experimentally. Research, so far, has focused
on decreasing the workload per iteration without significantly affecting the accuracy. But
relaxing the accuracy per iteration is liable to increase the number of iterations, thereby
increasing the overall runtime, which could potentially end up being greater than that
of the exact GMRES if there were not enough savings in the matrix–vector products. In
this paper, we assess the benefit of the inexact approach in terms of actual CPU time
derived from realistic problems, andwe provide cases that provide instructive insights into
results affected by the build-up of the inexactness. Such information is of vital importance
to practitioners who need to decide whether switching their workflow to the inexact
approach is worth the effort and the risk that might come with it. Our assessment is
drawn from extensive numerical experiments that gauge the effectiveness of the inexact
scheme and its suitability for use in addressing certain problems, depending on howmuch
inexactness is allowed in the matrix–vector products.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The generalized minimum residual (GMRES) method of Saad and Schultz [1] is a popular technique for solving
nonsymmetric linear systems of the form

Ax = b (1)

where A is a nonsingular, large sparsematrix of dimension n, often with irregular structure. Given an initial estimate x0 with
corresponding residual vector r0 = b − Ax0, GMRES uses the Arnoldi process to build an orthogonal basis of the Krylov
subspace

Km = Span{r0, Ar0, A2r0, . . . , Am−1r0}.

The Arnoldi process leads to a relationship of the form

AVm = Vm+1Hm = VmHm + hm+1,mvm+1eTm, (2)

where Vm = [v1, v2, . . . , vm] is a basis of Km and Hm = V T
mAVm is upper Hessenberg, while Hm is Hm augmented with

hm+1,meTm in its last row. Here em denotes the mth column of the identity matrix I of appropriate size depending on its
context. In exact arithmetic, GMRES converges in at most n steps, i.e., if m = n. However, because n is large the amount of
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storage and the cost of orthogonalization in the Arnoldi process make it impractical to set m = n and so restarting is used
andm≪ n in practice, which is whywewill understand GMRES asmeaning restarted GMRES unless the distinction is made
explicit.

Variants of GMRES have been proposed, including most recently the inexact approach considered in this study. This
approach uses approximate matrix–vector products [2,3], and it has been shown to work well even in some regularization
applications where the coefficient matrix is singular [4]. To make the difference clear, we will call exact GMRES the classical
method and this is not meant to imply exact arithmetic. The general principle of the inexact variant is to perform the
matrix–vector product approximately as

Av ≈ (A+ E)v,

where E models some error matrix that varies with each product. Such inexactness (or relaxation) has been motivated by
applications where the matrix is not known exactly or it is too expensive to apply. Research, so far, has focused on the
modification that will decrease the workload per iteration without significantly affecting the accuracy. But relaxing the
accuracy per iteration is liable to increase the number of iterations, thereby increasing the overall execution time, which
could potentially end up greater than that of the exact GMRES should there be not enough savings in the matrix–vector
products to compensate for the overhead of the extra iterations, if any. A related concern is that implementing a relaxation
strategy may come at extra cost too. As we deal with large matrices over possibly thousands of steps, the inherent overhead
of a given relaxation strategy may itself build up to a sizable proportion that has to be offset as well.

Our studywill investigate the actual CPU time, which is an aspect that has received less attention so far. Such information
is of vital importance to practitioners who need to decide whether switching their workflow to the inexact approach is
worth the effort and the risk that might come with it. Also, regardless of the savings in computational time, practitioners
are concerned about the robustness and reliability of newer solution techniques aimed at replacing what they have been
accustomed to. Hence should a method fail to produce accurate enough answers, a trustworthy feedback (e.g., a residual)
should be provided. But the difficulty is compounded in the inexact scheme by the so-called residual gap that wewill discuss
later. To assess all the aspects above with respect to inexact GMRES, we have performed extensive numerical experiments
to gauge the effectiveness of the inexact scheme and its suitability for use in addressing certain problems, depending on
how much inexactness is allowed in the matrix–vector products.

We developed three implementations to obtain our results:
• An optimized FORTRAN90 code based on SLAP (Sparse Linear Algebra Package [5]), where we focused on adapting the

matrix–vector product to be inexact, based on auser-specified tolerance. Details on thiswill be given later. This represents
the typical way that practitioners might proceed in changing their existing workflow. The timings reported throughout
this study come from this optimized version.
• A separate instrumentation FORTRAN90 code based on the same SLAP code as above. In this code, we computed and

captured all the additional debugging and instrumentation information aimed at allowing us to monitor the inexact
solver without skewing the execution times to be reported. It is with this version that we computed the residual gap and
the data used in the various tables and plots and reported in this study.
• AMATLAB implementation that we used to check the correctness of our changes to the SLAP code. While not as efficient

as the compiled FOTRAN90 codes, it provided a convenient interface for fast prototyping and confirmation of the results
reported in this study.

The organization of the paper is as follows. Section 2 summarizes the inexact method including some theoretical results
pertaining to the impact of inexact matrix–vector products on the true residual. In Section 3 we describe our strategies for
allowing the inexactness to percolate through the computations on the basis of a user-specified tolerance. In Section 4, we
conduct a detailed series of experiments on both a desktop PC and a supercomputer as part of our performance analysis,
leading in particular to the observation that for small problems (n ≤ 10,000), the time that it takes to run either variant
is very short, making the inexact variant not worth the porting effort in such cases. In Section 5 we provide concluding
remarks.

2. The inexact GMRES algorithm

It is assumed that the reader is familiar with Krylov subspace techniques, or can consult for example [6,1] for more
detailed information and background on the classical GMRES. In recent years there has been an interest in transitioning
from exact matrix–vector products to inexact matrix–vector products in GMRES, either out of necessity or deliberately, as
part of a trading of accuracy for speed. Results have been quite promising thus far [2,3,7]. Algorithm 1 shows a pseudo-code
for the inexact variant in which as we noted earlier the inexact matrix–vector operation is modeled as

wk := (A+ Ek)vk.

If we set Ek = 0 in the algorithm, we recover the classical GMRES. The foremost implication of such a relaxation of the
matrix–vector product is that the classical Arnoldi relationship (2) no longer holds. Rather, we now have (in the notation
of [7])

(A+ Em)Vm = Vm+1Hm, Em =

m−
k=1

Ekvkv
T
k , (3)
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or alternatively (in the notation of [3])

AVm + Fm = Vm+1Hm, Fm = EmVm = [E1v1, . . . , Emvm], (4)

where these equalities exploit the noteworthy fact that the basis Vm remains orthonormal. As noted in [7], the relation (3)
makes it clear that Vm is a basis for a subspace spanned by the elements of a Krylov sequence obtained by some perturbation
of the matrix A, where the perturbation is updated at each step. From theoretical and experimental evidence, the method
can withstand cases where the norm of the perturbation Em grows very large, and in effect the greater the iteration number
k, the larger the error Ek allowable in the matrix–vector product.

Algorithm 1: Inexact GMRES
Choose an initial estimate x0 and compute r0 := b− Ax0 ;
repeat
β := ‖r0‖2 ; v1 := r0/β ;
for k = 1, 2, . . . ,m, do

wk := (A+ Ek)vk ;
for i = 1, 2, . . . , k do

hik := vT
i wk ;

wk := wk − hikvi ;
end
hk+1,k := ‖wk‖2 ;
if hk+1,k ≈ 0 then

m := k ;
break ;

end
vk+1 := wk/hk+1,k ;

end
Define the (m+ 1)×m Hessenberg matrix Hm = (hik)1≤i≤m+1,1≤k≤m ;
Solve the least squares problem min ‖βe1 − Hmym‖2 for ym ;
Set x0 ← xm := x0 + Vmym and r0 ← rm := b− Axm ;

until convergence ;

Ideally, we look to reduce the number of operations, in order to make the CPU time smaller while keeping the same
accuracy. Our numerical results in Section 4 show that provided that the distribution of non-zero elements per column is
suitable, our times for the inexact matrix–vector products are less than that for the exact matrix–vector products. However,
we observed that a reduced time does not comewith the guarantee that the solution is as accurate as claimed by the inexact
solver. This is because there is a discrepancy between the true residual that exact GMRES would provide and the estimated
residual computed by inexact GMRES. This is the so-called residual gap issue and we shall start by discussing this issue in
greater detail, as it is important in practice. Our discussion gives some additional insights into the issue and our experiments
include a few instructive cases where the estimated residual of inexact GMRES does not have the very valuable monotonic
property that the true residual of exact GMRES has. We shall even see a notorious case later where the computed residual
increases dramatically.

2.1. The residual gap

Both the exact and inexact GMRES methods (cf. Algorithm 1) use the update formula

xm = x0 + Vmym,

where x0 is the initial guess and ym is obtained by solving the least squares problem

ym = argmin
y
‖βe1 − Hmy‖2, r0 = b− Ax0, β = ‖r0‖2.

Associated with the new iterate xm is the true residual

rm = b− Axm,

but it is well known that it is not computed in this way in highly optimized production codes—neither by the exact GMRES
nor by the inexact variant, where in this latter case, it is better not to assume that the matrix–vector product Axm can
be performed exactly at will (although we shall see later that a completely inexact method is hard to achieve). Obtaining
meaningful bounds on the true residual under such restrictions in the inexact setting has been analyzed in [7] as we
summarize here. Recall (3) and (4); the inexact GMRES method ends up with (the norm of) the computed residual

r̃m = r0 − Vm+1Hmym,
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while the true residual satisfies
rm = b− Axm = b− A(x0 + Vmym)

= r̃m + [E1v1, . . . , Emvm]ym. (5)
In the exact case where all the Ek = 0, the two residuals coincide, r̃m = rm, and it is well known that the norm can be
retrieved economically from the Givens rotations that are created to reduce the Hessenberg matrix Hm to triangular form.
In the inexact case, however, there is an unknown residual gap between the true residual and the computed residual, and
from (5) this gap satisfies

δm = ‖rm − r̃m‖2 = ‖[E1v1, . . . , Emvm]ym‖2. (6)
The inexact solver still reports ‖r̃m‖2 as the estimate of the residual, but the gap between this estimate and the true residual
is not obvious, prompting a reservation about the reliability of the final solution. Clearly, monitoring δm, or its relative
counterpart, δm/‖A‖2‖ym‖2, which is more meaningful as a backward error criterion (see [7]), becomes necessary. This
is discussed next.

2.2. Monitoring the inexact matrix–vector product

Letting η
(m)
k be the kth component of ym, i.e.,

ym = (η
(m)
1 , η

(m)
2 , . . . , η(m)

m )T ,

if follows from (5) that ‖rm‖2 ≤ ‖r̃m‖2 + δm with

δm ≤

m−
k=1

|η
(m)
k | · ‖Ekvk‖2 ≤

m−
k=1

|η
(m)
k | · ‖Ek‖2, (7)

and we note in passing that this bound is observed to be often sharper than using
δm = ‖[E1v1, . . . , Emvm]ym‖2 ≤ ‖[E1v1, . . . , Emvm]‖2 · ‖ym‖2.

It also explains why the error in the matrix–vector product can be large provided that either of the products |η(m)
k | · ‖Ekvk‖2

or |η(m)
k | · ‖Ek‖2 is small. But a major difficulty here is that ym is only available at the mth iteration and so, as the iterations

unfold, it is not clear how to determine the maximum allowable error at the kth iteration that can ultimately guarantee
that the upcoming gap δm at the mth iteration stays within a prescribed tolerance. To address this problem, Simoncini and
Szyld [7] attempted to bound |η(m)

k | in terms of quantities that are available at the kth iteration. They showed that the
following inequality holds:

|η
(m)
k | ≤

1

σmin(Hm)
‖r̃k−1‖2, (8)

where σmin(Hm) = ‖(H
T
mHm)−1‖

−1/2
2 is the smallest singular value of Hm. Therefore if we can somehow enforce the extent

of the inexactness in the matrix–vector products to satisfy

‖Ek‖2 ≤
σmin(Hm)

m
ε

‖r̃k−1‖2
, k = 1, . . . ,m, (9)

for a prescribed ε, we will automatically get from (7)
δm = ‖rm − r̃m‖2 ≤ ε.

The bound (9) explains why the greater the iteration number k is, the smaller ‖r̃k−1‖2 gets (in those cases where there
is no stagnation), and so the larger the allowable error Ek in the matrix–vector product could be. However, while all the
intermediate computed residuals ‖r̃k−1‖2 are readily available via Givens rotations as we hinted earlier, the difficulty now
has shifted to anticipating what σmin(Hm) might end up being, prior to reaching the mth iteration. This remains an open
question and it is suggested in [7] that one use an estimate, e.g., σmin(Hm) ≈ σmin(A), the smallest singular value of A.
This issue is discussed further in [8], but their bounds are still not ideal in our case where n ≫ 1 since we deal with very
large problems. Another practical difficulty is that it may not be easy to measure and fine-tune ‖Ek‖2 (or more likely an
approximation thereof). Thus the cost of monitoring a relaxation strategy may build up to a non-negligible amount when
dealing with very large matrices over thousands of steps.

Our study is motivated by the aspects above. We will measure the actual computational time and illustrate how the gap
evolves in representative examples. We will describe a simple but effective strategy for performing the relaxation based
on controlling ‖Ekvk‖2 in (7) using a parameter called droptol. Conceptually, our strategy amounts to dropping a number of
elements in the matrix, therefore making the matrix more sparse. This causes Ek to be the elements that were dropped and
we can pick a droptol that restricts ‖Ekvk‖2 in a number of ways. This is discussed in Section 3 but we would like to first
raise other aspects that are worth keeping in mind in an inexact setting, especially for those wishing to use inexact GMRES
in their applications.
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2.3. Restart and loss of optimality

Since inexact versions of GMRES are likely to come from modifying existing exact codes, there need to be a few extra
adjustments beside the inexact matrix–vector product in order for the data to be accurately reported using the theory in [7]
that was summarized above. The derivation of the gap assumes that the initial residual r0 is exact (or at the very least
within the tolerance desired on the solution; see the discussion at the end of [7, Section 3]). The theory does not hold if this
assumption is overlooked. Yet, this is precisely what happens at restart if an exact code is converted to an inexact code by
merely relaxing the matrix–vector product routine. A simple way to understand what happens is to recall that the exact
GMRES method seeks to solve

min ‖b− Axm‖2 = min ‖b− A(x0 + zm)‖2 = min ‖r0 − Azm‖2,

which yields zm = Vmym with ym = H
Ď

m(βe1), β = ‖r0‖2, and H
Ď

m being the pseudo-inverse of Hm. Thus if we substitute r0
with a very distant r̃0 = b− (A+ E0)x0 where the perturbation E0 is large, we end up solving

min ‖r̃0 − Az̃m‖2
for some z̃m that ends up distant from the intended zm. This is the effect that could happen in the inexact setting, and
understandably, analyzing the residual gap serves little purpose in such a situation. It is easy to overlook this when
converting an exact code to be inexact because, as we mentioned before, the exact GMRES commonly implements the
shortcut method r0 ← rm := r0 − VmHmym at restart, and we explained earlier that this does not match the true residual
in the inexact case. Thus a completely inexact code is hard to achieve because the need for the true residual at restart is
inevitable. The importance of an accurate residual at restart has also been discussed in the context of the Newton–GMRES
algorithm for solving nonlinear problems [9]. At the very least, we recommend computing the true residual upon completion
to double-check the accuracy of the solution when the inexact solver claims convergence. In our experiments, we changed
the restart of the SLAP code to compute the residual explicitly using a full blown matrix–vector product

r0 ← rm := b− Axm.

Even when using the exact computation of the residual at restart there are still some instances where the behavior of
inexact GMRES can markedly differ from what practitioners have come to expect with exact GMRES, notably the core tenet
that the norm of the true residual never increases in exact GMRES. The opposite can happen in inexact GMRES, manifested
by an erratic sequence of the norms of its corresponding true residual. This means that inexact GMRES loses the optimality
of exact GMRES. To understand why, assume that yoptm is the vector that would have achieved the exact minimization of the
true residual as

‖roptm ‖2 = ‖r0 − AVmyoptm ‖2 = min
y
‖r0 − AVmy‖2

upon constructing the basis Vm through the inexact process (4). We have actually replaced the exact minimization of the
residual with an approximation that can be described as

yoptm = argmin
y
‖r0 − AVmy‖2

= argmin
y
‖(r0 − Vm+1Hmy)+ Fmy‖2

≈ argmin
y
‖r0 − Vm+1Hmy‖2

= ym.

Thus even if r0, ym and the corresponding true residual rm are computed accurately, there is no guarantee that ym (resp. rm)
will be close to yoptm (resp. roptm ). A small gap ‖Fmym‖2 does not rule out this issue either because it could just be that ym is
almost in the null space of Fm with rm already very different from roptm . This latter scenario is expected to be rare however.

Again the point is not that inexact GMRES is not minimizing the residual due to the way its basis was constructed, but
rather that it is not even getting theminimizer of the residual fromwithin its own basis, and this means that inexact GMRES
should be viewed much like a quasi-minimum residual method. Our experiments include illustrative plots of ‖yoptm − ym‖2
and ‖roptm − rm‖2. See Figs. 12–14.

Finally, we should clarify that the computed residual can also have an erratic behavior but in a more subtle way. Indeed
the computed residual always remains monotonic until the maximum size of the basis is reached because

‖r̃0‖2 ≥ · · · ≥ ‖r̃k‖2 = min
y
‖r0 − Vk+1Hky‖2 ≥ · · · ≥ ‖r̃m‖2 = min

y
‖r0 − Vm+1Hmy‖2.

But since the computed residual is reset to the true residual at restart, this has the effect of creating an impulse if the gap is
perceptible, giving the appearance of an erratic behavior. If an implementation chooses not to reset the computed residual to
the true residual at restart or if the gap remains negligible throughout the restarts, then the computed residual will remain
monotonic. In the casewhere the computed residual is not reset, the danger is that itmay endup small bymonotonicitywhen
in reality the true residual is large, misleading the user into accepting an inaccurate solution. This is why we recommend at
least computing a sufficiently accurate residual at completion to confirm the accuracy of the final solution.
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3. Practical implementation

We saw that the effectiveness of the inexact scheme is tied to the residual gap
Fmym = [E1v1, . . . , Emvm]ym.

We implemented two strategies for the inexactmatrix–vector product by dropping operations thatwould otherwise involve
elements of very small magnitude. In this section we discuss how the errors introduced by our schemes relate to the
theoretical bounds seen earlier.

3.1. Inexact matrix–vector products

In the first strategy, writing
A = [a1| . . . |an], v = (µ1, . . . , µn)

T ,

where the aj ∈ Rn and µj ∈ R for j = 1, . . . , n, we perform our matrix–vector product in the following column-oriented
way:

Av = [a1| . . . |an]

µ1
...

µn

 =−
j∈J

µjaj +
−
j∈Jc

µjaj

where J is the set of indices such that |µj| > droptol and Jc is its complement, with droptol being a user-specified tolerance.
We then use the approximation

Av ≈
−
j∈J

µjaj, (10)

which conceptually amounts to dropping selected columns of the matrix A and entails the error

Ev =
−
j∈Jc

µjaj,

and so for any norm ‖ · ‖, since Jc is the set of indices such that
µj

 ≤ droptol, we have

‖Ev‖ ≤
−
j∈Jc
|µj| · ‖aj‖ ≤

−
j∈Jc

droptol · ‖aj‖ ≤ droptol · |Jc | · ‖A‖, (11)

where |Jc | denotes the cardinality of Jc . A large |Jc | would imply the presence of many small µj (in magnitude), meaning
that several columns have been dropped in the matrix–vector product, thereby leading to substantial savings provided that
these columns had many non-zero elements.

In the context of inexact GMRES for a large sparse problem, the Arnoldi process computes
wk = (A+ Ek)vk

where vk = (µ
(k)
1 , . . . , µ

(k)
n )T is a normalized basis vector with ‖vk‖2 = 1. It is very likely that some components are very

small since
∑n

j=1(µ
(k)
j )2 = 1 with n≫ 1. Hence, the larger the n, the smaller the components (in magnitude) and the more

of them there will be, and in the light of the previous discussion, this will result in substantial savings in the cost of our
inexact matrix–vector product provided that the corresponding columns of the matrix that we drop have many non-zero
elements.

As |Jc | grows large and brings more savings, the error bound (11) may become too loose to be useful. This is because it
caters for any norm and so is too general. A tighter bound is summarized below.

Theorem 1. The residual gap resulting from the inexact GMRESmethod based on the relaxedmatrix–vector product (10) satisfies

‖Fmym‖∞
‖A‖∞‖ym‖1

≤ droptol.

Proof. First note that the error from (10) can be bounded as

‖Ev‖∞ ≤ droptol · ‖A‖∞, (12)

which gives a clearer picture of the actual accuracy being traded. This bound comes from the fact thatwe canwrite Ev = Avc

where vc denotes the vector such that the jth component is the same as µj if j ∈ Jc ; thus |eTj v
c
| = |eTj v| = |µj| ≤ droptol,

and is 0 otherwise. Recall that ym = (η
(m)
1 , η

(m)
2 , . . . , η

(m)
m )T ; we can infer from (12) that

‖Fmym‖∞ ≤
m−

k=1

|η
(m)
k | · ‖Ekvk‖∞ ≤ droptol · ‖A‖∞

m−
k=1

|η
(m)
k | = droptol · ‖A‖∞‖ym‖1,

which produces the relative form stated in the theorem. �
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Recall (8); we can also conclude that

‖Fmym‖∞ ≤
droptol · ‖A‖∞

σmin(Hm)

m−
k=1

‖r̃k−1‖2

and this shows that
‖Fmym‖∞ ≤ ϵ‖A‖∞

where

ϵ ≤ droptol · ‖ym‖1 ≤
droptol

σmin(Hm)

m−
k=1

‖r̃k−1‖2,

where we can make ϵ ∈ (0, 1) by choosing a sufficiently small droptol. Therefore we have now provided an error bound
for our inexact scheme using the parameter ϵ and ‖A‖∞ where ϵ depends on values from our iterations and so cannot be
pre-determined for all problems exactly. A similar technique can be seen in [7].

Our first strategy applied a droptol to the components of a basis vector v in the inexact product w ≈ Av. However this
strategy did notweight the components of v, where v = (µ1, . . . , µn)

T , with thematrixA = [a1| . . . |an].Whenwedropµjaj
in our matrix–vector product with |µj| ≤ droptol, it is possible, on one hand, for ‖µjaj‖∞ to be large enough to contribute
significantly to the error; on the other hand, if the column aj only has small elements, since µj < 1, it is possible for µjaj to
shrink enough to become negligible even if |µj| > droptol. Therefore a second strategy is to use a weighted threshold where
the combination of µjaj is omitted in the matrix–vector product if

|µj| · ‖aj‖∞ ≤ droptol.
In this case, the matrix–vector product becomes

Av =
−
j∈Jw

µjaj +
−
j∈Jcw

µjaj

where Jw is the set of indices such that |µj| · ‖aj‖∞ < droptol. As before we use the approximation

Av ≈
−
j∈Jw

µjaj, (13)

which has the error
Ev =

−
j∈Jcw

µjaj,

but this time
‖Ev‖∞ ≤

−
j∈Jcw

|µj| · ‖aj‖∞ ≤
−
j∈Jcw

droptol ≤ |Jcw| · droptol.

Thus this scheme uses droptol in a way that takes into consideration the entries of our matrix whereas the previous scheme
did not. We can express the bound without |Jcw| in the following way.

Theorem 2. Let Aw(v) be the matrix derived from A = [aij] and v = (µ1, . . . , µn)
T such that its ijth entry is µjaij if it is less

than droptol in magnitude and 0 otherwise. Then the residual gap resulting from the inexact GMRES method based on the relaxed
matrix–vector product (13) satisfies

‖Fmym‖∞
‖ym‖1

≤ max
1≤k≤m

‖Aw(vk)‖∞ ≤ droptol · ‖1A‖∞,

where 1A is the sparsity pattern of A, with 1 at the non-zero positions and 0 elsewhere.
Proof. It follows from the definition of Aw(v) that the error due to (13) satisfies

Ev =
−
j∈Jcw

µjaj = Aw(v)e, e = (1, . . . , 1)T ,

with |eTi Aw(v)ej| = |µjaij| ≤ droptol if j ∈ Jcw and 0 otherwise. And so

‖Ev‖∞ ≤ ‖Aw(v)‖∞.

Like with the previous theorem, we get

‖Fmym‖∞ ≤
m−

k=1

|η
(m)
k | · ‖Ekvk‖∞ ≤

m−
k=1

|η
(m)
k | · ‖Aw(vk)‖∞

≤ ‖ym‖1 · max
1≤k≤m

‖Aw(vk)‖∞.

Since entries of Aw(v) are less than droptol in magnitude, the stated inequality follows. �
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Table 1
Characteristics of the problems (∗symmetric problem, but symmetry is not exploited here). ‖A‖est2 was estimated by the function call normest(A) inMATLAB.
These matrices come from The University of Florida Sparse Matrix Collection [11].

Matrix n nz(A) Cond. number ‖A‖est2 ‖A‖∞

cage13 445,315 7,479,343 6.6732e+02 1.4051
cage14 1,505,785 27,130,349 1.2271e+03 1.3333
cfd1∗ 70,656 1,828,364 1.3351e+006 1.2702e+03 8.9202
cfd2∗ 123,440 3,087,898 1.8770e+03 8.8104
circuit_4 80,209 307,625 5.7143e+011 1.4741e+05 5.3429e+03
epb3 84,617 463,625 7.4546e+004 9.5144e+01 6.7590e−01
finan512∗ 74,512 596,992 9.8391e+001 2.6496e+03 6.3233e+01
hcircuit 105,676 513,120 6.6598e+005 2.0228e+03 8.8179e+01
pwtk∗ 217,918 11,634,424 3.6177e+09 1.8231e+08
stomach 213,360 3,021,648 5.1782e+02 4.0785
torso3 259,156 4,429,042 6.7086e+02 1.0936e+01

The matrix Aw(v) symbolizes all the elements that were not included in the weighted matrix–vector product (13), with
these elements further scaled down by the corresponding µj. If the matrix A already had small elements, it is possible for
Aw(v) to capturemany of them (whichmeansmany savings in thematrix–vector product). But if A had large elements, there
may not be that much saving, unless µj ≪ 1 and droptol is not stringent. This is different from the first scheme where a
large n assured many small µj, which then virtually assured savings. The sparsity pattern of Aw(v) is a subset of that of A
and we have ‖Aw(vk)‖∞ ≤ ‖A‖∞, but not necessarily ‖Aw(vk)‖∞ ≤ droptol · ‖A‖∞.

Our dropping strategies are columnwise and sowe converted the testmatrices into the CompressedColumnStorage (CCS)
format, which is the most suitable compact format in our context. We implemented the weighted scheme by computing all
the ‖aj‖∞ at the very beginning and re-using them throughout the computations. Trying to implement a finer strategywould
mean scanning the entire matrix at each matrix–vector product, which will be very much prohibitive.

3.2. Savings

Let us denote the number of non-zero elements of the jth column of our matrix A by nz(aj). Therefore when we skip
the product of µjaj in either of our schemes, we are saving nz(aj) floating point operations. Now, considering the entire
matrix, we are saving

∑
j∈Jc nz(aj) operations (substitute Jc with Jcw as appropriate for the weighted scheme). Recall that

this means that we skip |Jc | columns. Consequently we can expect meaningful savings only if the values of nz(aj) are not
too small on average and if |Jc | ≫ 1. This explains why when we considered cases where n ≤ 10,000, the savings were
not that significant because |Jc | was not that large when one takes account of today’s very fast CPUs. Moreover, even for
larger problems, if the nz(aj) are small on average, we do not see any savings worth using inexact matrix–vector products
for, because the cost of deciding whether or not to use a column (using a conditional if-check) must be compensated for by
the savings generated by that column, and this can only happen if nz(aj) ≫ 1. Therefore we will focus our experiments on
large problems in which we additionally have nz(aj)≫ 1. We provide histograms of nz(aj) in our results to give the reader
a sense of the distribution of the non-zeros. The importance of this consideration was also observed in [10].

4. Numerical results

All calculations were done on a supercomputer hosted at the Alabama Supercomputer Center (ASC) in Huntsville,
Alabama. The ASC hosts units of two types: the Dense Memory Cluster (DMC) and the SGI Altix. At the time of our
experiments the DMC has 1256 CPU cores and 6176 GB of distributed memory. The machine is physically configured as
a set of eight CPU core SMP boards. Sixty of the nodes have 64 GB of memory. Twenty nodes have 3.0 GHz dual-core AMD
Opteron processors. Forty nodes have 2.3 GHz quad-core AMD Opterons. Ninety-six nodes have 2.26 GHz Intel quad-core
Nehalem processors. Our executions were done in batch mode on the DMC and the batch system automatically assigns the
job to a CPU core depending on the queue. Table 1 lists the characteristics of the problems used in our experiments.

Our results are detailed in the Appendix. We set the true solution x = (1, 0, . . . , 0, 1)T and generate the right side
b = Ax for each problem. Hence we can test the true error ‖x− xm‖2 on completion. For ease of presentation of the results,
we use the index m (as in xm) to denote the final iterate, even though there could have been intermediate restarts and/or
the convergence could have occurred midway during the iterations, as is often the case with GMRES. In the SLAP solver,
we set the restart parameter m = 50 and request an accuracy tolerance tol = 10−6 everywhere. Convergence means that
‖r̃m‖2/‖b‖2 ≤ tol. We set 2500 as the maximum overall number of iterations (the current number of iterations is not reset
at restart and so is not bounded bym).

For each set of results, we give:

• The histogram of the distribution of non-zero entries per column of the matrix under consideration. Thus with nz(aj)
indicating the number of non-zeros in the column, #cols represents the number of columns of the matrix that have this
indicated number of non-zeros. This preparatory information is very useful because it allows one to predict the potential
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savings in the inexactmatrix–vector products aswe explained earlier. If the histogram shows thatmost columns have few
non-zero entries then we can expect no significant difference, as far as time is concerned, to motivate using the inexact
scheme. This is why we focused on large problems where the nz(aj) are not too small. We observed in general that if a
high number of columns have more than 10 non-zero entries, the matrix will be more likely to make the inexact scheme
worthwhile on our testing platform. On the basis of such preparatory information and depending on their environment,
practitioners may decide whether our inexact matrix–vector strategies are suitable for their applications in terms of
savings in computational time.
• The data collected from the execution, with the CPU time coming from the optimized code and the debugging data from

the separate instrumentation code as we described at the beginning.
– droptol: relaxation parameter in the inexact matrix–vector as detailed in Section 3.1.
– ‖x− xm‖2/‖x‖2: true error in the final computed solution.
– ‖rm‖2/‖b‖2: true residual on completion.
– ‖r̃m‖2/‖b‖2: computed residual on completion (note that our implementation reset r̃0 to the true residual r0 at restart

positions).
– δm: residual gap on completion, δm = ‖rm − r̃m‖2.
– Runtime (s): CPU time in seconds.
– #Iter: number of iterations (not to be confused with the number of restarts). It is incremented every time a new

approximated solution is possible (even if it is not computed explicitly—as is the case with GMRES) and is not reset at
restart. Convergence failure is declared if #Iter reaches 2500 without the computed residual meeting the convergence
criteria.

– Savings: number of operations saved. This is a counter that is incremented with nz(aj) if the jth column is skipped in
our inexact matrix–vector product.

• Graphical plots of the history of the residual norm (scaled by ‖b‖2) when using either the unweighted matrix–vector
product and the weighted alternative.

For a few problems (Figs. 12–14) we plot the history of some of their characteristics throughout the entire run with
droptol = 10−3, including the residual gap δm, as well as ‖yoptm − ym‖2 and ‖roptm − rm‖2 that give an idea of the quasi-
minimization that takes place within inexact GMRES. Fig. 13 is an example where inexact GMRES (with droptol = 10−3)
claimed early convergence (after only six iterations), whereas it appears clear from the history of its attributes in Fig. 5 that
the residual gap was not within the requested tolerance.

We run the experiments with droptol ranging from 10−3 to 10−10, and the results show that only when droptol = 10−3
does the inexact scheme showmost of its perceptible accuracy difficulties. This shows that the inexact scheme is fairly robust
as far as accuracy is concerned. The smaller droptol is, the closer inexact GMRES gets to the exact GMRES. It is remarkable
how in many problems the plots of the residual norm became almost indistinguishable at droptol = 10−5 and lower.

We did not vary the accuracy per iteration, but the fact that we use a wide range of droptol provides similar evidence that
starting with droptol = 10−10 and relaxing gradually within the iterations would have worked equally well, as predicted by
the theory and experiments by previous authors. We did not also consider preconditioners as they would have introduced
other parameters that would have increased the number of experiments beyond our already large set.

Problems cage13 and cage14 show identical behaviors although the latter is twice as big as the former. The same can
be said about cfd1 and cfd2. Problem ebp3 is peculiar in that it makes the inexact scheme diverge when the weighted
matrix–vector product is used. This is due to the fact that its matrix is of small norm, ‖A‖∞ = 0.68, and as we discussed
in Section 3.1, the bigger droptol = 10−3 causes many elements to fall into the error term of the matrix–vector, making it
too inexact. Contrast this with pwtk for which the matrix is of large norm, ‖A‖∞ = 1.82 · 108, indicating the presence of
large elements in the matrix. In this case, it is the unweightedmatrix–vector that suffers because it only checks the operand
vector and skips columns of the matrix without regard to the magnitude of its elements. The large perturbation that results
from this matrix leads to a larger residual gap, which explains the spikes at restart positions that we see in the plot. Spikes
appear in general when the computed residual is reset to the true residual at restart positions, but may be imperceptible if
the residual gap is too small. They can be seen on some of the other plots as well. Problem pwtk is also a case where none
of the schemes converge within the allotted maximum number of iterations, but their residual decreases quite well.

Another example that stands out is circuit_4, where the inexact scheme returns a highly optimistic residual when
droptol = 10−3 under either of the matrix–vector strategies, suggesting that it is a matrix where the perturbations should
not be too big at the beginning of the iterations. There are other instances where the computed residual is too optimistic; for
example in Table 5 for cage14, the gap is large when droptol = 10−3. Protection against such optimistic computed residuals
requires at least computing an accurate residual on completion so as not to mislead the user into thinking that the returned
solution is as accurate as claimed by the inexact solver.

We noted earlier that the computed residual need not bemonotonic. Problem hcircuit is a clear illustration of this under
the weighted matrix–vector product.

In results not reported here, we experimented with not computing the restart residual accurately. We saw that it is
very risky to adopt this approach because the inexact scheme can subsequently claim convergence when actually this has
not been achieved. In such cases the final residual gap remains wide (but it should be recalled that the residual gap is not
computed in an optimized setting and therefore users cannot expect to base their decision on its availability). Hence we
recommend computing the restart residual at least as accurately as with the tolerance requested for the solution.
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Table 2
Histogram of the distribution of non-zeros per column in cage13.

nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols

3 64 12 17,862 19 31,056 26 7444 33 882
5 2,312 13 28,844 20 25,348 27 5588 34 604
6 368 14 37,962 21 19,914 28 3070 35 604
7 5,604 15 30,248 22 19,032 29 2576 36 212
8 12,212 16 36,326 23 13,523 30 1510 37 196
9 4,652 17 35,556 24 13,136 31 845 38 32

10 16,548 18 30,752 25 8,507 32 914 39 24
11 30,988

Table 3
Execution of cage13 (first block: unweighted matrix–vector, second: weighted).

droptol ‖x− xm‖2/‖x‖2 ‖rm‖2/‖b‖2 ‖r̃m‖2/‖b‖2 δm Runtime (s) #Iter Savings

Exact 1.61e−06 4.77e−07 4.77e−07 0 2.32 18 0
10−3 1.94e−02 1.71e−02 4.87e−07 1.66e−02 1.00 18 7742,498
10−5 2.52e−05 2.28e−05 4.77e−07 2.21e−05 1.35 18 5978,936
10−6 1.98e−06 1.25e−06 4.77e−07 1.11e−06 1.50 18 5072,962
10−8 1.61e−06 4.77e−07 4.77e−07 2.40e−09 1.60 18 4273,275
10−10 1.61e−06 4.77e−07 4.77e−07 3.53e−12 1.62 18 4145,407

Exact 1.61e−06 4.77e−07 4.77e−07 0 2.34 18 0
10−3 3.70e−02 3.00e−02 5.26e−07 2.90e−02 1.00 18 7862,514
10−5 7.18e−05 5.62e−05 4.74e−07 5.44e−05 1.34 18 6152,908
10−6 2.58e−06 1.83e−06 4.77e−07 1.71e−06 1.49 18 5219,790
10−8 1.61e−06 4.77e−07 4.77e−07 3.30e−09 1.62 18 4296,666
10−10 1.61e−06 4.77e−07 4.77e−07 5.14e−12 1.64 18 4148,461

Overall, we can see that both of the inexact schemes are quite robust, leaving the savings only really dependent on the
sparsity pattern of the problem and the CPU speed. The savings in floating point operations in many of the problems appear
to be quite significant (ranging from several hundreds of thousands to several millions of operations), but with today’s very
fast CPUs, it takes a fair chunk of work for them to start affecting the CPU time. This is why even though the inexact GMRES
with varying droptol is often as accurate as the exact GMRES while having substantial savings, their execution times remain
close. It is also why for smaller matrices the time for the exact method and that for the inexact method were so close that
there was no need to use an inexact method to help improve efficiency.

5. Conclusion

We discussed the inexact GMRES method and presented two strategies for relaxing the matrix–vector product based on
a droptol parameter. Conceptually, our inexact strategies amount to dropping a number of elements in the matrix, therefore
making it more sparse. We compared themwith the exact scheme for a wide range of problems. Our extensive experiments
showed that the inexact schemes are competitivewith the exact scheme for very large problems, provided that their savings
grow enough to become perceptible with today’s very fast CPUs. We saw that accuracy was not the main concern with the
inexact schemes, if implemented with care. In particular, the uncertainty with the residual gap can be virtually eliminated
by computing the true residual at restart positions. Indeed, we used an instrumentation code and plotted the history of the
residual norms and they became almost indistinguishable at reasonable droptol. Our analysis provided additional insight into
the inexact GMRES method and our experiments provided further data that should assist practitioners in deciding whether
switching to inexact GMRES is worthwhile for their applications.

Appendix A. Results for cage13

n = 445,315 nz = 7,479,343 ‖A‖∞ = 1.41 ‖b‖2 = 9.67 · 101 (see Tables 2, 3 and Fig. 1).

Appendix B. Results for cage14

n = 1,505,785 nz = 27,130,349 ‖A‖∞ = 1.33 ‖b‖2 = 9.58 · 101 (see Tables 4, 5 and Fig. 2).

Appendix C. Results for cfd1

n = 70,656 nz = 1,828,364 ‖A‖∞ = 8.92 ‖b‖2 = 2.15 (see Tables 6, 7 and Fig. 3).
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Fig. 1. Residual history of cage13 (left: unweighted matrix–vector, right: weighted).

Table 4
Histogram of the distribution of non-zeros per column in cage14.

nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols

5 4,096 14 113,480 21 79,914 28 20,146 35 2869
7 12,800 15 96,400 22 77,754 29 15,354 36 1478
8 26,240 16 112,232 23 69,761 30 11,074 37 1358
9 10,688 17 117,689 24 48,500 31 7,627 38 502

10 42,368 18 105,818 25 42,577 32 6,110 39 396
11 79,888 19 105,709 26 37,646 33 4,257 40 72
12 45,088 20 100,980 27 23,578 34 2,648 41 48
13 78,640

Table 5
Execution of cage14 (first block: unweighted matrix–vector, second: weighted).

droptol ‖x− xm‖2/‖x‖2 ‖rm‖2/‖b‖2 ‖r̃m‖2/‖b‖2 δm Runtime (s) #Iter Savings

Exact 2.41e−06 8.78e−07 8.78e−07 0 7.90 17 0
10−3 2.41e−02 2.09e−02 9.14e−07 2.00e−02 3.23 17 25,179,457
10−5 5.27e−05 4.50e−05 8.78e−07 4.31e−05 4.32 17 20,321,953
10−6 2.86e−06 1.67e−06 8.78e−07 1.35e−06 4.72 17 18,026,832
10−8 2.41e−06 8.78e−07 8.78e−07 2.06e−09 5.17 17 15,177,001
10−10 2.41e−06 8.78e−07 8.78e−07 3.18e−12 5.24 17 14,634,152

Exact 2.41e−06 8.78e−07 8.78e−07 0 7.72 17 0
10−3 4.76e−02 3.70e−02 9.55e−07 3.54e−02 3.05 17 25,426,046
10−5 1.42e−04 1.15e−04 8.80e−07 1.10e−04 4.14 17 20,739,576
10−6 4.87e−06 3.50e−06 8.78e−07 3.24e−06 4.56 17 18,409,265
10−8 2.41e−06 8.78e−07 8.78e−07 3.83e−09 5.04 17 15,283,500
10−10 2.41e−06 8.78e−07 8.78e−07 4.99e−12 5.14 17 14,648,294

Table 6
Histogram of the distribution of non-zeros per column in cfd1.

nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols

12 216 21 192 24 3,580 28 32 31 48
16 104 22 32 26 16 29 16 32 16
18 7352 23 16 27 58,372 30 328 33 336

Appendix D. Results for cfd2

n = 123,440 nz = 3,087,898 ‖A‖∞ = 8.81 ‖b‖2 = 2.26 (see Tables 8, 9 and Fig. 4).

Appendix E. Results for circuit_4

n = 80,209 nz = 307,625 ‖A‖∞ = 5.34 · 103
‖b‖2 = 1.41 (see Tables 10, 11 and Fig. 5).
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Fig. 2. Residual history of cage14 (left: unweighted matrix–vector, right: weighted).

Table 7
Execution of cfd1 (first block: unweighted matrix–vector, second: weighted).

droptol ‖x− xm‖2/‖x‖2 ‖rm‖2/‖b‖2 ‖r̃m‖2/‖b‖2 δm Runtime (s) #Iter Savings

Exact 2.26e−03 9.91e−07 9.91e−07 0 9.52 282 0
10−3 2.21e−03 4.03e−05 9.97e−07 8.68e−05 10.88 398 12,513,028
10−5 2.24e−03 9.99e−07 9.95e−07 1.79e−07 8.85 286 3,727,981
10−6 2.24e−03 9.88e−07 9.88e−07 7.46e−09 8.88 284 3,275,940
10−8 2.25e−03 9.89e−07 9.89e−07 6.55e−12 8.91 282 2,842,602
10−10 2.25e−03 9.91e−07 9.91e−07 0 8.99 283 2,629,494

Exact 2.26e−03 9.91e−07 9.91e−07 0 9.51 282 0
10−3 2.21e−03 4.03e−05 9.97e−07 8.68e−05 10.91 398 12,513,028
10−5 2.24e−03 9.99e−07 9.95e−07 1.79e−07 8.87 286 3,727,981
10−6 2.24e−03 9.88e−07 9.88e−07 7.46e−09 8.89 284 3,275,940
10−8 2.25e−03 9.89e−07 9.89e−07 6.55e−12 8.92 282 2,842,602
10−10 2.25e−03 9.91e−07 9.91e−07 0 9.19 283 2,629,494

Fig. 3. Residual history of cfd1 (left: unweighted matrix–vector, right: weighted).

Table 8
Histogram of the distribution of non-zeros per column in cfd2.

nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols

8 14 16 179 21 668 24 1858 27 93,198
12 1152 18 24,334 22 86 26 56 30 1,680
14 16 20 143 23 56
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Table 9
Execution of cfd2 (first block: unweighted matrix–vector, second: weighted).

droptol ‖x− xm‖2/‖x‖2 ‖rm‖2/‖b‖2 ‖r̃m‖2/‖b‖2 δm Runtime (s) #Iter Savings

Exact 8.58e−03 1.00e−06 1.00e−06 0 43.96 745 0
10−3 8.61e−03 3.21e−05 9.99e−07 7.26e−05 64.59 1300 61,257,142
10−5 8.67e−03 1.00e−06 1.00e−06 4.09e−08 44.40 765 8,229,280
10−6 8.51e−03 9.98e−07 9.98e−07 1.89e−08 43.06 749 7,106,423
10−8 8.53e−03 9.99e−07 9.99e−07 1.46e−11 43.26 748 6,156,389
10−10 8.54e−03 9.97e−07 9.97e−07 1.59e−15 43.13 747 5,660,679

Exact 8.58e−03 1.00e−06 1.00e−06 0 44.62 745 0
10−3 8.61e−03 3.21e−05 9.99e−07 7.26e−05 65.82 1300 61,257,142
10−5 8.67e−03 1.00e−06 1.00e−06 4.09e−08 44.13 765 8,229,280
10−6 8.51e−03 9.98e−07 9.98e−07 1.89e−08 43.41 749 7,106,423
10−8 8.53e−03 9.99e−07 9.99e−07 1.46e−11 43.32 748 6,156,389
10−10 8.54e−03 9.97e−07 9.97e−07 1.59e−15 43.40 747 5,660,679

Fig. 4. Residual history of cfd2 (left: unweighted matrix–vector, right: weighted).

Table 10
Histogram of the distribution of non-zeros per column in circuit_4.

nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols

1 27,922 16 33 35 5 62 10 159 44
2 111 17 31 36 1 69 1 165 1
3 23,587 18 58 40 3 70 11 169 1
4 1,381 19 13 42 3 72 1 170 1
5 8,299 20 12 43 3 84 2 286 1
6 16,510 21 20 44 2 85 1 335 1
7 661 22 2 45 1 86 2 367 1
8 238 23 165 47 1 87 2 443 1
9 247 24 21 49 2 88 1 460 1

10 259 25 1 50 1 89 2 500 1
11 234 26 11 51 2 101 1 532 1
12 45 27 11 56 1 104 1 850 1
13 2 28 1 60 129 133 1 6852 1
14 52 29 1 61 2 149 1 8900 1
15 25 33 6

Appendix F. Results for epb3

n = 84,617 nz = 463,625 ‖A‖∞ = 0.68 ‖b‖2 = 6.24 · 10−2 (see Tables 12, 13 and Fig. 6).

Appendix G. Results for finan512

n = 74,512 nz = 596,992 ‖A‖∞ = 63.2 ‖b‖2 = 9.84 (see Tables 14, 15 and Fig. 7).
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Table 11
Execution of circuit_4 (first block: unweighted matrix–vector, second: weighted).

droptol ‖x− xm‖2/‖x‖2 ‖rm‖2/‖b‖2 ‖r̃m‖2/‖b‖2 δm Runtime (s) #Iter Savings

Exact 5.80e−04 9.59e−07 9.59e−07 0 1.27 60 0
10−3 5.00e−04 5.16e−04 3.25e−18 7.30e−04 4.00e−02 6 481,224
10−5 5.75e−04 1.28e−04 2.55e−07 1.81e−04 4.40e−02 7 561,400
10−6 5.75e−04 1.68e−04 2.81e−07 2.37e−04 1.68e−01 18 1351,621
10−8 5.79e−04 1.12e−06 9.92e−07 7.26e−07 6.52e−01 39 2609,778
10−10 5.80e−04 9.79e−07 9.78e−07 2.07e−08 7.48e−01 41 1943,079

Exact 5.80e−04 9.59e−07 9.59e−07 0 1.26 60 0
10−3 5.00e−04 5.16e−04 3.25e−18 7.30e−04 3.60e−02 6 481,224
10−5 5.91e−04 1.03e−04 7.25e−07 1.46e−04 2.72e−01 24 1865,115
10−6 5.79e−04 6.50e−06 9.55e−07 9.05e−06 2.52e−01 23 1726,534
10−8 5.79e−04 1.03e−06 9.99e−07 3.77e−07 6.56e−01 39 2640,018
10−10 5.79e−04 9.65e−07 9.65e−07 3.82e−08 7.64e−01 41 1803,025

Fig. 5. Residual history of circuit_4 (left: unweighted matrix–vector, right: weighted).

Table 12
Histogram of the distribution of non-zeros per column in epb3.

nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols

3 143 4 42,614 5 20 6 240 7 41,600

Table 13
Execution of epb3 (first block: unweighted matrix–vector, second: weighted).

droptol ‖x− xm‖2/‖x‖2 ‖rm‖2/‖b‖2 ‖r̃m‖2/‖b‖2 δm Runtime (s) #Iter Savings

Exact 1.17e−03 1.00e−06 1.00e−06 0 62.21 2410 0
10−3 2.17e−03 1.47e−05 4.07e−06 9.11e−07 56.02 2500 176,562,644
10−5 1.19e−03 1.04e−06 1.04e−06 3.36e−09 60.74 2500 78,465,851
10−6 1.17e−03 1.01e−06 1.01e−06 1.14e−10 61.21 2500 64,695,666
10−8 1.16e−03 9.99e−07 9.99e−07 1.04e−15 60.10 2406 52,366,981
10−10 1.17e−03 1.00e−06 1.00e−06 7.98e−18 58.82 2378 45,727,316

Exact 1.17e−03 1.00e−06 1.00e−06 0 61.40 2410 0
10−3 3.16e+08 1.08e+09 3.19e+08 8.39e+07 53.84 2500 208,367,539
10−5 1.33e−03 1.28e−06 1.27e−06 1.43e−08 59.72 2500 114,392,292
10−6 1.21e−03 1.06e−06 1.06e−06 6.32e−10 61.09 2500 81,485,347
10−8 1.17e−03 9.99e−07 9.99e−07 2.50e−12 54.25 2196 57,600,405
10−10 1.17e−03 9.99e−07 9.99e−07 4.28e−18 61.62 2453 49,479,260

Table 14
Histogram of the distribution of non-zeros per column in finan512.

nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols

3 3,072 6 1,536 9 9216 13 4608 23 512
4 7,680 7 24,064 11 1536 14 512 52 512
5 13,824 8 4,608 12 1536 21 1024 55 512
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Fig. 6. Residual history of epb3 (left: unweighted matrix–vector, right: weighted).

Table 15
Execution of finan512 (first block: unweighted matrix–vector, second: weighted).

droptol ‖x− xm‖2/‖x‖2 ‖rm‖2/‖b‖2 ‖r̃m‖2/‖b‖2 δm Runtime (s) #Iter Savings

Exact 3.06e−06 8.61e−07 8.61e−07 0 3.52e−01 22 0
10−3 1.10e−03 1.03e−03 8.11e−07 1.02e−02 2.12e−01 22 1626,620
10−5 6.61e−06 4.97e−06 8.61e−07 4.82e−05 2.16e−01 22 1587,385
10−6 3.08e−06 9.24e−07 8.61e−07 3.27e−06 2.16e−01 22 1566,795
10−8 3.06e−06 8.61e−07 8.61e−07 9.44e−09 2.24e−01 22 1530,750
10−10 3.06e−06 8.61e−07 8.61e−07 3.53e−11 2.24e−01 22 1500,905

Exact 3.06e−06 8.61e−07 8.61e−07 0 3.52e−01 22 0
10−3 2.28e−04 1.38e−04 8.34e−07 1.36e−03 2.20e−01 22 1616,209
10−5 3.25e−06 1.06e−06 8.61e−07 6.21e−06 2.20e−01 22 1575,073
10−6 3.06e−06 8.62e−07 8.61e−07 3.43e−07 2.24e−01 22 1555,181
10−8 3.06e−06 8.61e−07 8.61e−07 1.30e−09 2.28e−01 22 1521,005
10−10 3.06e−06 8.61e−07 8.61e−07 4.73e−12 2.28e−01 22 1493,429

Fig. 7. Residual history of finan512 (left: unweighted matrix–vector, right: weighted).

Appendix H. Results for hcircuit

n = 105,676 nz = 513,120 ‖A‖∞ = 88.2 ‖b‖2 = 1.42 (see Tables 16, 17 and Fig. 8).

Appendix I. Results for pwtk

n = 217,918 nz = 11,634,424 ‖A‖∞ = 1.82 · 108
‖b‖2 = 2.27 · 107 (see Tables 18, 19 and Fig. 9).
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Table 16
Histogram of the distribution of non-zeros per column in hcircuit.

nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols

2 983 14 25 32 31 62 11 146 7
3 14,612 15 533 33 1 69 1 147 5
4 52,067 16 22 34 24 74 6 148 1
5 30,275 17 402 35 2 75 6 160 1
6 425 18 12 38 4 76 6 171 2
7 199 19 170 39 5 82 6 176 6
8 530 20 42 41 3 88 12 177 6
9 2,751 21 658 44 3 92 13 182 7

10 734 23 3 50 17 93 1 266 4
11 301 26 13 51 14 122 1 723 1
12 434 27 15 56 1 134 4 1297 1
13 237 29 9 57 4 141 6 1399 1

Table 17
Execution of hcircuit (first block: unweighted matrix–vector, second: weighted).

droptol ‖x− xm‖2/‖x‖2 ‖rm‖2/‖b‖2 ‖r̃m‖2/‖b‖2 δm Runtime (s) #Iter Savings

Exact 2.64e−04 9.96e−07 9.96e−07 0 3.54 120 0
10−3 7.26e−04 1.63e−04 9.86e−07 2.30e−04 9.72e−01 43 4,540,666
10−5 2.68e−04 9.90e−07 9.90e−07 5.96e−09 2.26 92 9,617,470
10−6 2.57e−04 9.93e−07 9.93e−07 8.59e−10 2.32 93 9,581,063
10−8 2.57e−04 9.93e−07 9.93e−07 1.29e−11 2.22 90 8,936,471
10−10 2.57e−04 9.89e−07 9.89e−07 1.01e−13 2.33 92 8,628,089

Exact 2.64e−04 9.96e−07 9.96e−07 0 3.52 120 0
10−3 3.14e−03 9.69e−04 6.81e−07 1.37e−03 3.76e−01 25 2,641,128
10−5 2.97e−04 9.90e−07 9.90e−07 1.05e−08 3.11 128 13,479,729
10−6 2.61e−04 9.98e−07 9.98e−07 4.20e−09 2.35 94 9,854,798
10−8 2.52e−04 9.71e−07 9.71e−07 6.88e−11 2.28 92 9,412,928
10−10 2.56e−04 9.90e−07 9.90e−07 1.26e−12 2.31 92 9,031,938

Fig. 8. Residual history of hcircuit (left: unweighted matrix–vector, right: weighted).

Table 18
Histogram of the distribution of non-zeros per column in pwtk.

nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols

3 64 12 17,862 19 31,056 26 7444 33 882
5 2,312 13 28,844 20 25,348 27 5588 34 604
6 368 14 37,962 21 19,914 28 3070 35 604
7 5,604 15 30,248 22 19,032 29 2576 36 212
8 12,212 16 36,326 23 13,523 30 1510 37 196
9 4,652 17 35,556 24 13,136 31 845 38 32

10 16,548 18 30,752 25 8,507 32 914 39 24
11 30,988
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Table 19
Execution of pwtk (first block: unweighted matrix–vector, second: weighted).

droptol ‖x− xm‖2/‖x‖2 ‖rm‖2/‖b‖2 ‖r̃m‖2/‖b‖2 δm Runtime (s) #Iter Savings

Exact 4.51e−02 1.42e−06 1.42e−06 0 4.04e+02 2500 0
10−3 9.44e−02 3.38e−05 4.65e−06 7.92e+02 1.84e+02 2500 463,992,469
10−5 4.21e−02 1.29e−06 1.29e−06 1.39 3.07e+02 2500 205,041,066
10−6 4.23e−02 1.30e−06 1.30e−06 4.02e−02 3.16e+02 2500 183,990,104
10−8 4.28e−02 1.32e−06 1.32e−06 9.31e−05 3.48e+02 2500 112,674,877
10−10 4.42e−02 1.38e−06 1.38e−06 6.16e−08 3.68e+02 2500 67,381,045

Exact 4.51e−02 1.42e−06 1.42e−06 0 4.04e+02 2500 0
10−3 4.42e−02 1.38e−06 1.38e−06 1.60e−04 3.28e+02 2500 166,083,405
10−5 4.41e−02 1.37e−06 1.37e−06 1.40e−06 3.57e+02 2500 100,875,373
10−6 4.42e−02 1.38e−06 1.38e−06 9.73e−08 3.71e+02 2500 76,454,387
10−8 4.45e−02 1.39e−06 1.39e−06 3.11e−10 3.80e+02 2500 54,245,835
10−10 4.41e−02 1.38e−06 1.38e−06 1.88e−13 3.81e+02 2500 46,676,933

Fig. 9. Residual history of pwtk (left: unweighted matrix–vector, right: weighted).

Table 20
Histogram of the distribution of non-zeros per column in stomach.

nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols

6 448 10 84,000 12 672 16 448 21 42,000
9 896 11 448 15 84,000 17 224 22 224

Table 21
Execution of stomach (first block: unweighted matrix–vector, second: weighted).

droptol ‖x− xm‖2/‖x‖2 ‖rm‖2/‖b‖2 ‖r̃m‖2/‖b‖2 δm Runtime (s) #Iter Savings

Exact 1.17e−06 7.85e−07 7.85e−07 0 9.20e−01 17 0
10−3 2.26e−04 6.01e−04 5.69e−07 3.91e−04 4.04e−01 17 3625,372
10−5 1.30e−06 1.66e−06 7.85e−07 9.37e−07 4.08e−01 17 3622,495
10−6 1.17e−06 8.21e−07 7.85e−07 1.32e−07 4.08e−01 17 3621,217
10−8 1.17e−06 7.85e−07 7.85e−07 6.16e−10 4.04e−01 17 3618,647
10−10 1.17e−06 7.85e−07 7.85e−07 2.07e−12 4.04e−01 17 3616,129

Exact 1.17e−06 7.85e−07 7.85e−07 0 9.00e−01 17 0
10−3 2.49e−04 6.06e−04 5.23e−07 3.94e−04 4.04e−01 17 3625,699
10−5 1.34e−06 1.69e−06 7.85e−07 9.53e−07 4.08e−01 17 3622,758
10−6 1.17e−06 8.22e−07 7.85e−07 1.34e−07 4.04e−01 17 3621,476
10−8 1.17e−06 7.85e−07 7.85e−07 6.21e−10 4.04e−01 17 3618,921
10−10 1.17e−06 7.85e−07 7.85e−07 2.25e−12 4.04e−01 17 3616,387

Table 22
Histogram of the distribution of non-zeros per column in torso3.

nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols nz(aj) #cols

6 1028 10 35,880 13 16 16 2300 19 141,166
7 4 11 2,056 14 8 17 8 20 36,104
9 2056 12 1,268 15 35,864 18 366 21 1,032
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Fig. 10. Residual history of stomach (left: unweighted matrix–vector, right: weighted).

Table 23
Execution of torso3 (first block: unweighted matrix–vector, second: weighted).

droptol ‖x− xm‖2/‖x‖2 ‖rm‖2/‖b‖2 ‖r̃m‖2/‖b‖2 δm Runtime (s) #Iter Savings

Exact 1.55e−06 9.54e−07 9.54e−07 0 2.69 31 0
10−3 1.51e−03 6.61e−03 9.46e−07 2.20e−03 1.35 31 8020,103
10−5 8.79e−06 3.79e−05 9.54e−07 1.26e−05 1.36 31 7988,988
10−6 1.71e−06 3.35e−06 9.54e−07 1.07e−06 1.36 31 7971,895
10−8 1.55e−06 9.55e−07 9.54e−07 1.13e−08 1.37 31 7933,562
10−10 1.55e−06 9.54e−07 9.54e−07 8.10e−11 1.38 31 7885,684

Exact 1.55e−06 9.54e−07 9.54e−07 0 2.64 31 0
10−3 3.69e−03 5.60e−03 9.50e−07 1.87e−03 1.35 31 8021,900
10−5 1.85e−05 3.88e−05 9.55e−07 1.29e−05 1.36 31 7990,262
10−6 2.27e−06 3.58e−06 9.54e−07 1.14e−06 1.36 31 7973,179
10−8 1.55e−06 9.55e−07 9.54e−07 1.13e−08 1.36 31 7934,593
10−10 1.55e−06 9.54e−07 9.54e−07 7.92e−11 1.37 31 7887,047

Fig. 11. Residual history of torso3 (left: unweighted matrix–vector, right: weighted).

Appendix J. Results for stomach

n = 213,360 nz = 3,021,648 ‖A‖∞ = 4.09 ‖b‖2 = 6.51 · 101 (see Tables 20, 21 and Fig. 10).

Appendix K. Results for torso3

n = 259,156 nz = 4,429,042 ‖A‖∞ = 10.9 ‖b‖2 = 3.33 · 101 (see Tables 22, 23 and Fig. 11).
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Fig. 12. History of attributes of cfd2 (left: unweighted matrix–vector, right: weighted).

Fig. 13. History of attributes of circuit_4 (left: unweighted matrix–vector, right: weighted).

Fig. 14. History of attributes of epb3 (left: unweighted matrix–vector, right: weighted).
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