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1. INTRODUCTION 

In this paper we review some basic facts on strong uniqueness (strong 
unicity) in real and complex Chebyshev approximation and draw a number 
of simple conclusions. For example, we note the relation to the local 
Kolmogorov criterion [4], and the connection between the linear and the 
Frechet-differentiable nonlinear case [l, 5,201. However, we stress the 
difference between real and complex Chebyshev approximation. By counter- 
examples we show that a best approximation in a complex Haar subspace 
need not be strongly unique (contrary to a related theorem of Dunham [l l]), 
that a critical point of a complex rational approximation problem need not 
be a local best approximation (contrary to a theorem by Ellacott and Williams 
[12]), and that Klotz [13] sufficient condition for strong uniqueness in 
complex polynomia1 approximation is incorrect. In contrast to the real case 
there are particular situations in complex approximation, where non-strong 
uniqueness is the normal case (cf. Theorem 1). Moreover, with respect to 
strong uniqueness, approximation problems with Hilbert space valued 
functions behave like complex problems too. 

In the last section we investigate the length of primitive extremal signatures. 
If the best approximation is not strongly unique, this length is at most n in the 
real case and at most 2n in the complex case (as partly conjectured by Dunham 
in a private communication), and these bounds are the best possible. Finally, 
we improve a related theorem of Bartelt [2] and show that his bounds are also 
the best possible. 

The possible lack of strong uniqueness has an impact on numerical computa- 
tions. Finding a strong unique local best approximation is a well-conditioned 
problem. In a distinct case there holds even a uniform Lipschitz condition 
for the dependence of best approximations from f [3]. Many results on 
numerical algorithms are mainly based on strong uniqueness, e.g., the 
quadratic convergence of Newton’s method [8], and, reportedly [2], the 
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convergence of the Remes algorithm. Yet, an algorithm for complex 
Chebyshev approximation must be able to approach non-strongly unique 
best approximations. Also, if a local best approximation is not strongly 
unique, it becomes impossible to distinguish it by virtue of the local 
Kolmogorov criterion from a saddle point. Moreover, there are general 
results on nonlinear families which first of all depend on strong uniqueness 
[5, 201. 

2. LINEAR APPROXIMATION 

Suppose 2 is a compact space, K stands for either [w or C, and C(Z) := 
C(Z, K) denotes the Banach space of continuous functions f : 2 + K, en- 
dowed with the uniform norm. We assume at first that VC C(Z) is an 
n-dimensional (linear) subspace. A given functionfe C(Z) is to be approxi- 
mated by elements from V. Then, a best approximation (BA) u E V is called 
strongly unique iff there is a y > 0 (depending onf) such that 

llf- wll 3 llf- VII + Y’IV - w/I for VW E V. (1) 

Note that (1) holds with y = 1 whenever v =f~ V. Hence, we will assume 
f $ V in the sequel. 

Newman and Shapiro [17, Theorem 41 derived a fundamental result on 
strong uniqueness: If V is a real Haar subspace, the best approximation is 
strongly unique. In this respect real Chebyshev approximation is completely 
different from linear approximation in the mean (or in any other smooth 
space), where the BA is never strongly unique [20]. For the BA ZI in a complex 
Haar subspace V, Newman and Shapiro [17, Theorem 4’1 established the 
existence of positive constants /& , j3z (depending on f) such that 

II w - u II G s1w- w II - llf- ZJ IIV + pm--- w I/ - llf- v II> 
for VW E V, (2) 

from which we get for every w in a neighborhood of u 

Ilf- W II b If-- 2, Ii + B II W - 0 It2 (3) 

(with /3 > 0). However, they did not give a counterexample showing that (1) 
does not hold for any y > 0. 

On the other hand, Dunham’s Theorem 1 in [l l] would imply strong 
uniqueness in the complex case. When applied to the linear case this theorem 
states: If V is a complex Haar subspace, u E V is a BA tof$ V if and only if 

p(u, w) := 2;~) RW(z) - WI wtz>> > 0 for VW E V\(O), (4) 
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where E(u) denotes the set of extremal points of f - Y. In contrast to 
Kolmogorov’s criterion the equality sign has been excluded in (4). If S denotes 
the unit sphere in C(Z), (4) is equivalent to 

744 := ,,,f 1 v 11 
______ min ~(u, w) > 0, WESnv (5) 

while (1) is equivalent to y < y(v) [4, Theorem 51. Thus, the following three 
statements hold: 

(Sl) y(v) >O c>uisaBA. 
(S2) y(v) > 0 0 v is the strongly unique BA. 
(S3) If V is a real Haar subspace, then 

The equivalence in (S3) is characteristic for real Haar subspaces [ 151. 
Now we present a counterexample to strong uniqueness in complex Haar 

subspaces. It implies that Theorem 1 in [l l] is incorrect, and that Theorem 4 
in [2] no longer holds in the complex case. 

EXAMPLE 1. Let 2 := (-1, 11, f(z) := z,vb(z):=b (be@), V:=(u,: 
b E @>, and thus it := 1. Obviously the BA is a0 , i.e., b = 0, with j/f-- 
o,, II = 1, E(Q) = 2. But for every purely imaginary b we get ~(0~ , UJ = 0. 
Thus ~(a,) = 0, and v0 is not strongly unique. In fact, we get for b ---f 0 on 
the imaginary axis 

IIf- ub /I = (1 + I b 12)1’2 d Ilf- 00 /I + fr I/ vb - 00 ii2. 

3. NONLINEAR APPROXIMATION 

Now let V be a nonlinear family of functions. A local best approximation 
(LBA) u E V is called strongly unique iff there is a neighborhood UC V of u 
such that v is the strongly unique best approximation in U [20]. 

For simplicity let us assume that B C Kn is open, and p : b E B F-F vb E 
V C C(Z) is a continuously FrCchet-differentiable mapping. Let Tb : = 
( p;d E C(Z) : d E K”} denote the tangent space to V at vb , and dim Tb its 
dimension. Then we may define ~(0,) again by (5) if we replace V by Tb there. 
We may also assume that the restriction of p to {b E B : dim Tb = n} is 
one-to-one. 

Supposing K = R and dim T, = n Wulbert [20] has shown: vb is a strongly 
unique LBA to f iff 0 is the strongly unique BA to f - ub from Tb . Generally, zib 
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is called a critical point iff 0 is a BA to f - Q, from Tb . Since Wulbert’s result 
remains correct in the complex case, we have instead of (Sl) through (S3): 

(Sl’) ~(0~) > 0 9 vb is a critical point. 
(S2’) If dim Tb = n, then 

Y(Q) > 0 o vb is a strongly unique LBA. 

(S3’) If Tb is an n-dimensional real Haar subspace, then 

Y(Vb) > 0 0 y(vJ > 0 0 vb is LBA. 

For real functions (S3’) has essentially been proved by Barrar and Loeb 
[l, Theorem 31. Another proof is due to Dunham [lo, Theorem 11. (S2’) and 
(S3’) have been generalized by Braess [5] and Cromme [9] to include the 
important cases of manifolds with boundary (e.g., exponential sums) and 
restricted range approximation, respectively. The local Kolmogorov criterion 
[16, Theorem 81 is only a necessary condition for a LBA: 

(s4’) ~(0~) 2 0 (: vb is LBA. 

Meinardus and Schwedt [16], Brosowski [7], and many other authors have 
specified nonlinear families of approximants every critical point of which is 
a BA; see the references in [6]. In particular, real rational functions defined 
on an interval are such a family, but complex rationals are not. 

For complex rational functions Ellacott and Williams [12, Theorems 2.1 
and 2.21 state that vb is a LBA if and only if y(v,) > 0, but their proof is not 
complete in the case r(vb) = 0. In fact, even under the additional assumption 
dim Tb = n, their statement is incorrect as the following counterexample 
shows: 

EXAMPLE 2. Let 2 := (-1, 1,2},f(z) := l/z + e(z), e(-1) := e(2) := 
4, e(1) := -4, 

V:=RS,:= ! b 
1 

$ b z 
2 

: bi E @, b, + bzz # 01. 

In a neighborhood of voO(z) : = l/z every function in V is of the form v,~(z) : = 
(1 + a)/(~ + b), with a, b E C. We get E(v,,) = 2, and for a, b + 0 

%b(z) - &m(Z) = ; - ; - $ + ; + O(ub2) + O(b3). 

Hence, the tangent space at v,,,, is 

To, = {wab(z): 4 b E @>, wab(z):=;-;. 

640/23/3-3 
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It is easy to verify that ~.L(Q, , wab) > 0 for every w,b E T,,, , and p(uoo , w,~) = 
0 iff Re a = Re b = 0. Thus ZJ,,~ is a critical point. If a and b were restricted to 
real values, ooo would be a LBA. It is even the BA among those functions in V 
having a pole in (- 1, 1) and real coefficients because this family is regular 
(on 2) [7, p. 913; but it is not the BA among all real functions in V since, 
e.g., v(z) E 0.75 is a better one. However, here a and b may be complex, and 
if we choose a = 26i, b = 36i, straightforward calculations yield 

Ilf- vab 11’ = kf- vGO iI2 - 4% 62 + O@s> as 6 --f 0. 

This proves that voo is not a LBA but a saddle point. 
More generally, let Rfm denote the family of complex rational functions 

with nominator degree (at most) l(>O) and denominator degree (at most) 
m (>O), and let Rtf!, be the subset of functions having real coefficients. Then 
we get 

THEOREM 1. Let Z C [w, f E C(Z), with f real valued. Then no vb E Rfm 
(l, m > 0) is a strongly unique LBA to f with respect to R& . 

Proof. Assume vb is a LBA with respect to RFm. Then the local 
Kolmogorov criterion p(Vb , pid) >, 0 is satisfied for every d E @” (n := 
1-k m + l), and &a, , pb’d) = 0 for any d = (dl ,..., d,)T with Re dk = 0 and 
arbitrary Im dk (k = l,..., n). Thus r(vb) = 0, and Vb is not a Strongly unique 
LBA. 0 

So, critical points that are not strongly unique LBA’s are very common in 
complex polynomial and complex rational approximation problems. Saff 
and Varga [19] have shown that even in the case where Z is an interval and 
the function vb in Theorem 1 is thus the BA from Rf, this function t)b may 
not be the BA from RFm . Then the BA from Rfm is obviously not unique. One 
must expect that in this case ab is usually a saddle point. 

The computation of y(vb) is rather complicated if Z is an infinite set. But 
assuming dim Tb = n we may use in Tb a different norm, for which the unit 
sphere instead of s n Tb is 

3, := {p;d E Tb : d = (dl ,..., d,J E K”, rnfx max{l Re dk I, 1 Im dk I> = I>. 

We get a function ?(a& that is equivalent to y(vb) in the sense that sign y(2)?,) = 
sign q(ub). It is easily verified that f(t?b) is the maximum value of the object 
function of a linear optimization problem containing only a finite number of 
restrictions if E(t$,) is a finite set. Hence, $?(vb) is easy to compute in this case. 
In the case dim Tb < n we always get p(v*) < 0, however. 
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4. THE LENGTH OF PRIMITIVE EXTREMAL SIGNATURES 

Owing to the connections mentioned in Section 3 we may restrict the 
discussion to the linear case again. We assume that V is a (real or complex) 
subspace of C(Z) and v E V is a BA to f $ V. We define a primitive extremal 
point set to be any subset A C E(u) with the property that v is a BA to f on A 
but no more a BA to f on any proper subset of A. The corresponding set 
{k [f(z) - 4zWllf - 0 II : z E A} C Z x C is called the primitive extremal 
signature [7, 181. The length ] A 1 of A is the number of elements of A. As is 
well known [18], ) A ] < n + 1 in the real case, and j A 1 < 2n + 1 in the 
complex case. Moreover, 1 A I > n + 1 if V is a Haar subspace. Dunham has 
conjectured that I A / < 2n + 1 if v is not strongly unique and K = C. In 
fact, even without requiring Haar’s condition, we get 

THEOREM 2. If u E V is a BA but not a strongly unique one, then the length 
of a primitive extremal point set A is at most 2n if K = C and at most n if 
K= R. 

As we have seen above, 1 A I = n + 1 if V is a real Haar subspace; the 
theorem thus implies statement (S3). 

Proof. Since v is a BA but not a strongly unique BA to f on Z, so it is on 
A. Indeed, for Y,.,(V) [defined by (5) and (4) if E(v) is replaced by A there] we 
conclude: yA(v) > 0 since A is primitive, and yA(v) < y = 0 since A C E(u) 
and v is not strongly unique; hence yA(v) = 0. Now, let {$1 ,..., &} be a 
basis of V, and define h : A + K” by 

- __ 
h(z) := [f@> - Wl(#4z),..., MY, ZEA. (6) 

Because u is a BA, the origin of K” is in the convex hull C of these ] A 1 
vectors h(z), z E A [17, Theorem 11; but since v is not strongly unique, 
0 E aC [4, Theorem 61. In fact, if w = C d,#, # 0 satisfies 0 = yA(u) = 
pa(v, w) [defined by (4) with E(u) replaced by A], and if d := (4 ,..., d,J*, 
then 

0 = pA(u, W) = ~$2 Re{If(z) - u(z)1 w(z)Z = :a,” WW, 4, (7) 

where (.,.) denotes the inner product in K”. Thus, if we identify C with IIF, 

H:={cEK~: Re(c,d)=O} 

is in lBzl” (or [Wn if K = W) a supporting hyperplane of C at the origin. 
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According to Caratheodory’s theorem 0 E K” is a convex combination of 
m < 2n + 1 (or n + 1 if K = rW) vectors h(z), say 

0 = f cfjh(Zj), 
j=l 

where zj E A, 01~ > 0, (8) 

Here, h(zJ E H for every j, because zI 4 H would imply 

which requires Re (h(z,), d) > 0 for at least one zj , in contrast to (7). Finally, 
we note that H has the real dimension 2n - 1 (or n - 1 if K = W) and thus 
Caratheodory’s theorem implies that we only need m < 2n (if K = C) or 
m < II (if K = R) points zj in (8) and hence in A. Since a simplex of maximum 
dimension in H has 2n (or n, respectively) corners, the bounds 2n and n are 
the best possible. 0 

Conversely, if u E V is a strongly unique BA, we may consider subsets 
A’ C E(v) with the property that u is the strongly unique BA on A’ but not on 
any proper subset of A’. One might call such a set A’ a primitive strongly 
extremalpoint set. (However, note that “strongly extremal” has not the same 
meaning here as “strong extremal” in [17].) Since 0 lies then in the interior 
of the convex hull C’ of the vectors h(z), z E A’, defined by (6), we need 
1 A’ 1 > 2n + 1 (or n + 1 if K = [w) [4, Remark 21. This statement is in 
contrast to Klotz’ Lemma 3.1 [13, p. 191 and Theorem 3.2 [13, p. 211, where 
a special extremal signature of length 2n - 1 is claimed to imply strong 
uniqueness in Rz-,,, . Our next example, which is a generalization of 
Example 1, shows that Klotz’ assertion is indeed wrong. Moreover, it 
manifests that non-strong uniqueness exists in complex Haar subspaces of 
arbitrary finite dimension n, and that even there the bound 2n in Theorem 2 
is attained. 

EXAMPLE 3. Let 2 be the unit circle, 

2 := (zk := exp(ink/n): k = I,..., 2n}, 

f(z) : = 42” + $z3n 
n-1 

vb(z) := C b,ekzk 
k=O 

(z E a 

(z E @, b := (b, ,..., b,JT E C”), 

and V : = {vb : b E P} as usual. We assert that v. is again the unique BA, 
but is not strongly unique. First, f(zk) - a&k) = f(zlc) = (- l)“, k = l,..., 
2n. Thus I/f-- u. (( = 1 and E(u,) = Z’. The optimality of v. follows from 
another theorem by Klotz [13, Theorem 2.21 or from its generalization [13, 
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Theorem 9.2; 14, Theorem 31, but we will give here a much shorter proof, 
which can be modified easily to prove Klotz theorem, too. Suppose vd is a 
better approximation than v0 . Then, according to Kolmogorov’s theorem 

(- l)k Re vd(zk) > 0, k = l,..., 2n. (9) 

It follows that 

Re vd(eit) = c (Re dnYk cos kt - Im dn--k sin kt) 
k=O 

is a trigonometric polynomial of degree n - 1 that has at least 2n zeros in 
(0,277]. Thus it must be the zero function, i.e., 

Re d, = 0, d, = *a* = d,wl = 0. (11) 

But this contradicts (9); hence v. is the (unique) BA. However, v. is not 
strongly unique: If we choose d satisfying (11) and with arbitrary Im d, , 
then (- I)k Re &&$ = 0 for every k; and hence 7(v0 , ud) = y(v,) = 0. 

Finally note that if we delete any point of Z’, say z, , we can choose d such 
that (10) has a zero in each interval (k+z, (k + 1) r/n), k = 2,..., 2n - 1, and 
is positive in zr . Then (9) holds for every k # 1, which means that v. is not 
the BA on Z’\{z,}. We conclude that Z’ is a primitive extremal point set. 

The following theorem is a slightly improved version of Theorem 2 of 
Bartelt [2], 

THEOREM 3. Let v E V be a strongly unique BA. Then the length of a 
primitive strongly extremal point set A’ is at most 4n if K = C and at most 2n 
ifK = R. 

Proof. According to Bartelt’s proof [2] any set A C E(v) on which v is a 
strongly unique BA contains a subset A’ consisting of at most 4n (or 2n, 
respectively) points such that 

0 E int C’ = int conv{h(z) : z E A’} (12) 

and 

pA,(v, w) : = :Ey Re{[f(z) - v(z)] w(z)} > 0 for VW E V, w + 0 on A’. 

Now, assume w E 0 on A’ but w + 0 on V. Then, using the same notation as 
in the proof of Theorem 2, we get w = c dk4k (with d # 0) and 

0 = Re{[f(z) - v(z)] w(z)} = Re(h(z), d) for Vz o A’. 
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Hence h(z) E H for Vz E A’, which implies int C’ C int H = ia and thus 
contradicts (12). Therefore, ~~‘(0, w) > 0 for VW E V\(O), i.e., u is the strongly 
unique BA on A’. 0 

Bartelt [2] also posed the question: Is 4n(2n) the best possible upper bound 
in Theorem 3 ? Our next example proves that this is in fact true. 

EXAMPLE 4. Let K = R, 2 : = { --IZ ,..., - 1, l,.,., n}, 

dd4 : = sign(z) 6,. I z I (z E Z, k = l,..., n) (13) 

(here 6,. denotes Kronecker’s symbol), V : = {& ,..., &}. Obviously, the BA 
to f - 1 is u = 0, and E(v) = Z, 1 2 1 = 2n. We assert that Z is even a 
primitive strongly extremal point set. In fact, forj = l,..., IZ the vector h(j) is 
the jth standard basis vector in IF, and h(-j) = -h(j). So, (12) is satisfied 
for A’ = 2, but not for any proper subset of 2. 

In the case K = @ we let Z : = {-n ,..., -1; l,..., n; -in ,..., -i, i ,..., in>, 
f :- 1, define 4 k again by (13), and take advantage of the equivalence of C 
and R2. Then the set {h(z) : z E Z} consists of all standard basis vectors of 
R2n and, in addition, of the corresponding negative vectors. So, the situation 
is the same as in the real case, but n is replaced by 2n. 

Nore added in proof. Independently, Williams [21] has also constructed an example 
of a (non-normal) real rational function that is a saddle point of a complex approximation 
problem. Recently, important related results were established by Wulbert [22]. 
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