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The notion of a primary ideal was originally introduced in the study 
of noetherian rings, i.e., commutative associative rings with unity which have 
the maximum condition on ideals. In more recent years, this notion has been 
carried over to noncommutative associative rings and nonassociative rings 

(see [3]). In this paper, we shall give a definition and basic properties for 
(inner) primary ideals in a quadratic Jordan algebra based on the concept 
of prime ideals in Jordan algebras as discussed in [lo]. We then give a 
necessary and sufficient condition for those algebras in which the well-known 
Lasker-Noether decomposition theorem holds. Finally, the analog of the 

tertiary ideal is discussed, and we show that in any quadratic Jordan algebra 
which has the maximum condition on ideals, all ideals can be represented as 
a finite intersection of tertiary ideals. 

1. BASIC DEFINITIONS 

A unital quadratic Jordan algebra over a commutative associative ring @ 
with unity is a triple (1, U, 1) where J is a unital left @-module, 1 is a fixed 
element in J, and x + U, is a quadratic map from J into horn&, J) such 
that the identities 

(QJ-1) U, is the identity of hom,(J, J), 

(QJ-2) G, = U,U,U, for al a, b E J, 

(Q J-3) if, for all a, b E J, Ua,, = U+, - U, - U, and V,,, is defined 

by xv,,, = au,,, for x E J, then U,V,,, = V,,,U, = Uaub,, , 

(QJ-4) if P is any commutative associative algebra over @ and U’ is 

the unique quadratic map from JP = J @ 0 P into horn&, , JP) extending 
U, then U’ satisfies (QJ-2) and (QJ-3), 
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are satisfied. When no ambiguity arises, we will let J denote a unital quadratic 
Jordan algebra over CD. 

A subset K of J is called an inner (outer) ideal of J if K is a @-submodule of 
J and for all a E J and R t K, aU, E K (KU, E K). K is an ideal of J, written 
K 4 J, if K is both an inner and outer ideal of J. hloreover, if K u J, then 

the difference algebra J/K = 1 is well-defined and (J, U, 1) is a quadratic 
Jordan algebra where, if @r : a, + K and ~a = a2 $- K are elements of / 
then ala,-, =L a,lJ,* (mod K). 

For further information concerning quadratic Jordan algebras, the reader 

is referred to [6 and 81. 

PROPOSITION 1.1. If  R is an outer ideal of J, then.for all a, b E J and k E K, 

au,,, E K and a k E K where a b = aVb = aV,,, . 

Proof. I f  k E K and a, b E J, then kU,,, = kIi,,, - kUQ - kU,, 
whence RU,,, = aV,,, = a . k E K. Moreover, since aU,,, + klJ,,, .== 

(a . k) . b (see [6, p. 1.20]), au,,, E K. 
If  A and B are @-submodules of J, by AU, we will mean the @-submodule 

of J generated by the set of all elements of the form aU, where a E A and 

b E B. 

PROPOSITION 1.2. If  A and B are ideals of J, then AU, is an ideal of J. 

Proof. The fact that AU, is an outer ideal follows from the identity 

(see l31) 

aU,U, = aUz., + aU,U, + (9 . u) U, + alJ,,,,* - (a . x) Ub,b.e, 

where x2 = 1 U, . Since AU, is an outer ideal, if d, , d, E AU, and k E K, 

then kUd,,d, E AU, . The fact that AU, is an inner ideal follows from this 

and (Q J-2). 
Now let a E J. The set A = @a + JU, is an inner ideal of J containing a, 

and A is contained in every inner ideal of J that contains a (see [6, p. 1.291). 
Let (a) be the set of all finite sums of elements of the form bUzl ... lJzl, , 
where b E A and the xi E J. Then (a) is an outer ideal of J containing A and 
is contained in every outer ideal of J that contains A. We note that (a) is also 
an inner ideal of J. For suppose w = 6 U, ... US, and z = cUgI ... Ug, are 

two elements in (a) and d E J. By (a]-?!), we have dU, E (a). Further- 
more, since dU,,, = (d w) . z - wU,,, , by Proposition 1 .l we have 
dU,,, E (a). The fact that (a) is an inner ideal follows as in the proof of 
Proposition 1.2. We will call (a) the principal ideal of J generated by the 
element a. 
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2. PRIME IDEALS 

An ideal P of J is prime if it satisfies either of the following equivalent 
conditions: 

(1) if A and B are ideals of J with AU, C P, then either A C P or 

B C P, 

(2) if a, b E PC (where PC is the set theoretic complement of P in J), 
then (a) iYchj n PC # (4. 

A definition for prime ideals in linear Jordan algebras was given in [IO]. 
We note that the results there can be carried to quadratic Jordan algebras 

without change. 
It is well known that if 91 is an associative algebra with unity over @, then 

‘$1 can be given the structure of a quadratic Jordan algebra by defining the 
endomorphism U, for x E ‘91 as the map y  + xyx for all y  E 91. One readily 

verifies that the map x + U, is a quadratic map from 91 into horn,&& 3) 
satisfying (QJ- 1 )-( QJ-4). We write X ‘ (q) = (?I, iY, 1) to denote the qua- 
dratic structure on 41. Observe that there is not necessarily a one-to-one 
correspondence between the ideals of 91 and the ideals of ‘!I(*). However, 

suppose that P is an ideal of ‘11 whence P is an ideal of 9l(*J. In [5], it is seen 
that P is prime in ‘LI (in the usual associative sense) if and only if P is prime 
in VI(*). 

Remark 1. In the event that our associative algebra is commutative, 

much more can be said. Specifically, let (X be a commutative associative 
@-algebra with unity the additional property that if x E 6, then $X E 6. 
It is now easy to check that a subset A if 0. is an (associative) ideal of 0: if 
and only if A is an ideal of CF. Moreover, suppose P is a prime ideal of 0, 
and A and B are ideals of W) such that AU, C P. I f  A g P, then there exists 

an element a E A, a $ P, but u?Y~ = ub2 E P for all b E B. Since P is prime, 
b E P whence B C P. Conversely, suppose P is prime in cc*), and A and B 
are ideals of 6 such that AB C P. Easily AB L P implies AU, C P, so either 
A _C P or B C P. Thus in the commutative case, there is a one-to-one corre- 
spondence not only between the ideals of a and those of W), but between the 
prime ideals too. 

A nonempty subset M of J is called a Q-system if, whenever m, , m, E M, 
(ml) U<m,) n M # 8. By definition, an ideal P of J is prime if and only if 
PC is a Q-system. Moreover, if M is a Q-system, A 4 /, and A n M = g, 
then there exists a Q-system M’ such that A n M’ = 8, MC M’, and 
M’ = PC for some prime ideal P of J (where, of course, A C P). (See [lo, 
proof of Theorem I].) I f  A 4 J, then the Q-radical of A, written r(A), is the 
set of all x E J with the property that any Q-system of J that contains s meets 
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A. The Q-radical of J itself, denoted r(J), is defined to be the Q-radical of the 

zero ideal. For additional information on Q-systems, the reader is referred 
to [lo]. 

We now give 

PROPOSITION 2.1. Suppose A Q J. Then the Q-radical of J is equal to 
the intersection of those prime ideals of J that contain A. 

PROPOSITION 2.2. Suppose A and B are ideals of J. Then 

(1) ~(4 n B) = r(A) n r(B), 

(2) if A C B, Y(A) C r(B), 

(3) if A C B C r(A), r(A) = y(r(A)) = Y(B). 

For the proof of Proposition 2.1, we refer the reader to [lo]. Proposition 2.2 
is verified directly from the definitions and Proposition 2.1. 

Now suppose A and B are ideals of J. The subset 

[B: A] = (d E J 1 (d) U, _C B} 

is called the (inner) quotient of A in B. 

PROPOSITION 2.3 If A and B are ideals of J, then [B : A] is an ideal of J 
that contains B. 

Proof. Easily B C [B : A]. Now for any two elements X, y  E J we have 

(x - y) _C (x) + (y), from which it follows that [B : A] is a @-submodule 
of J. That [B : A] is an ideal is now immediate from the fact that 

w4J c <x> n (Y)- 

PROPOSITION 2.4. An ideal P of J . p zs rime if and only zyfor any ideal B of J 
which properly contains P we have P = [P : B]. 

Proof. Suppose there exists an ideal B of J properly containing P and 
P # [P : B]. Then [P : B] U, _C P which implies that P is not prime. Con- 

versely, if P is not prime, then there exist ideals A and B of J properly 
containing P but AU, C P. Then P C A _C [P : B], whence P # [P : B]. 

3. THE LOWER AND UPPER M COMPONENT OF AN IDEAL 

Suppose A 4 J and M is a Q-system of J not meeting A. Then the (inner) 
lower M-component of A, denoted A,, is the set of all x E J with the 
property that (x> UC,, _C A for some m E M. It is clear that A C A, . 
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LEMMA 3.1. Suppose A 4 J and M is a Q-system of J with the property 
that M n A = 8. Then A, C! J and A, n M = 61. 

Proof. Suppose x, y  E A, and c, dE M such that (x) Ucc) c A 
and (y) Ucdj C A. Since M is a Q-system, there exists an element 
e E (c) Ucd) n M. As 

Xx - Y> C (x> + (Y), Xx - Y> U(e) C <x> U(c) + (Y) U<d> C A. 

Thus A, is a @-submodule of J. That A, is an ideal of J follows as in the 

proof of Proposition 2.3. Finally, suppose A, n M # 0. Then there exists 
an element a E A, n 111. Now a E A, implies that for some m E M, 
(a) UC,, C A whilst a E M implies that, for this m, (a) UC,, n M # 0. 
But this would imply that M n A # 0, a contradiction, whence A, n M = 0. 

We now extend the concept of the Q-system in the following manner. 
Suppose M is a Q-system of J. Then a subset N of J is called an (inner) 
M-n-system if N contains M and if, for every m E M and n E N, 
(n) U,,, n N # 0. Clearly M is an M-n-system associated with itself. 
Moreover, the set theoretic union of any arbitrary collection of M-n-systems 

if an M-n-system. Thus it is easy to see that if A u J and M is a Q-system not 
meeting A, then there exists a maximal M-n-system N which does not meet A, 
and N is uniquely determined by M and A. 

I f  A 4 J and M is a Q-system of J which does not meet A, then the (inner) 
upper M-component of A, denoted AM, is defined to be the set of all x E J 
having the property that every M-n-system which contains x meets A. We 
note that A C A, C AM. As we have already seen that A C A,, we now 
show that A, C AM. For if x E A,, then, for some m E M, (x) UC,, C A. 
So if N is an M-n-system that contains x, it follows that N n A # 0, i.e., 

XEA~. 
In the sequel, we will need the following concepts. Suppose A 4 J. 

Then an element a E J is said to be (inner) prime to A if (x) UC,, C A 
implies x E A. An ideal B of J is (inner) prime to A if B contains an e,lement 
that is prime to A. I f  M is a Q-system not meeting A, we say that A is related 
to M is every element of M is prime to A. Easily, if A is related to M, then 
AC is an M-n-system, and conversely. 

THEOREM 3.2. Suppose A Q J and M is a Q-system not meeting A. Then, 

(1) A”=~{~~J~A~IandIisreZatedtoM},whezceAM~ J, 

(2) (AM)” is the uniquely determined maximal M-n-system of J which 
does not meet A. 

The proof of the theorem is based on the following sequence of lemmas. 
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LEMMA 3.3. Suppose M is a Q-system, N is an arbitrary M-n-system, 
A 4 J, and A r\ N = 8. Then A is contained in an ideal A* where .4* is 
maximal with respect to -4 * n :V m= 0). 

Moreover, A* is related to ,;12. 

Proof. Since the union of any linearly ordered (by inclusion) set of ideals 
which do not meet N is an ideal not meeting N, the existence of A* 
is guaranteed by Zorn’s lemma. 

Now supposee a E J and a E A*. Then ,4* is properly contained in 
A* t (a>. By the maximality of A*, (A* + (a)) n N + $9. Let N be an 
element in this intersection. Thus n = n, -+ n2 where n, E A* and n2 E (a). 

So if m E M’ and (a) U,,,,, C A*, it follows that (n) UC,,,, _C A*. However, 
(n) U,,,, n N # 8, which implies that there is an element common both 
to il* and N, a contradiction. Consequently, if (x) cicuj C A* for y  E M, 
we must have x E &4 *. whence A * is related to M. 

LEMMA 3.4. Suppose A <I J and M is a Q-system not meeting A. A set of 
element B of J is a minimal ideal containing A and related to M if and only 
if BC is a maximal M-n-system which does not meet A. 

Proof. Suppose first that B’ is a maximal M-n-system which does not 

meet A. Then A is contained in a maximal ideal A* which does not meet B”, 
and moreover ;2 * is related to M. Hence (A *)c is an M-n-system not meeting 
A, and it follows that (A*)” = B”, whence ,4* = B. Finally, B is minimal in 
d = {C 4 J / A C C and C is related to M’}. I f  not, then there exists C E d 
with C C B, C # B. Then C’ is an M-n-system not meeting A and properly 

containing B’, a contradiction. 
Conversely, suppose B is a minimal ideal containing A and related to M. 

Then Bc is an M-n-system not meeting A, so Be is contained in a maximal 
such M-n-system N. From the first part of the proof, NC is a minimal ideal 
containing A and NC is related to M. As NC C B, NC = B, which completes 

the proof. 

Proof of Theorem 3.2. Let N be the maximal M-n-system of J not meeting 
A which, by Lemma 3.4, has the property that B = NC is a minimal ideal of J 
containing A and B is related to M. As the intersection of any collection of 
ideals that contain A and are related to M contains A and is related to M, it 
follows that B = n{I 4 J 1 A C I and I is related to M}. 

Now B C AM. For if x E B, x E N, the maximal M-n-system not meeting A. 
Hence every M-n-system which contains x meets A, whence x E AM. Con- 
versely, if x E AM, then x cannot belong to N, so x E NC = B. Thus AM = B, 
which proves the theorem. 
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COROLLARY 3.5. Suppose A 4 J, MI and M, are two Q-systems of J not 

meeting A, and M, C M, . Then AM2 C A, and AM2 C iZ”1. 1 

Proof. Every Mi-n-system is an Ma-n-system. We now observe the 
following which is a consequence of the corollary and the remarks which 
follow the definition of a Q-system. Suppose 4 4 J and M’ is a Q-system 
not meeting A. Then there exists a prime ideal P of J such that rZ C P and 
P n M’ = 8. Thus if M = PC, we have iz C a4”’ C AM. This fact will be 

used in the proof of a subsequent theorem. 

4. PRIMARY IDEALS 

Suppose Q 4 J. Then Q is (inner) primary if, whenever A and B are ideals 

of J with AU, _C Q, then either A C Q or B C r(Q). We begin with 

PROPOSITION 4.1. Suppose Q 4 J. Then Q is primary in J if and only z. 

(0) is primary in J/Q. 

Proof. Let u be the natural homomorphism from (J, U, 1) onto (I, a, 1). 
Then the correspondence P -+ Pa is a one-to-one map from the set of prime 
ideals of J containing Q onto the set of prime ideals of J. Consequently, 
r(Q)u = I(J), and the result follows. 

THEOREM 4.2. Suppose Q 4 J. Then the following are equivalent: 

(1) Q is primary. 

(2) If M is a Q-system of J with M n Q = 0, then Q = QM. 

(3) If  M is a Q-system of J with M n Q = 0, then Q = Q,,., . 
(4) All elements not in r(Q) are prime to Q. 

Proof. By the remark which follows Corollary 3.5, we see that in (1) and 

(2) we need to consider only those Q-systems M which are the complements 
of prime ideals containing Q. 

(1) + (2): Suppose Q is primary and P is a prime ideal of J, distinct from J, 
containing Q. Set M = PC. We claim that Qc is an M-n-system. For suppose 
x E Qc andy E M. If(x) lYcVj n Qc = 0, then (x) Ucyj C Q. As Q is primary, 
this implies either x E Q or y  E P, either of which is a contradiction, so QC 
is an M-n-system. By Theorem 3.2, (Q”)c is the unique maximal M-n- 
system of J not meeting Q, whence (Q”)” = Qc, i.e., Q = QM. 

(2) -+ (3): This is immediate from Theorem 3.2. 

(3) ---f (1): Suppose Q is not primary. Then there exists b E Q and c $ r(Q) 
such that (b) Ulcj C Q. Since c $ r(Q), th ere exists a prime ideal P of J such 
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that Q C P but c E P whence P f  J. Now M = PC is a Q-system not meeting 
A, and, by definition, b E QM . Thus Q + QM . 

(I) tt (4): This is clear from the definitions. 

Suppose A 4 J. We say that A has an irredundant representation by the 
ideals B, ,..., B, of J if A = B, n ... n B, and no one of the B, contains the 

intersection of the remaining ones. 

THEOREM 4.3. Suppose KV 4 J and K has an irredundant representation 
by primary ideals Q1 ,..., Qn. of J. Then K ’ p zs rimary ifand only ifr(Qi) = r(Qi) 

for i, j = I,..., k. Consequently, ;fK is primary, r(K) = R(Q,). 

Proof. We may suppose that k > I. 
Suppose first that K is primary and K = Qr n ... n Q?< is an irredundant 

representation of K by primary ideals Q, ,..., Qk of J. Set R = Qz n ... n Qk. 

Since RU,* C Qi A R = K and R $ K, we have Qr C r(K). By Proposition 
2.2, r(Q1) Lr(K) C & r(Q& so r(Qr) C y(Qj) for j = I,..., k. Repeating 
this argument, we conclude that for all iandj, i,j = l,..., k, r(Qi) C r(Qj), and 
the result follows. 

Conversely, suppose K = Qr n ... n Qk is an irredundant representation 
of K by primary ideals Qi ,..., Q,< of J w h ere r(Qi) = r(Qj) for i, j = I,..., k. 
Suppose A and B are ideals of J such that AU, C K. As r(K) = r(Q,), if 
B $ r(K), then, as B $ y(Qi) for all i, A C Qi for all i, i.e., A C K. Thus K 
is primary with radical r(Qr). 

I f  A 4 J and iz has an irredundant representation by primary ideals 

Q i ,..., Qk , then this representation is called a normal primary representation 
if, for all i $- j, 1 < i, j < k, r(Q() f  r(Qj). As an immediate corollary of 
Theorem 4.3, we have 

COROLLARY 4.4. If A u J and A can be represented as aJinite intersection 
of primary ideals, then A has a normal primary representation. 

5. QUADRATIC JORDAN ALGEBRAS WITH THE MAXIMUM CONDITION 

A quadratic Jordan algebra J is said to have the maximum condition on 
ideals if every nonempty collection of ideals of J has a maximal element. We 
will write this “J has max-I”. 

Suppose A u J. Then P is a minimal prime divisor of A if P is a prime 
ideal of J containing A and if A C P’ C P where P’ is a prime ideal of J, 
then P = P’. We begin with 

THEOREM 5.1. Suppose J has max-I and A -ZI J. Then A has at most a 
Jinite number of minimal prime divisors. 
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Proof. Suppose the theorem is false, and A is a maximal counterexample. 
Clearly, A is not prime, so there exist ideals B and C of J properly containing 
A and having the property that BU, C A. By the maximality of A, both B 

and C have at most a finite number of minimal prime divisors. Now if P is a 
prime ideal of J containing A, then BU, L P, so either B C P or C C P. 
Hence, if P is a minimal prime divisor of A, P is a minimal prime divisor of 
either B or C. So if A has an infinite number of minimal prime divisors, this 
observation leads to a contradiction. 

COROLLARY 5.2. In the setting of the theorem, if A has minimal prime 
divisors P, ,..., P, where P, # J, then the following are equivalent: 

(1) A is primary. 

(2) A = A(pi)e for i = I,..., n. 

(3) A = AcPile for I = I,..., n. 

Proof. The proof is immediate from Theorem 4.2 and Corollary 3.5. 
Suppose that S is a (P-submodule of J. We define inductively Do(S) = S 

and for integers 12 > 0, D7(S) = D-l(S) UDk-l(s) . I f  A 4 J, then for all 

k, D’“(A) u J. Moreover, if m and n are non-negative integers, then 

D”-(A) = D”(D”(A)). 

THEOREM 5.3. Suppose J has max-I and A 4 J. Then there exists a non- 
negative integer k = k(A) such that @(r(A)) C A. 

Proof. Suppose the theorem is false and A is a maximal counterexample. 

Easily A is not prime, so there exist ideals B and C of J properly containing A 
with BUc C A. By the maximality of A, there exist integers p = p(B) and 
q = q(C) such that D(r(B)) C B and D(r(C)) C C. Set k = max{p, Q}. 
As r(A) C r(B) n r(C), this means that @(r(A)) _C B n C. Consequently, 
W+l(r(A)) C BUc C A, a contradiction. 

COROLLARY 5.4. If  J has max-1, then, for some integer k D”(r( J)) 1 0. 

We recall that in Section 2, we saw that if ‘ZI is an associative @-algebra 
with unity, then 2I could be given the structure of a unital quadratic Jordan 
algebra, denoted (u(Q). If  A u 91, let B(A) denote the prime radical of i4. 
We recall the definition of primary ideals in %. Specifically, an ideal I of 9I is 
right (left) primary if, whenever A and B are ideals of 2l with AB C I, then 
either A C I or B C B(I) (either B C I or A C B(I)). Then I is primary if it 
is both left and right primary. Now suppose A 4 ‘$1. From [5], we have 
r(Alq)) C B(A). Hence if A ‘0) is primary if 91’*), then A is primary in 41. For 
suppose B and Care ideals of 91 with BC C A. Then BIJc 2 A and CU, C A, 
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from which it follows that -4 is both left and right primary. It is not yet known 

if the converse, i.e., the primary analog of the results in [Sj, is true. 

Remark 2. Again, in the event that our associative algebra is commutative, 

much more can be said. Specifically, let K be an associative @-algebra with 

unity such that for all x E K, &X E 6. In addition, let 6 be noetherian. We recall 

that an ideal Q of 6 is primary if, whenever ab E Q for a, b E 0, then either 

a E Q or b” E Q for some n 2 0. So suppose Q is primary in 0. and A lJB C Q 

for ideals A and B of O(q). If =1 g Q, then there exists a E A, n 4 Q, such that 

alJ, = ab” E Q for all b E B, whence b” E Q for some YZ > 0. Since B(Q) -7 

r(Q), it follows that b E r(Q), whence B C r(Q) and Q is primary in K(q). 

Conversely, if Q is primary in (X(q) and ab E Q for a, b E CC:, then, from the 

definition of (a> and (b), it follows that for all a’ E (a) and b’ E (b), a’Crb, EQ, 

whence (a> iY(,,) C Q. Th en either (a> C Q or (6) C r(Q). Since & is 

noetherian, it follows from Theorem 5.3 that either a E Q or b” E Q for some 

11 > 0. Thus there is a one-to-one correspondence between the primary 

ideals of 6 and those of 0’“). 

6. THE LASKER-NOETHER THEOREM 

Suppose A 4 J. Then A is meet irreducible if, whenever A can be repre- 

sented as the intersection of two ideals B and C of J, then either A = B or 

A = C. Using the same proof as in the associative case, mutatis mutandis, it 

is easy to see that A is a meet irreducible ideal of J if and only if (0) is meet 

irreducible in J/A. The proof of the next lemma is standard. 

LEMMA 6.1. If J ha-s max-1, then every ideal of J can be represented as u 

finite intersection of meet irreducible ideals. 

We say that J satisfies the (outer) Artin-Rees property if, whenever A and 

B are ideals of J, there exists a non-negative integer h = h(A, B) such that 

A n IF(B) _C _4U, . Clearly, to say that / satisfies the Artin-Rees property 

is tantamount to assuming that an analogue of the well-known Artin-Rees 

lemma is valid in J. We use the Artin-Rees property to prove 

LEMMA 6.2. Suppose J satisfies the Artin-Rees property. Then every meet 

irreducible ideal of J is primary. 

Proof. Suppose T 4 J and T is meet irreducible. By the remark preceding 

Lemma 6. I, it is sufficient to consider the case when T = 0. Thus suppose 

A and B are ideals of J with AU, = 0. Since J satisfies the Artin-Rees 

property, there exists a non-negative integer h such that A n F(B) = 0. 

As 0 is meet irreducible, either =1 my 0 or Dh(B) =: 0. In the case when 
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,-2 # 0, then P(B) = 0, which implies D”(B) C Y(J). It follows from this 
fact that B C r(J). Consequently, 0 is primary, as desired. 

THEOREM 6.3. (LASKER-NOETHER). Suppose /has max-I. Then a necessary 

and suficient condition that every ideal of J has a normal primary representation 
is that J satisjes the Artin-Rees property. 

Proof. Suppose first that every ideal of J has a normal primary represen- 
tation. Thus, if A and B are ideals of J, then AU, has a normal primary 

representation by primary ideals Qr ,..., QI; . We shall now demonstrate the 

existence of an integer h such that iz r‘l D(B) C AU,. If, for all i = I,..., k, 
wehaveACQi,thenDO(B)ni3=BnACACQ,n...nQ,=AU,, 
and we are done. So assume A g Q, for some p. We rearrange the Qi so that 

A g Qi for i = I,..., j and A C Qi for i = j + I,..., k. Thus 

Since the Q1 are primary, AU, C Qi f  or i i I,..., j implies that B C r(Qj). 

By Theorem 5.3, for each i there exists an integer n(i) such that DTLci)(B) C Qj . 
So if h = max{n(i)i i = l,... , j>, Dh(B) C Qj for i == l,..., j, and we have 
,4 n Dh(B) _C AU, , as required. 

The converse is clear by virtue of Lemmas 6. I, 6.2, and Corollary 4.4. 
The following example shows that the Artin-Rees property is not valid 

in all unital quadratic Jordan algebras with max-I. Specifically, there exist J 
with max-I having ideals that do not have a normal primary representation. 

EXAMPLE 6.4. Suppose R is the field of real numbers and ‘X is the asso- 

ciative algebra of 2 x 2 upper triangular matrices, i.e., if a E VI, then a = 
(Et) where 01, p, (T E R. Let 91 I*) denote the unital quadratic Jordan algebra 
over R generated by YI. One readily computes that the nontrivial ideals of 

?I(*) are 

For all nonnegative integers n, D”(A,) = -4, and D”(A,) = AZ , while 

A,U,, = 0 and A,UAi = 0 i, j = 1, 2, 3, i # j. It is easy to see that A, 
and A, are prime ideals of PI(S). Moreover, A, n A, = A, . Consequently, 
for all integers n 3 0, A, n D”(A,) = A, but A,U,,, = 0. So 9P does not 
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satisfy the Artin-Rees property. Easily the zero ideal provides an example of 
an ideal that does not have a normal primary representation. 

7. TERTIARY IDEALS 

We have seen that if J has max-1 and satisfies the Artin-Rees property, 
then ideals in J have normal primary representations. The assumption of 
the Artin-Rees property is a disagreeable feature of this theory. We will now 

show that it is possible to obtain an analogue for quadratic Jordan algebras 
of the tertiary ideal as given in [7], and we give a decomposition theorem for 
all quadratic Jordan algebras with max-1. 

Suppose A 4 J. The set t(A) = {a E J j for any b .$ A there exists c E (b), 

c $ A, such that (c) UC,, _ C A is called the tertiary radical of A. Clearly, } 
A C t(A). An ideal T of J is a tertiary ideal if, whenever A and B are ideals of J 
with AU, C T, then either A C T or B C t(T). 

LEMMA 7.1. Suppose A 4 J has an irredundant representation by tertiary 
ideals Tl ,..., Tk . Then t(A) = t(T,) n ... n t(T& 

Proof. We may assume that R > 1. 
Suppose a E t(T,) n ... n t( T& and b $ A. We may also assume that 

b # T, . Then there exists b, E (6), b, $ Tl such that (b,) U;,, C Tl . I f  

b, E T, , then 6, $ T, n T, but (6,) U,,, C T, . On the other hand, if 

b, $ T, > we find b,’ E (b,) with 6,’ 6 T, and (b,‘) U,,, C T, In either case, 
there is an element b, E (b), b, 4 Tl n T, with (b,) UC,, C Tl n T, , i.e., 
a E t(T, n Tz). Since k is finite, by repeating this argument, we conclude 

that a E t(A). 
Conversely, suppose a E t(A). By irreducibility, there exists an element b 

such that b E T, n ... n Tk , b $ A. Then we find an element c E (b), c q? A, 
with (c) UC,, C A. As c $ T, , a E t( T,). Similarly a E t( Tj) for j = 2 ,..., K, 
and we have t(A) C t(T,) n ... n t(T,). 

LEMMA 7.2. If T, ,..., Tk are tertiary ideals qf ] such that t(Tl) = ... = 
t(T,), then T = Tl n ... n Tk is tertiary and t(T) = t(T,). 

Proof. Suppose a, b E J and (a) UC*) _C T. If  

(b) e t(T,), (a) C Tl n ... n Tk = T. 

That t(T) = t(Tl) follows from Lemma 7.1. 
Suppose A 4 J has an irredundant representation by tertiary ideals 

T r ,..., Tk . Then this representation is called a normal tertiary representation 
if, for all i f  j, t( Ti) # t( T,). 
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COROLLARY 7.3. If  A u J and A has a jinite representation by tertiary 
ideals, then A has a normal tertiary representation. 

8. TERTIARY REPRESENTATIONS 

We begin with 

LEMMA 8.1. Every meet irreducible ideal of J is tertiary. 

Proof. Suppose A is an ideal of J and A is not tertiary. Then there exist 
elements b, c E J, b $ A, c $ t(A), with (b) Ucej _C A. Now c $ t(A) implies the 

existence of an element d E J, d 6 A, such that whenever d’ E (d) and 
(d’) U,,, C A, then d’ E A. Clearly, the ideals D, = A + (d) and D, = 
A + (b) properly contain A. Hence let x = a, + d’ = a2 + b’ E D, n D, , 
where a,, a2 E A, d’ E (d), and b’ E (6). Then d’ = b’ + a’ where a’ = 

a2 - a, . Then (d’) UCej = (b’ + a’> U,,, C (0 Ut,, + (a’> UC,, C A. 
Hence d’ E A, which implies x E A. Thus A = D, n D, , i.e., ,4 is not meet 
irreducible. 

THEOREM 8.2. If  J has max-I, then every ideal A of J has a normal tertiary 
representation. If A = T, n ..’ n TVL and A = S, n ... n S, are two 
normal tertiary representations of A, then m = n and it is possible to arrange 

the components in such a way that t(Ti) = t(Si) for i = I,..., m. 

Proof. By Lemmas 6.2, 8.1, and Corollary 7.3, it follows that every ideal 
of J has a normal tertiary representation. 

To prove the rest of the theorem, we first suppose that I 4 J and I = 
T, n B, = T, n B, where T, and T, are tertiary ideals of J and B, and B, 
are ideals of J. Suppose t(T,) # t(T,), and b E t(T,), b $ t(T,). I f  a E B, n B, 
but a # A, then a $ T1, so there exists c E (a) such that c # T, and 
(c) lJCti) C T, . Hence (c) UCb> - C T, n B, C T, . Therefore, c E T, implying 
c E B, n T2 C T, , a contradiction. This fact, together with the inclusion 
I C B, n B, implies I = B, n B, . 

Eow suppose ,4 u J and A = T, n ... n T,< = S, n ... n S, where 
these representations are normal tertiary representations. To prove the 
theorem, it is sufficient to show that for some j, 1 < j < p, t(T1) = t(Sj). 
So suppose t(T,) # t(Sj) for j = l,..., p. By what we have shown above, 
A = T, n ... n Tk = T, n ... n Tk n S, n ... n S,. By repeating this 

process, we obtain T, n ... n Tk = T, n ... n TIC, a contradiction. 
Therefore, for some j, t(T,) = t(Sj), and the result follows. 

Finally, the question arises as to the relationship between tertiary ideals and 
primary ideals in J. We have 

481/24/3-4 
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PROPOSITION 8.3. Suppose J satisjes the Artin-Rees property. Then every 

tertiary ideal of J is primary. Conversely, if J has max-I and ;f every tertiary 
ideal of J is primary, then J satisjies the Artin-Rees property. 

Proof. Suppose T is a tertiary ideal of J, a, 0 E J, a $ T, and (a> UC,) L 7’. 
Since J has the Artin-Rees property, there exists a nonnegative integer h 
such that [T : (bi] n D&((b)) C [T : I?] c!Cbi 2 T. 1Ve claim that IP((b)) C T. 

If  h E T, we are done. So suppose b 4 T. If  D”((b\) $ T, we choose c E IY((b)), 
c $ T. Since b E t(T), there is a d E (c>, d 4 T, such that (d) Ucbj C T. Thus 
d E [T : (b)] which implies d E T, a contradiction. Hence D((b)) C T, from 
which it follows that (b) C r(T), i.e., 2’ is primary. 

Conversely, suppose J has max-I and that tertiary ideals of J are primary. 

The result follows from Theorems 8.2 and 6.3. 
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