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Stability of Difference Schemes in the Maximum-Norm* 

VIDAR THOMBE 

Department of Mathematics, 
Chalmers Institute of Technology, Giiteborg, Sweden 

Necessary and sufhcient conditions for stability in the maximum- 
norm of explicity two-level difference schemes with constant coefficients 
are given. The sufficiency of the conditions has been proved previously 
by G. Strang. 

1. INTRODUCTION AND MAIN RESULT 

Consider an explicit difference scheme with constant coefficients for an 
initial value problem of the form 

au amu 
--'P at axrn' t >o, p = constant, 

u(x, 0) = u&x). 

Such a difference scheme can be written 

(l-1) 

%(4 = %44, %+I@) = &2(4, 

where A is a linear operator of the form 

Au(x) = 2 a,a(x + jh), 
j 

where h > 0 and only a finite number of the complex numbers aj are non- 
zero. Such an operator is evidently bounded in L*, 1 < p < CO; we have by 
Minkowski’s inequality 

II Av Ilp G 2 I aj I II w Ilp 3 (l-3) 
i 

where 11 * (ID is the ordinary Lp-norm (in case p = co, the maximum-norm). 
We say that such a difference scheme, or the corresponding operator A, is 
stable in L” (1 < p < co) if there is a constant C such that 

II Any IIs d C II 0 119 7 71 > 1, 0 ELP. 

* This paper was written at the Institute for Fluid Dynamics and Applied Mathe- 
matics, University of Maryland, under the support of Grant NSF-GP-2067 with the 
National Science Foundation. 
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If we define for a bounded linear operator B in Lz’, 

then stability in Lx’ can be defined as the uniform boundedness of 11 A” [ID 
for all natural numbers n. 

We call the trigonometric polynomial 

the characteristic polynomial of A. It is easy to see that the characteristic 
polynomial of A” is u(6’p. It is also easy to prove by Parseval’s formula that 
(cf. e.g. [5]) 

II A IL = max I 44 I , (1.4) 

and it follows at once the well-known fact that A is stable in L2 if and only 
if 1 u(O) 1 < 1 for all real 0 (von Neumann’s condition). 

The aim of this paper is to study stability in L*, or stability in the maxi- 
mum-norm. In the sequel we will therefore generally drop the subscript CO 
and write 1) 11 instead of 11 . Ilm . W e h ave in this case for the operator defined 
in (1.2) 

II A II = II A IL = 2 I aj I . 
j (1.5) 

The stability problem is in this case considerably more complicated than in 
the L2-case. It was proved by F. John in his paper [.3] about difference methods 
for parabolic equations that the condition 

I u(e) 1 < e-y@ for some r>o and all l@l <r U-6) 

is sufficient for stability in L*. This condition is evidently not necessary as is 
seen by the simple example 

Au(x) = $ (v(x + h) + v(x - h)). 

In this case we have stability since /I A II = 1. The characteristic polynomial 
is a(e) = cos 0, and since u(m) = - 1, (1.6) is not satisfied. With methods 
similar to John’s, G. Strang [9] in connection with investigations about 
hyperbolic equations was able to prove the sufficiency for stability in L* of 
conditions generalizing John’s. It will be shown that Strang’s conditions 
are also necessary conditions. The complete result can be formulated as 
follows: 
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THEOREM 1. The operator A with characteristic polynomial a(0) is stable 
in the maximum-norm if and only if one of the following two conditions is satis- 
jed : 

(a) a(0) = ceije, 1 c 1 = 1, 

(b) / a(0) 1 < 1 except for at most a$nite number of points 0, , h = l;.., N 
in 1 0 1 < r where 1 a(0) 1 = 1. For 12 = 1, ..., N there are constants 
=k, Yk, vk, where dk is real, Re Yk > 0, and vk is an even natural number, 
such that 

a(ek + e) = a(ek) exp (ia# - Yk6”k(i + o(l))) when e-0. 

For the sake of completeness we will reproduce Strang’s proof of the 
sufficiency part of Theorem 1 in Section 2. In Section 3, we then prove the 
necessity of conditions (a) or (b). Thi s will be done by giving estimates to 
below of the rate of growth of 11 An II in the cases when (a) or (b) is not satisfied. 
In Section 4 we will finally discuss some applications to initial-value problems 
of the form (1.1). It will, for instance, be proved that the Lax-Wendroff 
scheme for a hyperbolic equation is not stable in the maximum-norm, and 
that in this case 

This was conjectured by H. Stetter [7l on the basis of numerical data. 
The author is indebted to professor L. Hormander for a conversation on 

the subject of this paper, and for suggesting application of the results in [2] 
to this problem. By using this technique it is in fact possible to prove the 
necessity part of Theorem 1 even in Lp, 1 < p < co, p # 2. The sufficiency 
part of Theorem 1 in L” follows at once from the result in Loo and the fact 
(cf. (1.3) and (1.5)) that 

II An IID d II A” Ila) , l<p<co. (1.7) 

We hope to return to this point of view in a later paper, but feel that the 
significance of the particular case p = co, and the possibility of obtaining 
the above mentioned estimates, justifies the presentation of the present 
elementary proof although it does not lend itself to generalization. 

2. SUFFICIENCY 

We will introduce the class & of absolutely convergent trigonometric 
series 

a(e) = zajeije, 2 1 a3 1 < 00. 
i Li 
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Evidently, if a E A?, then a is a continuous periodic function of the real 
variable 19 with period 2~, and 

1 7J 
ai ‘3;. --II i ecije u(O) d8. 

Further, & is a normed linear space with the norm 

We have the trivial lemma: 

LEMMA 2.1. If  a = 2 ajeije E x2 and b = z bieije is dejined by 
j j 

44 = WA, + 8), IhI= 1, 

then / aj j = / bf / . In particular, b E ~2 and 

llbll =ll4. 

The class & is also closed under multiplication: if a, b E &, then ab E d 
and 

llabll <II41 .llbll. 

In particular, if a E &‘, and n is any natural number, then a” E d. In the 
sequel, when a E .4 we will denote by a,,$ the Fourier-coefficients of an, so 
that 

a(CQn = z a,,jeije, 
j 

1 R 
a. Iz,j = G s 

ecije a(Oy d0. (2.1) --?T 

Consider an operator A of the form (1.2) with characteristic polynomial a. 
We then have a E & and 

II a II = II A II 

We say that a E L% if a E & and II an 11 is b ounded for all natural numbers n. 
With this notation, A is stable if and only if its characteristic polynomial 
belongs to ~57’. 

The following lemma is due to Beurling: 
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LEMMA 2.2. If  a E a?, then 

Proof. See [6], p. 428. 
It follows in particular: 

LEMMA 2.3. If  a E a2 and 1 a(f?) 1 < 1 for all 0, then there is a p < 1 
such that for sufficiently large n, 

lI@lI (Pm. 

In particular, a E 9’. 
We say that a E CP if u is p times continuously differentiable. 

LEMMA 2.4. Let a E JXY n C2 be such that 1 u(0) 1 < 1 for 0 < ( 0 1 < r, 
u(O) = 1. Assume that a E c” in a neighborhood of 8 = 0 and 

u(e) = exp (ia - y&( 1 + O( 1))) when e-0, (2.2) 

where a is real, Re y  > 0, and v  is an even natural number. Then, if %,, is 
defined by (2.1)) there is a positive constant C independent of n and j such that 

1 u,,~ 1 < Cn-l/v, (2.3) 

1 u,,j 1 Q Cnl/“( j - (m)-2. (2.4) 

Proof. By (2.2) there is a K > 0 such that 

I w I < exp (- Kw, iei ~7. 

By (2.1) we get 

which proves (2.3). To prove (2.4), we define 

and get 

u,(e) = ewiae u(e), 

1 = 
%J =G s 

e-i(5-de uol(e)n de. --n 
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After two partial integrations we get 

IT 

a n,i = - 24 j : an)” s --n e- 
i(j-na)O{~a(e>n-l a:(e) 

+ (n - 1) a,(Op-2 a,‘(0)2> de. (2.5) 
According to (2.2) we have 

a,(B) = exp (- reyi + 0(l))) = 1 - yB’ + 0(P) when e-+0. 

It follows for 1 e 1 < T’, 

I d(e) I G c I e r-l, 

1 a;(e) 1 < m-2. 

(Here and in the sequel C denotes a positive constant. When necessary 
different constants will be distinguished by subscripts.) We thus get 

and since 

+ n I:, e2v--2 exp (- nKeq de , 
I 

I 
n ev-2 exp (- nKeq de < n-(l-1/~) J +m P2 exp (- &) de, 
-77 --m 

s 
r 
-77 

e2--2 exp (- KU&) de < TZ-@-~/V) /+m P-2 exp (- Keu) de, 
-cc 

we finally get (2.4). 
We then have: 

COROLLARY. Under th,e assumptions of Lemma 2.4, a E 99. 

Proof. With the above notation we have 

j’ an ” = z: ’ %j ’ = ,,&,” + ,j.Jl,y i 
< cn-1’” z: 1 + Cd@ 

1 j-e.nl <d/” , j-&. (j - 4--- 

< Cl 
( 

n-l/vnllY + nllY .2 

1 jj&li- ) 

< C,(l + fzl’“K-1’“) = c, , 

which proves the Corollary. 
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We can now prove a theorem which contains the sufficiency of condition 
(b) in Theorem 1 for stability: 

THEOREM 2. Let a E a?’ n C2 be such that 1 a(e) 1 < 1 except for at most a 
finite number of points t& , k = 1, ..., N, in 1 0 1 < r, where 1 u(e) 1 = 1. 
Assume that for k = 1, ..., N, there are constants ak: , yR , vk , where 0~~ is real, 
Re yn > 0, and vk is an even natural number, such that a E C”k in a nakhborhood 
of 8 = ok and 

~(0, + 0) = u(ek) exp (ior, - y#k(l + o(1))) when e-0. 

Then UESJ. 

Proof. Lemma 2.3 proves the theorem if 1 u(0) I < 1 for all 8, and the 
Corollary of Lemma 2.4 proves the theorem for the case N = 1, 0, = 0, 
u(O) = 1. We now turn to the general case N 3 1. Let 6 > 0 be less than 
the distance between any two roots of the equation 1 u(e) / = 1, and let 
+ E JX! f7 C2 satisfy 

0 G+(e) G 1, all 8, 

(2.6) 

The existence of such a periodic function is clear. Let 

b,(e) = 49 w - e,), k = 1, .a. N, 

and notice that the b, have disjoint supports. Let further 

u,(e) = u(e) - f$ bj(e) = 49 11 - j$ W - f4)l ’ (2.7) 

uk(e) = b,(e) + u,(e) = u(e) 11 - &+(e - ej)/ , k = 1, . . . . N. (2.8) 

We obtain 

u(e)n = 2 uj(e)m - (iv - 1) uo(e)n. 
j-l 

(2.9) 

This follows, since if 0 belongs to the support of bk(B), then the right side 
reduces to 

z a,(e)n + ak(ep - (N - 1) u,(e)n = uk(e)n = u(e)-, 
i#k 
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and if 0 does not belong to the support of any of the b, , the right side reduces 
to 

5 uo(ep - (N - 1) uO(OP = uO(ey = u(ep. 
j=l 

It follows from (2.7) that 1 a,(S) 1 < 1 for all 8, so that by Lemma 2.3, 
a, E&Y. It follows from (2.8) and the assumptions that a,(& + 0)/a(f),), 
K # 0, satisfies the conditions in Lemma 2.4. Thus by the Corollary, this 
function belongs to a. According to Lemma 2.1, this implies that uK E 3. 
By (2.9), we can finally conclude that a E 9. 

Since evidently the condition (a) is sufficient for stability, this concludes 
the proof of the sufficiency part of Theorem 1. 

3. NECESSITY 

For the proof of the necessity part of Theorem 1, let A be an operator of 
the form (1.2), and let u(e) be its characteristic polynomial. We first notice 
that Lemma 2.2 implies that in order that a E G?, it is necessary that 

(This follows also directly from (1.4), and (1.7) with p = 2.) Since with 
u(e), 1 u(0) 1s is also a trigonometric polynomial, we can conclude that one of 
the following two conditions is satisfied for a E a’: 

(4 w)I=i, 

(b’) I 44 I -=-c 1 f or all but at most a finite number of points 0, , K = 
1, -a., N, in 10 1 < r. 

We first prove that condition (a’) implies condition (a) in Theorem 1: 

LEMMA 3.1. Let u(0) b e a trigonometric polynomiul with ( u(e) 1 3 1. 
Then u(0) = ceije where 1 c / = 1 and j U an integer. 

Proof. Let 

u(e) = 2 c,eife, 
i-P 

CP , CQ # 0. (3-l) 

We want to prove that if / u(e) 1 = 1, then P = Q. Assume that Q > P. 
We would then have 

1 u(e) 12 = u(e) i(@ = $ cj~kei(i-k)Be 

i,k=P 
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The trigonometric polynomial on the right has the coefficient cPco of ei(p-Q’8, 
but since the polynomial is identically 1, this means that I+E~ = 0, which 
contradicts (3.1), and the lemma follows at once. 

We now turn to the case (b’). Consider generally, in the neighborhood of 
oneof the points f&, K = 1, ..., N, an a E AZ’ satisfying (b’). We say that 8, is 
a point of type /3 for a, or 8, E j3, if there are prc , vk: , ak , flR , yk , qr(B), where 

plc , vk are natural numbers with 1 < plc < vk , vk even, 0~~ real, Re yk > 0, 
qk(B) is a real polynomial with qk(0) = /& # 0, such that a E Cyk in a neigh- 
borhood of 0 = Br and 

a(ek + e) = a(ek) exp (ia, + ie@k qkk(e) - ykeYk(l + O( 1))) when e -+ 0. 

(3 4 

We say that 0, is a point of type y  for a, or 8, E y, if there are vk , (Ye , yK , 
where vk is an even natural number, ak: a real number, and Re yk > 0, such 
that a E c’k in a neighborhood of tI = 0, and 

a(ek + e) = ace,) exp (iolke - ykeyi + 0(i))) when 040. 

Since a trigonometric polynomial is an analytic function, then if it satisfies 
condition (b’), the points 0, , k = 1, a*.*, N, are necessarily points of type ,!3 
or y, and ok E j? if and only if the first nonvanishing nonlinear term in the 

MacLaurin expansion of log [a& + 0)/a(&)] is purely imaginary. 
The fact that for a trigonometric polynomial a E g, the condition (b’) 

implies condition (b) in Theorem 1 is contained in the following theorem: 

THEOREM 3. Let a E JS’ n Cz be such that 1 a(0) 1 < 1 except for a Jinite 
number of points & , k = 1, ..., N, in 1 0 1 < V, which are of type /I or y, and of 
which at least one is of type 8. Let 

Then thme is a positive constant C such that 

11 ua (I > Cnl’Po-l’“o, 

and, in particular, a $ a. 
For the proof we will need a number of lemmas. The first two lemmas are 

due to van der Corput. 

LEMMA 3.2. Assume that f(x) E C2 is a re&alued function in [a, b] such 

that f’(x) is monotone and 1 f’(x) [ 2 h > 0. Then 

1 j” exp (if(x)) dx 1 < + . 
a (3.3) 
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Proof. Let F(x) = exp (if(~)). We have 

and so 

where I1 and I, are the real and imaginary parts of iI. Let Fl and F, be the 
real and imaginary parts of F. The second mean-value theorem then gives 
for certain Ei with a < Ej < b, 

and thus 

which gives (3.3). 

LEMMA 3.3. Assume that f E C2 is a real-valued function in [u, b] such that 

1 .f”(x) 1 B p > 0. Then 

/ 1” exp W(4) dx 1 < -$ . (3.4) 
a 

Proof. Consider the casef”(x) > p. The Casey(x) < - p can be treated 
analogously. The function!‘(x) is then increasing. Assume first thatf’(x) has a 
constant sign in (a, b), say f’ > 0 (the casefl < 0 can be treated similarly). 
I f  a < c < b, thenf”(x) > p implies 

f’(X) 2 (x - a) p 2 (c - a) p for c<x<b, 

and we get by Lemma 3.2 with the above notation 
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or if c - a = 2/2/;;, 

(If b - a < 2/2/;;, this inequality is trivially valid.) Iff’(x) changes sign in 
(a, b), then (a, b) is the union of two intervals in which f’(x) has constant 
sign, and (3.5) can be applied on each of these, giving finally (3.4). 

LEMMA 3.4. Let q(x) be a real polynomial with /3 = q(0) # 0 and 
p a natural number > 1. Set 

&&e) = 11 exp (&X + if& q(x)) dx. 

Then there are positive constants 6 and C, independent of n, 01, p, such that for 

lOI <a, 
I 9h.m I < Cn-l’fi, 

When q(x) = constant, 6 can be chosen arbitrarily. 

Proof. Consider the polynomial q&c) = xpq(x). We have 

!?l”@) = x”-“q&), 42(O) = CL@ - 1) B = 2P f 0. 

Let 6 be so small that ) q2(x) I > p for 1 x 1 < 6. This is true for any 6 > 0 
if q(x) = constant. I f  0 < 1 &I < 1 0 I < 6, we have for 1 0, I < I x I < I 0 1, 

and so by Lemma 3.3, 

This inequality is evidently valid also if ) 0 ) < I 0, I . With I f3, I = n-l/f, 
we get 

I kaw I G (1 + $==) d/p, 

which proves the lemma. 

LEMMA 3.5. Assume that a E ~4 n Cl satz$ies condition (b’) with N = 1, 
0, = 0, a(0) = 1, and that e1 = 0 is a point of type /? for a. Then, if a,,j are 
de$ned by (2.1)) there is a constant C independent of n and j such that 

1 a,,j 1 < Cf2-l~~~ . (3.6) 
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Proof. We drop all subscripts 1 and define 

(z(e) = exp [- i0lO - @q(O)] a(O), 
and get 

a(e) = exp { - #[I + 0(l)]} when e-+0. 

It follows that there are positive constants K and C, such that 

I w I < exp (- Ke9, let e, 

I qe) I G cl I e i-1, 10 da. 

We get with the notation of Lemma 3.4, 

(3.7) 

For the first term we obtain by partial integration 

I1 = bA,na-i qey]S8 - n j8 +n,nax-j(e) ii’(e) ii(e)“-1 de, 
-8 

and thus by Lemma 3.4, 

11~ 1 < c, (W--~/P + nl-1'~ j", I e Iv--l exp (- no@) de) 

< C,n-1’” 1 + 
( s 

+cu I e y-1 exp (- Keq de) < C,+fi. (3.8) 
--P 

For the second term in (3.7) we get 

1 I2 1 < eXp (- nK@) < c5?r11p. 

Together the estimates (3.8) and (3.9) imply (3.6). 

(3.9) 

LEMMA 3.6. Asswne that a E S? n Cl satisfies condition (b’), and that 
the points 8, , k = 1, .., N, N 3 1, are points of type /3 for a. Then, if a,, j is 
de$ned by (2.1) and pk by (3.2), there is a constant C independent of n and j 
such that 

1 a,,j I < Cn-llpo, I*O=m;xpk’ (3.10) 

Proof. Exactly as in the proof of Theorem 2, we can write 

U(e)n = 2 ak(ep - (N - 1) Uo(f?)“, 
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where for k = 1, ..*, N, 1 u,@) / < 1 for 0 -=c 1 0 - t& / < m, ~~(0) = a(e) 
in a neighborhood of t& , and / q,(e) I -=c 1 for all 8. It is then easy to con- 
clude (3.10) by applying Lemma 3.5 to each of the functions a,& + 0)/a(&), 
k = 1, .a., N, and using Lemma 2.1 and Lemma 2.3. 

LEMMA 3.7. Let a E ~2 be such that 1 u(0) 1 < 1 for 0 < 1 0 1 < 8, and 

1 a(e) I2 = exp (- f&(1 + O( 1))) when e-0, (3.11) 

where K > 0. Then there is a positive constant C such that 

I da 1 u(e) 12% de = n-lq~ + o(i)) when n+co 

Proof. We have 

,“, / u(e) (2n de = n-1/Y Sdnl’” 1 a(kl’“) p de. 
-sn’l” 

The function fn defined by 

then by (3.11) has the property that for all 0, 

F+i f,(e) = eXp (- Kc?). 

Since by the assumptions, for some h > 0, and for I B 1 < 6, 1 a(0) I2 < 
exp (- MY), it follows with the same h and for all 8 that f,(e) < exp (- A@). 
Thus by Lebesgue’s theorem on dominated convergence, 

which proves the lemma. 

LEMMA 3.8. Let a E &’ be such that / u(e) I < 1 except for at most a 
jinite number of points 0, , k = 1, . . ., N,N>l,inlel <xwhereja(B)j =l. 
Assume that for k = 1, ..., N, there are constants ICY , Ye , where IQ > 0 and 
vk ti an even natural number such that 

i 44 + 0) 12 = exp (- Kkeyi + o(l))) whm e-+0. 
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Then ;fanSj is dejined by (2.1) and v,, = maxk vk , {here is a positive constant C 
such that 

2 ‘a,,$ j2 = n-l’“O(C + o(1)) when n-+ co. 
j 

Proof. Let 6 > 0 be smaller than half the distance between any two 
roots of 1 a(e) 1 = 1. We have by Parseval’s formula 

= 2 j’ 
k-l -8 

1 a(& + ~9) 12m de + j, 1 a(0) 12n df9, 

where S is a subset of [- T, T] such that 

q = S;P j a(e) I2 < 1. 

We therefore have by Lemma 3.7 that 

2 1 a,,j j2 = 3 n-l’“k(C, + o(1)) + O(q”) when n-+ 03, 
i kc1 

which proves the lemma. 

Proof of Theorem 3. We first prove the theorem under the assumption 

that there are no points of type y. We can apply Lemma 3.8 with K~ = 2 Re yk , 
and get with the notation (2.1) for sufficiently large n, 

On the other hand, by Lemma 3.6, we obtain 

and so since 

I a, ,j I < C2n1”0, 

we get 

which proves to theorem in this case. 
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We now turn to the general case. As in the proof of Theorem 2, let 
+ E JX?’ n C2 be a function satisfying (2.6). Also, let 

444 = 2 +(e - 4h 
%aJ 

(bde) = 1 - h(e) - 4,(e). 
We set 

%P) = 4e> &J(e), 
%3(e) = 44 (1 - Me)), 
44 = 44 (1 - 44m 

and obtain in the same manner as before 

u(e)n = up(e)n + $(e)n - uo(e)~. (2.12) 

Since 1 u&9) j < 1 for all 0, a,, E a. Further u,(e) = a(e) in the neighborhood 
of all points of a of type y and 1 q,(O) j < 1 for all other points. Hence by 
Theorem 2, uY E W. But u,(l9) EZ u(0) in the neighborhood of all points of a 
of type /I, and 1 u,(O) 1 < 1 for all other points, and so by the above, 

and so the desired result follows at once from (3.12). This concludes the 
proof of Theorem 3. 

4. APPLICATIONS 

We return to the initial value problem 

au amu 
z=ps' t > 0, p = constant, 

u(x, 0) = u&), 

and define recursively approximations Q(X) to U(X, nk) by means of 

%W = %M 

(4.1) 

(4.1) 

(4.2) 
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Here h and k are considered variable but the ratio h = k/h” is kept constant. 
We say that the explicit difference scheme (4.2) (with mesh-ratio h), or the 

corresponding operator A, is consistent with the differential equation (4.1) 
if for solutions u of (4.1) in Cm, 

u(x, t + k) = Au@, t) + o(k) when k-+0, (4.3) 

and that the order of accuracy is p if p is the largest integer such that for all 
such u, 

u(x, t + k) = Au@, t) + O(hm+g) when h-0. (4.4) 

It follows that A is consistent with (4.1) if and only if the order of accuracy 
is at least 1. 

As is well known, these definitions can also be expressed in terms of the 
characteristic polynomial u(6) of A: 

LEMMA 4.1. The dzyerence scheme (4.2) is consistent with the equation 
(4.1) if and only ;f  

a(e) = exp (ph(iO)m + o(F)) when e-+0, (45) 

and its order of accuracy is p if and only if there is a y  # 0 such that 

a(8) = exp (ph(i8)m - YP+~ + o(@+*)) when e--+0. (4.6) 

Proof. We have for any solution of (4.1) in Cm, 

u(x, t + k) - Au(x, t) = u(x, t) + k g (x, t) + o(k) - 2 aju(x + jk, t) 
j 

= u(x, t) + f&l” g (x, t) - 8 $ (2 jSaj) 2 (x, t) + o(hm) when h-+0, 
* j 

On the other hand, 

and thus (4.3) is satisfied if and only if 

t 

1, s = 0, 
0, s = 1, *es, m - 1, (ifm > l), (4.7) 
pA, s = m 

exp (ph(i8)m) - a(e) = 1 + pX(iO)m - 3 q (2 jsaj) + o(@) when i3 -+ 0, 
j 

and so 

a(e) = exp (ph(ie)m) + 0(e) when e + 0, (4.8) 

if and only if the conditions (4.7) are satisfied. But (4.8) and (4.5) are equi- 
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valent. This proves the statement about the consistency. The statement 
about the order of accuracy is proved similarly. 

We can now express a number of consequences of Theorem 1 in terms of 
the concepts introduced in this section: 

THEOREM 4. In order that (4.1) admits a stable, consistent, explicit 
difference scheme, it is necessary that (i) m even, Re (- l)n2/2 p < 0 (parabolic 

case) or (ii) m = 1, p real (hyperbolic case). In case (ii) a stable explicit scheme 
has necessarily an odd order of accuracy. On the other hand, in the cases (i) and 
(ii) there exist stable, consistent, explicit difference schemes. If  the operator A 
in the scheme (4.2) has the characteristic polynomial a(0) and if 1 a(0) ) < 1 fw 
0 < 1 0 ) < T, then the scheme is stable in case (i) af it is consistent, and in case 

(ii) if a(0) satisfies (4.6) zuith m = 1, Re y  > 0, andp odd. 

Proof. The necessity and sufficiency of the conditions follow at once from 
Theorem 1 and Lemma 4.1. It remains only to prove the existence of stable 
consistent operators in the two cases. It is then sufficient to consider the 
schemes with the characteristic polynomials. 

(i) a(0) = 1 + (- l),i2 ph 2”12(1 - cos 0)m12 with h such that 

I1 + (- 1)“/2ph2nz ( < 1. 

(ii) a(0) = cos 8 + iph sin 0 with h such that 1 p 1 h < 1. 

Further examples in case (ii) are the operators of odd order 2p - I of 

accuracy based on 2p points considered by Strang [8, 91 (of which the above 
scheme of Friedrichs [I] is a special case). On the other hand, the explicit 
schemes of even order 2p of accuracy using 2p + 1 points, also investigated 
by strang in [8], and shown there to be stable in L2, cannot according to our 
results be stable in the maximum-norm. A special example of these operators 
is (m = 1) the Lax-Wendroff scheme (cf. [$l), defined by 

a(e) = (ph)2 cos e - iph sin e + 1 - ($)a. 

The instability of schemes of even order of accuracy in the hyperbolic 

case does not necessarily imply that such schemes are useless for numerical 
purposes. For any explicit scheme with characteristic polynomial 

where I a(0) I < 1 for all 0, so that the scheme is stable in L2, we have by the 
Cauchy inequality and Parseval’s formula, 

I! an II2 = ( ,jsnp I a,,i I)’ < PP + 1) 2 I qj I2 
ljl GP 

=(ZnP+l)&/1 /a(B)12nd0<2nP+1. 
w 
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Thus 

and so does not grow too fast with n. 
As an illustration, we consider in some detail the Lax-Wendroff scheme 

for the equation (4.1) with m = 1 and p real. We assume that 0 < 1 p ( < 1 
and h = 1 so that k = h. We obtain 

a(e) = p2 cos f3 - ip sin f3 + 1 - p2 

= exp (- pi0 + * ~(1 - p2) ie3 - Q p2(l - pz) 84 + o(P)) 

= exp (ime + ipe3 - Ye4 + o(e*)) when e-0, (4.9) 

I a(e) I2 = 1 - 4p2(1 - p2) sin4 (e/2), 

and so ) a(0) ) < 1 for 0 < ) 0 ) < rr. The point 0 = 0 is a point of type /3 
with TV = 3, v = 4, and so by Theorem 3, 

11 A” 11 > cnv3-114 = cnw3. 

This estimate was conjectured by H. Stetter [7] on the basis of numerical 
evidence. 

It follows from Lemma 3.5 that 

1 a,.j 1 9 cn--1/s. 

We can also prove: 

(4.10) 

LEMMA 4.2. If  a(0) is defined by (4.9) where p is real and 0 < 1 p 1 < 1, 
then 

1 a,,j I < Cn”l”(j + pn)-2. (4.11) 

Proof. We introduce in the same manner as previously 

a*(e) = e-iae a(e) = exp ($?B3 - ~84 + o(84)) when k-+0, 

and obtain by (2.5) 

a n.j = - 2Tu ” 01n)2 
s 

+ (n - I) aa( a;(e)2j de. 

With 

ii(e) = exp (- ij3e3) aa(e) = exp (- i0c0 - is&+) ~(0) 

= exp (- Y@ + 0(@9) when e-+0, 

exp (im + injk8) dx, 



MAXIMUM-NORM STABLE DIFFERENCE SCHEMES 291 

this can be written 

+ (n - 1) #i-*.,-j(8) 6(0)+2 u,‘(tQ2} de. 

Integrating by parts, and using the facts that for 1 0 1 Q r, 

and that by Lemma 3.4, 

we obtain 

1 u,,jl G c, o’ “‘lnJ2 11 exp (- ~KT~) 
I 

+ j” [l + tll e 13 + ne4 + 73 18 171 exp (- ~ne() de 
d I 

< cw’yj - any, 

which proves the lemma since a = - p. 

Together, (4.10) and (4.11) imply: 

COROLLARY. For the Lax-We&off scheme defined by (4.9) with p real 
undO<IpI<l,wehuwe 

11 A” (I < CNe. 

Proof. We have by (4.10) and (4.11), 

< c-1 ( d’%-1’3 + ?P , j+pg> 6 (I. + pn)-2) 

< C,(n”@ + n2/3n-112) = Cnl/6. 

This improves a result by H. Stetter [7j who has proved that in this case 

11 A” II < ONr. 

Thus the rate of growth of II An 11 is in this case very small from a numerical 
point of view, and it is still true that the solution of the discrete problem 
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converges rapidly to the solution of the continuous counterpart when h -+ 0. 
More precisely, let u E C3 be a solution of (4.1) and assume that u has bounded 
third derivatives (or equivalently, assume that z+,(x) has a bounded third 
derivative), Let v, be the solution of the corresponding discrete problem and 
let T > 0 be fixed. Then 

sup 
x,nhc T  

I U(X, nh) - V,(X) ( < Ch’1’6. (4.12) 

This follows since 

and so with w,(x) = u(x, nh) - v,(x), 

That is 

and so for nh < T, 
n-l 

sup,s j w&x) 1 < C&3 xjl/” < C3n7’6h3 < C,T”6h11’6, 
7 . i=O 

which proves (4.12). 
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