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Abstract 
The paper presents an early-stage research which is aimed towards the development of comprehensive 
conceptual and technological framework for ensemble-based simulation of complex systems. The 
concept of multi-layer ensemble is presented as a background for further development of the 
framework to cover different kind of ensembles: ensemble of system’s state, data ensemble, and 
models ensemble. Formal description of a hybrid model is provided as a core concept for ensemble-
based complex system simulation. The example of water level forecasting application is used to show 
selected ensemble classes covered by the proposed framework. 
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1 Introduction 
Today simulation of complex systems plays an important role in a wide range of problem domains. 

Usually complex systems [1] are characterized by a) a large quantity of elements within it; b) complex 
(long-distance) interaction between elements; c) multi-scale variety. Additionally simulation and 
modeling of the complex systems are often related to the uncertainty of different kind [2]. One of the 
solutions oriented toward the uncertainty management is ensemble-based approach. Today the idea of 
an ensemble is considered in different ways depending on the particular area. Within a field of 
mathematical physics the statistical ensemble describes all the possible states of the system with the 
specified conditions (the concept was introduced by J.W. Gibbs in 1902 and then developed in 
different ways producing various kinds of statistical ensemble classes). Another definition of the 
‘ensemble’ term as a form of Monte Carlo analysis is used within numerical forecasting methods. 
There ensemble is considered as a set of numerical experiments conducted under slightly different 
initial conditions, simulation parameters or random sampling. The most plentiful usage of this 
approach appears within the area of weather and climate prediction (see e.g. works [3], [4]). A 
different approach is used within the field of machine learning where the idea of ensemble is used to 
combine results of different (weak) algorithms (classifiers) to obtain the strong one [5]. All these 
approaches can be considered as a separate mature field of knowledge. Nevertheless during the 
simulation of the complex system it is often required to combine such approaches considering 
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unknown state of the system, uncertain datasets as well as models with limited precision and even 
different nature. Thus the general approaches (both conceptual and technological) are required to be 
developed within a field of simulation of complex and multi-scale systems. 

2 General Statements 
To develop a general-purpose approach to simulate ensemble-based complex systems we need to 

identify the basic operations which are involved into the ensemble management. In order to do this we 
considered a three-layer conceptual framework (see Fig. 1), where layers are related to the investigated 
system (S), data which describes the system (D) and a model to simulate the system’s behavior (M).  

 
Figure 1. Multi-layer ensemble processing 

Each layer includes the main artifacts that are involved into ensemble processing: (a) description 
(parameters) Ξ of a single element related to the corresponding layer (state of the system (S) dataset 
(D) or model (M)); (b) an ensemble {Ξ}, considered as a set of elements, described earlier; (c) 
characteristics φ of the ensemble to assess the evaluated ensemble and make conclusions on the 
ensemble analysis (one of the most important class of the ensemble characteristics is ensemble 
diversity characteristics). 

To process these artifacts we can define a set of operators to represent moving from one artifact to 
another. The selected subset of these operators is described further. Each operator is defined by two 
indices, denoting layer(s) and artifact(s) affected by the operator: ΓL

A. These operators form a cycle 
which is often considered as a basic ensemble analysis procedure within a single layer. 

 Γ*
Ξ-{Ξ} (here and further * denotes any particular layer: S, D, M) defines ensemble creation 

operator. Within the machine learning approach which usually applies ΓD
Ξ-{Ξ} operator (D-

layer) this operator represents diversity creation procedure [6]. Within statistical ensemble 
collection this operator may refer to adding noise to initial data set or collecting various 
stochastic diverse datasets [7]. Within statistical physics approach operator ΓS

Ξ-{Ξ} refers to 
shifting from single state of the system to consideration of an ensemble of possible states. 
Simulation ensemble is created using operator ΓM

Ξ-{Ξ} refers to collecting a set of models 
which can be either the same models with different parameters [4], or different models [8]. 
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 Γ*
{Ξ}-φ defines evaluation of ensemble and identification of the ensemble-based 

characteristics. These characteristics differ depending on the particular task and algorithm of 
ensemble. The operator can be implemented as weighting the ensemble elements, voting for 
elements and identification of distribution of some characteristics over ensemble domain, etc. 

 Γ*
φ-Ξ defines update or identification of the state according to the conclusion inferred after 

ensemble characteristics analysis. E.g. machine learning area defines two main classes of the 
solutions which can be referred by this operator [5]: regression and classification, which 
produce a result by selecting one of the ensemble solutions or by aggregating the ensemble.  

To enhance the basic cycle of these three operators within the proposed multi-layer conceptual 
framework we define additional operators required for the sake of consistency while different 
ensemble-based solutions are considered. 

 One of the most important issues of the simulation process is working with data describing 
the original system. E.g. data assimilation [9] is a popular technique for incorporating this 
data into the working simulation. Within the presented framework the data assimilation 
process is represented by operators ΓS-D

Ξ and ΓS-D
{Ξ} which define updating of the D-layer 

artifacts with the S-layer information (observations as the most obvious variant). Here 
operator ΓS-D

Ξ depicts basic assimilation into the single dataset, while ΓS-D
{Ξ} defining more 

complex patterns (e.g. assimilation of uncertain or partial information of the system). 
 Within the simulation process data and model layers are tightly interconnected as a) the 

models consume and produce the data (operator ΓD-M
Ξ) and b) the modifications of the whole 

models ensemble and data ensemble are performed under mutual influence (operator ΓD-M
{Ξ}).  

 To perform the assessment of the ensemble characteristics (φ) it is required to use artifacts 
from another layer: to analyze data quality (D-layer) it is required to use information about 
possible system state (S-layer), to work with models (M-layer) the analysis of produced data 
is required (D-layer). Thus the operators ΓS-D

φ and ΓD-M
φ were introduced as a representation 

of the corresponding procedures. 
 Finally the goal of the system’s investigation in most cases is identification of the system’s 

state. Thus ensemble characteristics are also used to identify and refine the known state of the 
investigated system. For this purposes the operators ΓD-S

φ-Ξ and ΓM-S
φ-Ξ were introduced. 

The proposed basic framework enables description of different approaches for ensemble-based 
modeling and simulation. E.g. basic multi-model simulation can be described as the following chain of 
operators: ΓD-M

Ξ → ΓM
Ξ-{Ξ} → ΓD-M

{Ξ} → ΓD
{Ξ}-φ → ΓD

φ-Ξ. 
The aim of the presented framework is to organize all the artifacts which are used during complex 

system simulation within the scope of ensemble-based approaches and to form a basic conceptual 
framework to develop further solutions for ensemble-based complex system simulation.  

3 Ensemble-based evolutionary simulation 
Simulation of the complex system is implemented within a wide range of tasks in science and 

engineering with especial interest in area of predictive modeling and simulation. Still the simulation of 
the real-world system is usually related to the following issues (see Fig. 2): 

 In a particular moment of time the system is characterized by an ensemble of states . States 
are different by their probability to exist and are being observed.  

 In general a case probabilistic measure which defines the ensemble )(t  is evolved over 
the time domain. Thus the evolution of the ensemble can’t be considered as ergodic and the 
ensemble characteristics are unable to be assessed using only historical data. 
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 If the model is based on observation then a single trajectory )(tХХ  exists to define the 
complex system’s state with predefined initial and boundary conditions. Wherein the 
trajectory is not the same as the evolution of whole ensemble (the elements 1, 2 and 3 of the 
ensemble on the Fig. 2 have different trajectories of evolution).  

 Observed characteristics of the system )(tYY  can differ from initially simulated trajectory 
)(tХХ  as uncertainty of the simulation process. This uncertainty can be caused by the 

incoming data, empirical simulation parameters, etc. Wherein uncertainty of the incoming 
data can be caused not only by measurement errors, but with the nature of used data sources 
(e.g. in case of other simulation results being used as incoming data). As a result the 
uncertainty growth with the complexity of the simulated system is growing (more 
interconnected elements are simulated).  

 
Figure 2. Ensemble-based evolutionary simulation: 1 – data assimilation, 2 – initial simulated 

trajectory, 3 – trajectory with data assimilation, 4 – ensemble elements, 5 – observations 

Considering the mentioned features the following requirements can be defined for the complex 
system simulation process: a) simulation of the whole ensemble evolution over time instead of single 
elements’ evolution; b) model adaptation according to the actualized observation; c) forecast 
simulation according to the current state of the complex system. To response to these requirements the 
following classes of models are to be joined within the solutions: 

 F-models. Classical continuous models based on natural principles with direct causal 
relationship are the basic building blocks for simulation. Usually these models are responsible 
for the construction of the evolution trajectories )(tХХ . Within the conceptual framework 
presented earlier they are usually described by the operator ΓD-M

Ξ.  
 DD-models. Data processing models (statistical, machine learning, etc.) are used for creation 

and assessment of uncertainty. The DD-models are responsible to processing of data ( Х  as 
well as Y ) diversity and uncertainty. Within the conceptual framework they are usually 
described by the operators ΓD

{Ξ}-φ and ΓD
φ-Ξ. 

 A-models. Evolutionary models (usually heuristics-based) to evolve whole ensemble over 
time )(t  taking into account changing condition. Within the conceptual framework 
they are usually described by the operator ΓD-M

{Ξ}. 

The models’ joining can be formally described in discrete time as a hybrid model (1.1-1.3). Here 
tХ , tY , t  are dynamic values within model phase space denoting forecast simulation trajectory, 

observations and ensemble respectively. ,,  are corresponding transformation operators with 
defined structure and parameters (A,B,C) and uncertainty characteristics ,, . Within the presented 
classification of used models  is usually implemented in F-models,  is implemented by AA 
models, while  can be considered as reflection of some natural process (can be partly implemented 
within DD-models).  

1

1

1
2 2

2

3 3

3

Ω1

Ω2

Ω3X(t)

t

1
2
3
4
5

Towards Ensemble Simulation of Complex Systems Sergey Kovalchuk and Alexander Boukhanovsky

535



 

 

 
.),(

;)(,

;),(,

),(
),(
),(

11

11

11

1

1

1

Zttt

ttYttBt

tttXYttAt

tt

tt

tt

ZFC
GB

YGA

C
YBY
XAX

 
)3.1(
)2.1(
)1.1(

 

As a result of joining (right side) the structure and parameters of the models are identified as 
predefined statistics  (e.g. maximum or minimum value), estimated by applying the evolutionary 
operator  to whole ensemble on the current step. The operator becomes variable and changes 
according to the complex system’s state evolution. Moreover the uncertainty characteristics are also 
related to the structure of the ensemble  and historical data using operators YXY GG ,  (usually 
implemented as DD-models): uncertainty of the simulation takes into account data and observation 
from the previous step (implementing data assimilation). Ensemble structure could also be variable 
according to the influence of external factors tZ , which in turn can be described in form of (1.1-1.3) 
as well combining simulation of several complex system into one. 

The proposed evolution description of an ensemble depicts different variants of ensemble 
modification over time. It can be applied to the proposed conceptual framework (which describes 
interconnection between main concepts regardless of the evolution in time) in different ways. The 
easiest way of such application is assumption that Ω={ΞS}, X=ΞD, Y=ΞS. Still the generalization of the 
conceptual framework enables various implementations of evolutionary equations.  

4 Classification of Ensemble Techniques 
The presented formal description considers the ensemble-based simulation from the point of view 

of complex system evolution. Still the idea of comprehensive conceptual and technological support of 
ensemble-based simulation can be implemented in the following classes of ensemble: 

Class #1 Decomposition ensemble. Structural decomposition of the complex model involved into 
the simulation process can produce a model variation by modification or replacement of its elements. 
From the technological point of view the decomposition can be performed either by modification of 
modules within the application (e.g. encapsulation of external code) or by constructing a composite 
application (e.g. in form of scientific workflows [10]) which extends the basic application. 

Class #2. Alternative models ensemble. Ensemble is constructed by combination of models which 
are semantically identical by their different implementation. Usually the combined models are of the 
same classes (see for example [8]). Nevertheless it is often better to combine the models with 
completely different ways of problem solving [11]. This approach is popular within area of multi-scale 
simulation and surrogate-assisted computing [12]. 

Class #3. Data diversity ensemble. Ensemble constructed using data variation (diversity creation). 
This ensemble is usually based on application of DD-models which controls data variability and 
estimates the characteristics of the ensemble according to the observations and current state of the 
system. The implementation of such ensemble is often related with processing of large data arrays. 
Thus it might be supported with technologies developed in field of BigData [13]. 

Class #4. Parameter diversity ensemble. Ensemble is constructed by variation of initial and 
boundary condition of the system. This class of ensemble describes possible states of the system. 
Within this class the most important procedure is ensemble aggregation and inference of the ensemble 
characteristics to estimate and evaluate the actual system’s state. The implementation of such 
ensemble often requires parameter sweeping which is a well-known issue within workflow area [14]. 

Class #5. Meta-ensemble. This class is based on the idea of building ensemble as a result of re-
organization or additional analysis of ensembles from other classes. E.g. this kind of ensemble can be 
build using principal component analysis [15]. 
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The presented classes cover all three layers of the conceptual framework presented in Section 2: 
M-layer (classes 1, 2, 5), D-layer (class 3), S-layer (class 4). Moreover the presented classes often are 
used in combination to obtain a better result. Within our work we try to develop a comprehensive 
framework (both conceptual and technological) to support the ensemble-based simulation using 
different classes of ensembles. This includes a) development of unified measures and procedures for 
ensemble processing and simulation quality assessment; b) implementation of comprehensive 
technological toolbox (which among others will cover the mentioned technological issues); c) 
development of pattern and practices for multi-layered ensemble-based simulation. 

5 Case study 
To investigate the proposed approaches we have considered the test task of water level forecasting 

in Baltic Sea. The task has significant importance as the quality of its solution influences the 
protection of St. Petersburg from water floods using a complex of dams [16]. Within this task the sea 
is simulated as a complex system on multiple scales, data from various sources are used for decision 
making taking into account diversity and multi-objective nature of the final decision. Additionally this 
application was selected as the area of hydrometeorological simulation has wide background in field 
of ensemble-based simulation [8]. Within this section several ensemble-based solutions are considered 
as an implementation of selected ensemble classes mentioned earlier. 

 
Figure 3. Multi-objective optimization of internal model functional  

a) Pareto fronts; b) average function 

Decomposition ensemble. The ensemble was developed to identify dynamically the functional 
dependency of energy transmitting to the water surface from the wind depending on the wind speed 
(wind drag coefficient). Usually this dependency is defined empirically with linear or piecewise linear 
function which in general depends on particular water area and a set of additional conditions. Within 
our approach we try to evaluate this function using genetic algorithm with multi-objective 
optimization (with minimization of forecast error in a set of observation points – here points GI and 
S1). Fig. 3a shows Pareto fronts for consequent generation of the functions while Fig. 3b shows the 
obtained average drag coefficient function (averaging Pareto optimal variants). From the point of view 
of ensemble-based simulation, a set of drag functions dynamically changing over time can be 
considered as an ensemble of models with variation of internal element (class #1). This approach can 
be further developed to dynamically vary the drag function over space (depending on particular place 
in the sea) and time (depending on particular weather conditions). 

Alternative models ensemble. One of the well-known approaches within ensemble-based 
simulation is combination of alternative models (ensemble class #4). Within the research we use a set 
of 13 alternative models: two software packages (BSM and BALT-P) with different execution 
parameters were used with a set of external meteorological forecasts’ sources, namely GFS, HIRLAM, 
FORCE (also an external level forecast source HIROMB were used as additional alternative model). A 
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simple ensemble aggregation was constructed as dynamically weighted sum of forecasts from 
available sources (weights were estimated by processing historical data to minimize forecast error). 
Evaluation of the ensemble over three months of forecasts shows that usage of different subsets of the 
ensemble gives quite different results. Fig. 4a shows forecasts MAE for different subsets of the 
ensemble: horizontal axis shows the number of models in the subsets, vertical lines connect points 
representing subsets with the same number of models, while thin lines depicts adding (or removing) 
single items into the ensemble. The study shows that there are situations where adding a new model 
into the ensemble makes forecasts’ quality lower (it seems to be explained by a multicollinearity of the 
forecasts’ data for similar models). As a result the full set of the models doesn’t provide better results. 

 
Figure 4. Ensemble forecast error for different model subsets a) alternative models; b) PCs  

Meta-ensemble. To enhance the ensemble described earlier, meta-ensemble was developed which 
applies principal component analysis (PCA) to the ensemble of alternative modes. Performed 
correlation analysis enables the identification of principal components (PC) within a set of forecasts 
and considers them as en ensemble (class #5). The weighted sum of this ensemble shows better results 
than original ensemble (see Fig. 4b). Moreover PCA can be performed a) taking into account variation 
of forecasts’ relationship depending on forecast time; b) with automatic aggregation forecasts of 
different length. Fig. 5 shows sample weights of three alternative sources (two sources provide 
forecast for 48 hours, one – 60 hours) within seven PCs (covering 99% of error variance), defined 
using forecast blocks of 12 hours. All PCs can be divided into four main classes which process both 
similarities and differences in alternative models in an automatic manner. 

The presented ensemble-based approaches allow enhancing quality of the water level forecasting 
comparing to the usage of alternative models (see Fig. 6 for sample forecasts, constructed using 
ensemble-based approach). However the experimental case study shows that the general purpose 
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conceptual and technological framework which is developing within the presented work can be 
successfully applied for dynamic and automatic support of ensemble-based simulation. 

 
Figure 5. Example of principal components’ structure 

 
Figure 6. Ensemble-based water level forecasting using different techniques a) alternative models and 

meta-ensemble; b) decomposition ensemble 

6 Discussion 
Ensemble-based approach is a powerful technique which is widely used in various areas: statistical 

physics, modeling and simulation, machine learning, etc. Each area has individual approaches, 
methods, algorithms and technologies. Nevertheless within the area of complex system simulation all 
these approaches are often combined within a single solution: there can be ensemble of system’s state, 
dataset and model ensembles. All these ensembles evaluating over time, are characterized by 
individual measures of uncertainty and diversity. Moreover the ensembles are interconnected within 
an evolved hierarchy. Thus we believe that in such conditions the comprehensive ensemble framework 
can help to support the development of complex solutions for simulation-based investigation of 
systems. The framework has two levels: conceptual and technological. 

Conceptual level of the framework should be further generalized and include among others the 
following procedures which involve processing of ensembles of different kinds: 
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 Diversity creation and ensemble aggregation, which are widely used within the area of 
machine learning [5] can be extended to the modeling and simulation process as well as to the 
system’s state ensemble processing. 

 Ensemble elements’ uncertainty should be measured in a unified way to allow us to proceed 
with the joint management of the full ensemble stack, and assessment of simulation results’ 
quality. It should take into account varied nature of the uncertainty: due to measurements’ 
errors, stochastic simulation, imperfect knowledge, models’ restrictions, etc. 

 Assimilation procedure is widely used within hydrometeorological applications [9]. 
Nevertheless it can be generalized onto other problem domains (see one of the rare examples 
of this implementation [17]). Moreover such generalization should involve into the 
assimilation process control over the ensembles on different layers (system, data and model) 
with different kinds of diversity and uncertainty. 

 Finally the whole stack of ensembles should be evaluated consistently taking into account the 
specificity of each layer and hybrid modeling procedure with three classes of models. 

Technological level should take into account the conceptual requirement and map them onto the 
simulation platform being used. The platform should support scientific workflows to run F-models as 
well as BigData request processing to run DD-models with required performance (see e.g. [18] as an 
example of these capacities combination). Moreover the technological support of these model classes 
should be extended with high-level ensemble management core which will enable dynamic ensemble 
evolution and modification in an automatic way.  

7 Conclusion and Further Works 
This work presents an early stage of the research aimed towards the development of conceptual 

and technological framework for ensemble-based simulation of complex systems. The main idea 
behind the framework is the work with multi-layer ensemble and support of hybrid models 
incorporating various classes of existing models. Future works include a) further development of 
conceptual basis for ensemble-based simulation of complex systems; b) implementation of 
technological platform supporting the multi-layer ensemble simulation using hybrid models on the 
basis of existing platform CLAVIRE [19]; c) applying the developed solutions to tasks from different 
problem domains (see e.g. [20]). One of the forthcoming applications of the proposed approaches is 
extension of the described sea level forecasting system with urban effects simulation (city flooding 
with issues related to people evacuation, traffic systems, social and psychological factors etc.) which 
significantly complicate the system’s simulation. 
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