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a b s t r a c t

Wire electric discharge machining (WEDM) is a thermo-electric spark erosion non-traditional type
manufacturing process. The applications of WEDM have been found in aerospace and die manufacturing
industries, where precise dimensions were the prime objective. This process is applied in case of pro-
cessing difficult to machine material. Brass wire is used as an electrode and High strength low alloy
(HSLA) steel as a work-piece during experimentation. The present research deals with the effect of
process parameters on the overcut while machining the HSLA steel on WEDM. The mathematical model
has been developed with the help of Response Surface Methodology (RSM). Further this model is pro-
cessed with help of Genetic Algorithm (GA) to find out the optimum machining parameters. The per-
centage error between the predicted and experimental values lies in the range of ±10%, which indicates
that the developed model can be utilized to predict the overcut values. The experimental plan was
executed according to central composite design. The optimal setting of process parameters is pulse on-
time-117 ms; pulse off-time-50 ms; spark gap voltage-49 V; peak current-180 A and wire tension-6 g; for
minimum overcut, whereas at the optimal setting overcut is 9.9922 mm.
© 2014 Karabuk University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Wire electrical discharge machining (WEDM) is a non-
conventional machining process used for hard to cut conductive
material. Wire EDM finds many applications; for instance, in the
manufacturing of various press tools, dies and even electrodes used
in other areas of EDM. Wire EDM is now widely used in the aero-
space, automobile and medical industries, as well as in virtually all
areas of conductive material machining. The mechanism of metal
removal in WEDM constitutes the erosion of material due to spark
discharge between tool electrode and workpiece, immersed in a
liquid dielectric medium. The microprocessor also constantly
maintains the gap between the wire and the workpiece, which
varies from 0.025 to 0.05 mm. Some of the attempts [8e10] have
been discussed by various authors. Pandey and Jilani [14] worked
on the machining characteristics using distilled water, tap water
and a mixture of both. They observed that the best machining rate
was achieved by tap water. William and Rajurkar [22] reported that
a).
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wire electrical discharge machine (WEDM) manufacturers and
users aims to achieve higher machining rate with desired accuracy
and minimum surface damage. The complex and random nature of
the erosion process in WEDM requires the application of deter-
ministic as well as stochastic techniques. Surface roughness profiles
were studied with a stochastic modelling and analysis methodol-
ogy to better understand the process mechanism. With the appli-
cation of scanning electron microscopic (SEM) important features
of WED machined surfaces are found out. Bhatti and Hashmi [2]
found a manipulator for obtaining the intricate and complex
shape with WEDM.

Scott et al. [16] investigated the effects of WEDM process pa-
rameters, particularly the spark cycle time and spark on-time on
thin cross-section cutting of NdeFeeB magnetic material, carbon
bipolar plate, and titanium. In addition, Garg et al. [6] studied the
main effects of pulse on time and pulse off time; the quadratic ef-
fects of pulse on time, peak current, and servo voltage; and the
interaction effect of pulse on time and servo voltage, as well as
pulse on time and pulse off time, have significant effects on
dimensional deviation during the machining of Ti 6e2e4e2 alloy
on WEDM. Takahata and Gianchandani [21] studied the use of
electrode arrays for batch EDM generation of micro-features. Scott
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Fig. 1. WEDM machine tool.
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et al. [15] used a factorial design requiring a number of experiments
to determine the most favourable combination of the WEDM pa-
rameters. They investigated that the discharge current, pulse
duration and pulse frequency is the noteworthy process parameters
affecting the metal removal rate and surface finish, while the wire
speed, wire tension and dielectric flow rate have the least. Khanna
and Singh [19] optimized the process parameters for cryogenic
treated D-3 material for WEDM. They found that cutting rate de-
creases with increase in pulse width, time between two pulses and
servo reference mean voltage. Cutting rate first decreases and then
increases in wire mechanical tension. Sharma et al. [18] made the
mathematical models for cutting speed and dimensional deviation
using response surface methodology. Analysis of variance (ANOVA)
has been utilized for the analysis of significant process parameters.
Pulse on-time found to be the most significant factor for both
response variables. Goswami and Kumar [7] investigated the sur-
face integrity, material removal rate and wirewear ratio of Nimonic
80A using WEDM process. Taguchi Technique has been adopted for
the planning of experiments, while for multi-response optimiza-
tion, Grey Relational theory was utilized. Higher value of pulse off-
time and lower value of pulse-on time is beneficial for a good
surface quality.

Most of the researchers have worked on cutting rate, metal
removal rate, surface finish, electrode wear and dimensional ac-
curacy etc. But a comparatively less work has been reported on the
modelling and analysis of overcut, which is the basic reason of
dimensional deviations. There are three product quality issues like
surface finish, overcut and radial cut. Out of these issues overcut is
considered for the present research work, because overcut cannot
be eliminated as it is inherent to WEDM process, but can be
minimized by a proper selection of process parameters. In the
present work, high strength low alloys steel is considered for
machining on WEDM. The mathematical model has been devel-
oped using RSM and optimization has been carried using Genetic
Algorithm.
Table 1
Control factors, symbols and their ranges.

Control factors Symbol Range (machine units)

Pulse on time Ton (ms) 111e117
Pulse off time Toff (ms) 36e50
Spark gap voltage SV (V) 30e50
Peak current IP (A) 120e180
Wire tension WT (grams) 6e10
2. Experimental set-up

The experiments were performed on Electronica Make Elektra
Sprintcut 734 wire electric discharge machine tool as shown in
Fig. 1. The fixed process parameters are as during experimentation:

� Workpiece: High strength low alloy steel
� Electrode (tool): 250 mm Diameter Brass wire
� Conductivity: 20 mho
� Cutting voltage (V): 80 V
� Die-electric temperature: 35 �C
� Injection pressure set point was at 7 kg/cm2

� Peak voltage (VP): setting 2
� Servo feed: 2050 units

The investigation of significant control factors for WEDM pro-
cess based on the quality of the machining are grouped in various
categories. The control factors, their designated symbols and range
are given in Table 1. The range of all the control factors is selected
for the present study based on the results obtained from pre-
liminary experiments [17]. The material used for experimentation
is High Strength low alloy steel. The chemical composition of ma-
terial is given in Table 2. The overcut (V) is shown as in Fig. 2 and is
calculated as.

OvercutðVÞ ¼ Width of cut� D
2

(1)
3. Experimental methodology

In this optimization of control factors two methodologies are
used, one is Response Surface Methodology and other is Genetic
Algorithm. These two methodologies are explained below.

3.1. Response surface methodology

Response Surface Methodology is a collection of mathematical
and statistical techniques useful for the modelling and analysis of
problems in which a response of interest is influenced by several
variables and the objective is to optimize this response [3]. RSM has
been applied for developing the mathematical models in the form
of multiple regression equations for the quality characteristics of
WEDM process. In applying the response surface methodology, the
dependent parameter was viewed as a surface to which a mathe-
matical model is fitted. For the development of regression equa-
tions related to various quality characteristics of WEDM process,
the second order response surface has been assumed as:

Y ¼ b0 þ
Xk

i¼1

bixi þ
Xk

i¼1

biix
2
i þ

Xk

i< j¼2

biixixj þ er (2)

This assumed surface Y contains linear, squared and cross
product terms of parameters xi's. In order to estimate the regression
coefficients, a number of experimental design techniques are
available. Also no replication is needed to find error mean square.



Table 2
Chemical composition of HSLA.

Element C P S Si Ni Cr Mo Cu Al Cb V Ti Sn Sb Fe

Weight (%) 0.06 0.8 0.06 0.4 1.6 0.62 0.37 1.13 0.01 0.03 0.03 0.02 0.03 0.025 Balance
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The error mean square can be found out by replicating the centre
points. Box and Hunter [4] have proposed that the scheme based on
central composite rotatable design fits the second order response
surface quite accurately. The procedure of methodology is as given
below:

� Pilot experiments are performed.
� Design the input parameters according to preliminary experi-
ments and output quality characteristics according to
requirement.

� Select the experimental design.
� Regression analysis is to be carried out.
� Analysis of variance is to be found out.
� If the model is significant.
� Use the model for optimization in Genetic Algorithm.
� If model is not significant then input parameters screening are
to be carried out and repeat the process from step 3.
3.2. Genetic algorithm

A genetic algorithm (GA) is a procedure used to find the solu-
tions to search problems through application of the principles of
evolutionary biology. Genetic algorithms use biologically inspired
techniques such as genetic inheritance, natural selection, mutation,
and sexual reproduction (recombination, or crossover). Along with
genetic programming (GP), they are one of the main classes of
genetic and evolutionary computation (GEC) methodologies [5].

Genetic algorithms are typically implemented using computer
simulations in which an optimization problem is specified. For this
Fig. 2. Overcut (V).
problem, members of a space of candidate solutions, called in-
dividuals, are represented using abstract representations called
chromosomes. The GA consists of an iterative process that evolves a
working set of individuals called a population toward an objective
function, or fitness function [11]. Traditionally, solutions are rep-
resented using fixed length strings, especially binary strings, but
alternative encodings have been developed. The evolutionary
process of a GA is a highly simplified and stylized simulation of the
biological version. It starts from a population of individuals
randomly generated according to some probability distribution,
usually uniform and updates this population in steps called gen-
erations. Each generation, multiple individuals are randomly
selected from the current population based upon some application
of fitness, bred using crossover, and modified through mutation to
form a new population.

Crossover e exchange of genetic material (substrings) denoting
rules, structural components, features of a machine learning,
search, or optimization problem.

Selection e the application of the fitness criterion to choose
which individuals from a population will go on to reproduce.

Replication e the propagation of individuals from one gener-
ation to the next.

Mutation e the modification of chromosomes for single
individuals.
4. Results and discussion

Experiments were planned according to central composite
design [12] of half fraction. 32 experiments (Table 3) were per-
formed for investigation of overcut. The experiments are/were
performed according to run order given in Table 3 of design matrix.
This run order minimizes the experimental error, as the experi-
ments are performed randomly.

After performing analysis in design expert 6.0, the fit summary
suggests that the model is quadratic, which further defines the
Analysis of Variance (ANOVA). The insignificant terms (i.e. p-
value < 0.05) are removed and after pooling the insignificant term,
pooled version of ANOVA given in Table 4. From the pooled version
of ANOVA, the value of R2 and adjusted R2 is above 95%. This means
that regression model provides an excellent explanation of the
relationship between the independent variables and the response
variable (overcut). The model F-value is 113.87 and p-value is less
than 0.05, which make the model significant. Lack of fit is non-
significant as the p-value observed for lack of fit is 0.5012. R2

define that, how well the future outcomes can be explained by this
model due to all control factors while adjusted R2 explains the
future outcomes only due to significant terms only.

If the difference between predicted R2 and adjusted R2 is greater
than 0.2, it shows that the model is insignificant or the values are
wrongly interpreted. In this research, this difference comes out to
be less than 0.2, which verifies that model is significant. Adequate
precision gives the signal to noise ratio and a value greater than 4 is
desirable [12]. The final equation in terms of actual factors:

Overcut ¼ 2652.29 e 40.92 � Ton � 8.72 � Toff � 3.71 � SV þ 0.83
� IP þ 2.59 � WT þ 0.16 � Ton

2 þ 0.02 � SV2 þ 0.067
� Ton � Toff � 0.011 � Ton � IP þ 0.017 � Toff
� SV þ 7.395E-003 � SV � IP � 0.043 � SV � WT (3)
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Table 3
Design matrix.

Std Run A: Ton
(ms)

B: Toff
(ms)

C: SV
(V)

D: IP
(A)

E:WT
(g)

Overcut
(mm)

24 1 114 43 40 210 8 15
3 2 111 50 30 120 6 31
12 3 117 50 30 180 6 17
19 4 114 29 40 150 8 25.5
29 5 114 43 40 150 8 21
6 6 117 36 50 120 10 16
8 7 117 50 50 120 6 12
23 8 114 43 40 90 8 28
20 9 114 57 40 150 8 18
31 10 114 43 40 150 8 21.5
7 11 111 50 50 120 10 19.5
14 12 117 36 50 180 6 11
27 13 114 43 40 150 8 19.5
5 14 111 36 50 120 6 24.5
1 15 111 36 30 120 10 49.5
16 16 117 50 50 180 10 11.5
13 17 111 36 50 180 10 26
28 18 114 43 40 150 8 23.5
26 19 114 43 40 150 12 27
9 20 111 36 30 180 6 35.5
11 21 111 50 30 180 10 29.5
30 22 114 43 40 150 8 22
22 23 114 43 60 150 8 14
21 24 114 43 20 150 8 44.5
10 25 117 36 30 180 10 26
25 26 114 43 40 150 4 18.5
4 27 117 50 30 120 10 33
18 28 120 43 40 150 8 20.5
2 29 117 36 30 120 6 34.5
15 30 111 50 50 180 6 19
17 31 108 43 40 150 8 35.5
32 32 114 43 40 150 8 21
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Fig. 3 shows the normal plot of residuals, which gives that all the
residuals fall on a straight line. The first test of a good model is
verified by this, which is known as Normality test or Normal
probability plot of residual. Fig. 4 gives the residual vs predicted
plot, which means that residuals are randomly distributed and
make no structure. For a good test the residuals must be struc-
tureless. This shows that the models proposed are adequate and
there is no reason to suspect any violation of the independence or
constant variance assumption [1,13].
Table 4
Pooled ANOVA after pooling insignificant terms.

Analysis of variance table [partial sum of squares]

Source SS DF MS F-value Prob > F

Model 10,164.88 12 847.07 113.87 <0.0001 Significant
A-Ton 1785.38 1 1785.38 240.01 <0.0001 Significant
B-Toff 715.04 1 715.04 96.12 <0.0001 Significant
C-SV 5251.04 1 5251.04 705.9 <0.0001 Significant
D-IP 828.38 1 828.38 111.36 <0.0001 Significant
E-WT 315.38 1 315.38 42.4 <0.0001 Significant
Ton
2 272.01 1 272.01 36.57 <0.0001 Significant

SV 2 396.34 1 396.34 53.28 <0.0001 Significant
Ton � Toff 126.56 1 126.56 17.01 0.0006 Significant
Ton � IP 60.06 1 60.06 8.07 0.0104 Significant
Toff � SV 95.06 1 95.06 12.78 0.002 Significant
SV � IP 315.06 1 315.06 42.35 <0.0001 Significant
SV � WT 45.56 1 45.56 6.13 0.0229 Significant
Residual 141.34 19 7.44 Significant
Lack of fit 106.5 14 7.61 1.09 0.5012 Not significant
Pure error 34.83 5 6.97
Cor total 10,306.22 31
Std. dev. 2.73 R-squared 0.9863
Mean 298.16 Adj R-squared 0.9776
C.V. 0.91 Pred R-squared 0.957
PRESS 443.17 Adeq precision 43.91
Fig. 5(a)e(e) gives the interaction plot of process parameters.
Fig. 5(a) shows the interaction plot of Ton and Toff. Overcut observed
to be decreased with increase of Toff. This is due to the fact that
overcut depends on the discharge energy, when Toff increases the
time for which current is off increases which decreases the
discharge energy and hence the overcut decreases. With the in-
crease of Ton, overcut decreases. The probable reason for decrease in
overcut may be evenly distribution of the spark. Fig. 5(b) shows the
interaction plot of Ton and IP. The variation of Ton is already cited in
the previous text. With the increase of IP, overcut observed to be
2
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Fig. 5. Interaction plots (a) Ton and Toff (b) Ton and IP (c) SV and Toff (d) IP and SV (e) WT and SV.
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slightly decreased. The main reason behind this is that with the
increase in peak current the discharge will be more, which results
into the higher debris. These debris deposited on to the work-piece
and result unwanted spark. This causes the tool material erosion,
which result into less material removal and hence overcut de-
creases [20]. Fig. 5(c) gives the variation of Toff and SV along with
the overcut. With the increase of SV, the overcut decreases due to
decrease in the discharge energy. Fig. 5(d) shows the three



Fig. 6. Flow-chart of genetic algorithm.
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dimensional interaction plots of SV and IP with overcut. The
explanation of both parameters in lieu of overcut is given in the
previous text. In Fig. 5(e) Overcut increases with increase in theWT.
This is due to the fact that with increase in WT, the deflections of
wire removed and it become straight. Due to which generated
sparks removes the material and increases the overcut.

5. Optimization of overcut through genetic algorithm

The final equation (2) further utilized in genetic programming.
The procedure of optimization through genetic algorithm (GA) is
shown by a flow chart in Fig. 6. The lower and upper bound of
control factors are given in Equations (4)e(8) and when the
objective function is optimized for the best value of overcut then
there are different values of selection, mutation and crossover.

111 � Ton � 117 (4)

36 � Toff � 50 (5)

30 � SV � 50 (6)
Fig. 7. Best fit
120 � IP � 180 (7)

6 � WT � 10 (8)

After a thorough investigation of selection, cross-over fraction,
mutation, cross-over and migration. It is envisaged that the opti-
mized setting of genetic tool is that the Selection is remainder.
Cross-over fraction is 0.8. Mutation is uniform and ratio is 0.2.
Cross-over is heuristic and ratio is 1.4. Migration is forward. At this
optimized setting the best fitness and best range between indi-
vidual plot are shown in Figs. 7 and 8. As seen in the Fig. 7, value of
the mean fitness decreases with increasing number of iteration.
Function tolerance was found after 51 iteration number. The ranges
of these 51 iterations are given in Fig. 8.

6. Conclusion

The different experiments were conducted on WED-machine
tool using brass wire as electrode. Experiments were performed
at different settings of control factors. The best individual settings
are given in Table 5. Main contribution of the study is to the
test plot.



Fig. 8. Ranges of individuals.

Table 5
Best individual for minimum overcut.

Control factors Symbol Value

Pulse on time Ton (ms) 117
Pulse off time Toff (ms) 50
Spark gap voltage SV (V) 49
Peak current IP (A) 180
Wire tension WT (grams) 6
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minimum overcut (i.e. 9.9922 mm) and to find out optimizing
setting using an amalgamation of RSM and GA. RSM and GA
approach provide a systematic and effective methodology for the
modelling and the optimization. The RSM based overcut model can
be optimized using a genetic algorithm in order to find the opti-
mum values of control factors. The given model can be utilized to
select the level of control factors. Further multi quality character-
istics can be optimized by artificial intelligence technique like ge-
netic algorithm. It is also concluded from the ANOVA that themodel
is significant and reproducibility of the results are good with the
value of R2 as 0.9863.
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