
NORTH- HOLLAND

Fast Rectangular Matrix Multiplication and QR Decomposition

Philip A. Knight*

Department of Mathematics
University of Strathclyde
Richmond Street
Glasgow
Gl IXH, U.K.

Submitted by Richard A. Brualdi

ABSTRACT

In the last twenty-five years there has been much research into “fast” ma-
trix multiplication methods: ones that have an asymptotically smaller opera-
tion count than conventional multiplication. Most fast methods are derived for
square matrices, but they can be applied to rectangular matrices by a blocking
technique. We obtain an expression for the order of the operation count for
this blocked multiplication of rectangular matrices. We derive an exact opera-
tion count for Strassen’s method with rectangular matrices and determine the
recursion threshold that minimizes the operation count. We also show that when
Strassen’s method is used to multiply rectangular matrices it is more efficient
to use the method on the whole product than to apply the method to square
submatrices. Fast multiplication methods can be exploited in calculating a QR
decomposition of an m x n matrix. We show that the operation count can be
reduced from O(mn2) to 0(mn1+(1’(4-a))) by using a fast multiplication method
with exponent cx in conjunction with Bischof and Van Loan’s WY representation
of a product of Householder transformations.

*E-mail: P . A. Knightmstrath. ac . uk. Supported by an SERC research studentship.

LINEAR ALGEBRA AND ITS APPLICATIONS 221:69-81 (1995)

@ Elsevier Science Inc.. 1995 0024-3795/95/$9.50
655 Avenue of the Americas, New York, NY 10010 SSDI 0024-3795(93)00230-W

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82614636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

70 PHILIP A. KNIGHT

1. INTRODUCTION

In the past twenty-five years a number of algorithms have been de-
veloped that theoretically improve on the standard time needed for ma
trix multiplication, usually by reducing the exponent of the number of
operations needed. (Throughout this paper an operation represents any
one of the scalar operations +, -, x, and -+.) One of the first published
achievements in the field, and the most significant result in fast matrix
multiplication, was the discovery by Strassen in 1969 [19] of a method for
generating the product of two n x n matrices in O(n‘+‘) operations, where
w = logs 7 M 2.807. This is the most widely used method, in current ap-
plications, of those that reduce the exponent of the number of operations
in matrix multiplication and is generally regarded as the only one that
gives any useful improvements in practical computation [2, 111, but recent
work by Laderman, Pan, and Sha [13] provides a new approach that could
produce further speedups for modestly sized matrices. We devote a later
section to an analysis of Strassen’s algorithm.

Further improvements to the exponent have been achieved using bilinear
and trilinear algorithms. With these one can show (see, e.g., [14]) that
if there is a method for computing AB (where A is an m x n matrix
and B is n x p) in K multiplications, then for all choices of r there is
an algorithm for computing the product of two T x T matrices in fewer
than Cr” multiplications, where C is a constant independent of r and
w = 3 log,,, K. Strassen’s method is an example of this result when
m = n = p = 2 and K = 7, as we shall see later. Pan was the first person
to employ this method successfully, and in 1978 he reduced the exponent to
2.795. This was achieved by analyzing a method that can multiply together
two n x n matrices using in3 + 6n2 - $n multiplications. In particular,
one can multiply together two 70 x 70 matrices in 143,640 multiplications,
and this gives us the exponent for Pan’s method.

Other techniques that can be used to reduce the exponent include bi-
linear X-algorithms, where methods that evaluate part of the product of
rectangular matrices can be used to calculate the product of square matri-
ces efficiently, as well as generalized tensor products [14]. The minimum
exponent so far discovered is 2.376 by Coppersmith and Winograd [9], al-
though the authors express optimism that the theoretical minimum of 2
can be attained.

Results on the computational complexity of fast matrix multiplica-
tion methods are usually given only for square matrices, but in this pa-
per we give a result which shows the connection between the order of a
method for square and rectangular matrices. We also derive exact expres-

FAST MATRIX MULTIPLICATION 71

sions for the operation counts for rectangular matrix multiplications with
Strassen’s method.

In 1973, Schonhage [15, 161 gave algorithms that exploit fast matrix
multiplication methods to reduce the asymptotic order of the QR decompo-
sition of a matrix, but as these require explicit formation of the orthogonal
matrix Q, any possible benefits from reducing the exponent are swamped
by the number of extra operations that must be performed [12]. In this pa-
per we consider a blocked form of QR decomposition developed by Bischof
and Van Loan [4] in which fast matrix multiplication can be exploited.
Using our results for rectangular multiplication, we show that the order
of operations for the method can be reduced through careful choice of the
block size.

2. FAST MATRIX MULTIPLICATION

2.1. Rectangular Matrices

The “speed” of a fast technique is usually measured by the order of the
operation count for the multiplication of two n x n matrices (theoretically,
a method with a smaller order will be faster asymptotically, i.e., for suffi-
ciently large dimension n). It is straightforward to evaluate the algebraic
complexity of rectangular matrix multiplication from this value, but this
does not seem to have been noted before in the literature. Suppose that the
method can perform the multiplication of two n x n matrices using O(na)
operations, where 2 < (1~ < 3. If A and B are m x n and n x p matrices re-
spectively, then the product AB can be formed in O(ny-2n2na) operations,
where ni = min(m, n,p) and n2, ns are the other two dimensions.

To see this, consider the case when m is the smallest dimension of A
and B, and suppose n = jm and p = km for some integers j and k. Then
the multiplication can be split into m x m blocks:

AB = (Al A2 . Aj)
f

Bll ... B11,

which involves a total of jk multiplications of m x m matrices, each involv-
ing O(ma) operations. Thus the total number of operations is O(jkm”)
or 0(mae2 np), as required, and we can show similar results for the cases
when n and p are the smallest dimensions. The figure of O(ny-2nzns) is
optimal for this scheme of splitting the multiplication, and it appears to
be optimal over all splittings.

72 PHILIP A. KNIGHT

2.2. Strassen’s Method

Strassen originally derived his algorithm for square matrix multiplica-
tion, but it is not difficult to generalize to the rectangular case, and this
was first done by Brent [7]. C onsider the product C of two matrices A and
B that have dimensions 2”’ x 2” and 2n x 2P respectively. We can partition
A, B, and C into four equally sized blocks

and then Strassen’s method can be written accordingly:

8 = C-411 + A22)(&1 + B22), P2 = (A21 + &2)&l,
P3 = All(Bl2 - B22)r p4 = A22(B21 - Bll),
p5 = (All + Al2P22, p6 = (-421 - All)(&l + B12),

PT = (A12 - A22)(B21 + B22),

Cl1 = PI + P4 - P5 + Py, Cl2 =P3+P5,

c21 =P2+P4, C22=Pl+P3-P2+P&

Since the blocks Aij, Bij are matrices whose dimensions are powers of
2, we can compute the products PI,. . . , P7 using the same algorithm, and
we can carry on the recursion until one of the dimensions of the blocks to
be multiplied is 1. Alternatively, we can carry on the recursion to a certain
level and then form the remaining products using conventional multiplica-
tion. We are not restricted to using Strassen’s algorithm for matrices whose
dimensions are a power of 2, and we can modify the method in a number
of ways to cope with any odd dimensions that are encountered [ll].

Winograd derived a variation of the formula that uses 15 matrix addi-
tions at each level of recursion rather than 18 [6]. However, this method
has a weaker error bound (31, and so we shall not consider this variant
any further.

A question remains as to the technique that should be used when
multiplying rectangular matrices. For example, when we use Strassen’s
method we can divide the problem into square matrix multiplications, as
we illustrated in Section 2.1, or we can use the algorithm on the whole
system and recur with rectangular matrices until the smallest dimension
involved reaches the threshold. Before we address this question, we derive
expressions for the operation count for Strassen’s algorithm with rectangu-
lar matrices.

FAST MATRIX MULTIPLICATION 73

2.3. Operation Counts for Strassen’s Method

From Section 2.1 we know the order of the operation count for multi-
plying an m x n and n x p matrix together by Strassen’s method. It is
also known [ll] that to multiply two square matrices of dimension 2k using
Strassen’s method requires

7”-‘(2 x 8’ + 5 x 4T) - 6 x 4k

operations, where 2’ is the threshold such that conventional multiplication
is used when matrices of dimension I 2” are involved (the cutoff point).

We now extend this result to obtain the number of operations involved
in the multiplication of rectangular matrices. Upper bounds have been
given for this previously [18], but here we give an exact figure. Suppose
we have matrices of dimensions 2m x 2n and 2n x 2P. Let 2m = a2j, 2” =
b2j, 2P = c2j, where j = min(m, n,p) (so a, b, c 2 1 and at least one of
a, b,c is equal to 1). Let SR(M,N, P) d enote the number of operations
involved in using Strassen’s method to multiply matrices of dimensions
M x N and N x P, where R is the cutoff point [i.e., we stop recursion
when min(M, N, P) I R]. Also, let A(M, N) be the number of operations
involved in adding together two M x N matrices [therefore A(M, N) =
MN]. Then, by considering the formulae for Strassen’s method in Section
2.2 we get the recurrence relation

= 7Ss’.(a29, b2j,c2j) + 5A(a23, b2j) + 5A(b2j,c2j) + 8A(a2j,c2j)

= 7Sp(a2j, b2j, c2j) + (5ab + 5bc + 8ac)4j.

This implies that we can write Ssr(a2j, b2j, c2j) in the form cu7j + p4j.
Substituting this into the above expression, we have

a7j+i + p4j+’ = 70!7j + 7p4j + (5ab + 5bc + 8ac)4j,

from which we find that

p = -$(5ab + 5bc + 8ac).

We also know that

S27.(a2T, b2T, ~2’) = 2abc8’ - ac4T,

because at this stage we use conventional multiplication, and from this we
deduce

Q = 2abc($)T + $(ab + bc + ac)($)‘.

74 PHILIP A. KNIGHT

TABLE 1. VALUE OF cx VERSUS RECURSION THRESHOLD

r Case 1: b > l,c > 1 Case 2: b = 1,c > 1
0 $lbc + 5(b + c)] $(16c + 5)
1 & [68bc + 20(b + c)] & (88c + 20)
2 & [464bc + 80(b + c)] & (544~ + 80)
3 & [3392bc + 320(b + c)] & (3712~ + 320)
4 & [25856bc + 1280(b + c)] &(27136c + 1280)

Note that Q is symmetric in a, b, c. To minimize the number of operations
involved with Strassen’s method we should minimize CY by choosing the
appropriate positive integer value for r (assuming j is large enough to
make the ,B term negligible). We know that at least one of a, b, c equals 1,
and since cy is symmetric, we can assume a = 1 without loss of generality.
We also see that there is no reason why we should assume that b and c are
powers of 2. If we stop recursion when the smallest dimension reaches a
certain threshold, then the only condition that b and c need satisfy is that
they are positive integers. There are now three cases to consider.

Case 1: b > l,c > 1. Since b and c are greater than 1 and are
integers, we know that b, c > 2. We see from Table 1 that we shall minimize
a by choosing either r = 2 or r = 3. If r = 2 then

a2 = Gbc + +(b + c) M 3.16bc + 0.54(6 + c),

whereas if we choose r = 3 then

a3 = f$$bc + $$$(b + c) z 3.30bc + 0.31(b + c).

Clearly, as b and c get larger, the term multiplying bc will dominate, but
we can find small values for b and c for which (~3 < ~2. This will occur if

f$$$bc+ff$(b+c) < $$bc+ $(b+c),

which simplifies to
5c

b<---
3c-5’

and this inequality is true if and only if c = 2, b 5 9; c = 3, b < 3; or 4 5
c I 9, b = 2.

Case 2: b = 1, c > 1. Here only c remains, and to minimize LY we

FAST MATRIX MULTIPLICATION 75

0.8 -

0.6 -

0
0 2 4 6 8 10 12 14 16 18 20

Matrix dimension (log_2)

FIG. 1. A comparision of operation counts for matrix multiplication

see from Table 1 that we need to pick r = 3, for which

3712 320
a=imc+iim M 3.61~ + 0.31.

Case 3: b = 1, c = 1. Here we have the special case of multiplication
of square matrices, and we can use

S2’.(2k, 2”, 2”) = 7”-‘(2 x 8’ + 5 x 4’) - 6 x 4”.

By examining this formula we find that it is minimized by letting r = 3
(agreeing with [ll]), which gives (Y = 192/49 E 3.92. Figure 1 compares
operation counts for n x n matrices using conventional multiplication and
using Strassen’s method for a variety of cutoff points 2T.

In summary, for the multiplication of matrices whose dimensions are
m x n and n x p with m = a2j, n = b2J, p = c2j we have

S&(m, n,p) = a7j + P4j,
(u = 2abc(f)‘+ $(ab+bc+ac)(+)‘,

p = -+(5ab + 5bc + 8ac).

The values of r that minimize LY are given in the three cases above. If we

76 PHILIP A. KNIGHT

let r = 0 and let a = 1, we find that

(r7j = [2bc+ @+bc+c)]7j

= O(m”-2np),

where w = log, 7, so we recover the result from Section 2.1.
In practice we may have to perform extra operations that we have not

considered here. For example, when coding Strassen’s algorithm in MATLAB

we found we used more operations when calculating the indices of the
submatrices during recursion. These extra operations can be incorporated
into our recurrence relation, but we have not done this here, as they depend
on the programming language used.

We are now in a position to answer the question we posed at the end of
the last section, namely: What technique should we use when multiplying
together two rectangular matrices. ? Consider the case when we have matri-
ces with dimensions 2”, 2n, and 2p, and suppose m < n, p. If we choose to
split the problem into square matrix multiplications, then the total number
of operations (to highest order terms) will be at least

3.92 x 7m2n+P-2m,

since we must perform 2n+p-2m multiplications of 2m x 2m matrices, whilst
if we choose to carry out our recursion using rectangular blocks, we can
carry out our task in

3.16 x 2n+p-2m7m + 0.54(2”-” + 2P-m)7m

operations (by picking r = 2 in case 1). As n-m and p-m increase, the first
term of this expression becomes dominant and we see that asymptotically
we can reduce the number of operations in the multiplication by [100(3.92-
3.16)/3.92]% = 207 f o i we work with rectangular blocks.

To conclude this section we review some of the performance results that
have been published for Strassen’s method. Bailey et al. [2] mention that
for some modern workstations (e.g., Sun-4 and Silicon Graphics IRIS 4D)
Strassen’s method is faster than conventional multiplication for 16 x 16
matrices, which we see from Figure 1 is the smallest possible size that
can offer improvements in the operation count; but for most machines it
is necessary to use larger matrices before performance improvements can
be seen. For example, Brent [7] managed to reduce the time involved for
conventional multiplication of 110 x 110 matrices by using an Algol-W
version of Strassen’s method with just one level of recursion on an IBM
360167, but he achieved bigger speedups for matrices whose dimensions

FAST MATRIX MULTIPLICATION 77

were less than 300 by using a method developed by Winograd [20]. Bailey
[l] has achieved speedups of 45% for 128 x 128 matrices using a recursion
threshold of 127 on a Cray-2, whereas the optimum operation count (using a
threshold of 8) is only 25% less than that for conventional multiplication-
35% of this speedup comes from Gay-specific techniques. Bjorstad et al. [5]
have parallelized Strassen’s method on the MasPar MP-1 and have achieved
impressive speedups over conventional parallel block techniques using a
recursion threshold of 128. These last three examples illustrate the fact
that on most machines overheads from sources such as data transfer mean
that we are unlikely to optimize the time needed to multiply matrices by
minimizing the number of operations involved.

An important application of matrix multiplication is in the level 3
BLAS, a set of matrix-matrix linear algebra operations. Higham [ll] has
shown how Strassen’s method can be used to produce level 3 BLAS routines
whose operation counts have smaller exponents than for the conventional
methods. In the rest of this paper we consider ways of exploiting fast
matrix multiplication techniques to develop fast methods for orthogonal
decomposition.

3. FAST BLOCK QR DECOMPOSITION

3.1. Block QR Decomposition

Bischof and Van Loan [4] have developed a method for computing the
QR decomposition of a matrix based on a new way to represent products
of Householder matrices. This representation leads to an algorithm that is
rich in level 3 BLAS operations, which makes it ideal to use in combination
with fast matrix multiplication techniques. We will show that by choosing
the appropriate block size for the particular multiplication method used,
a new algorithm can be produced that has a lower order operation count
than standard QR decomposition techniques.

The key to Bischof and Van Loan’s method is the so-called WY repre-
sentation for the product of Householder matrices. This gives an expression
for the product of k Householder matrices of the form I - 2uiuT/(uFui)
(u, E R” is a nonzero vector) that can be written as Qk = 1 + wkYkT,
where wk and Yk are both m x k matrices of rank k. The WY form clearly
exists for the case k = 1, since we can choose

W1=-2”’
upL1’

Yl = Ul,

78 PHILIP A. KNIGHT

and we can show by induction that

Thus the WY block QR algorithm for decomposing an m x n matrix in no
stages with block size p can be written as follows (assuming no, p E Z and
nap = n):

fork--l: no
s = (h - l)p + 1
Use standard QR decomposition to upper-triangularize
A(s:m,s:s+p- 1)
and to generate Householder vectors ug,. . . , ‘zL,+~_~
Y =z&, w = -2?4(?$4
forj=s+l:s+p-1

z = -2(I -t WY~)~~/~~~~~~, Y = [Y 7Lj], w = [IV Z]
end
A(s:m,s+p:n) = (I+ WYT)TA(s:m,s+p:n) (#)

end

It is with this final stage (#) that fast matrix multiplication techniques
can be exploited.

The WY method has been developed further through a compact rep-
resentation 1171 that reduces the amount of storage space needed for the
Householder factors. We do not consider this algorithm here, because our
aim is to try to minimize operation counts for the QR decomposition.
Studying the effect of the different factors on the operation count, we find
that the algebraic complexity of the compact method will be the same as for
the noncompact one, but the number of operations involved will be bigger.

3.2. A Fast Method
Suppose we wish to compute the decomposition of an m x n matrix

A (m 2 n), using the block method in no stages with block size p =
n/no E 2, and suppose also that we can multiply two IV x N matrices
in O(P) operations. We assume for convenience that both m/p and n/p
are integers. This makes the calculations neater, and it does not affect
the final result, because if p is not a factor of m or n, we can simply pad
the matrix with zeros until it is, and this will not change the order of the
operation count of the algorithm. At each stage k = 1,2,. . . ,120 - 1 we
must compute the factors W and Y and apply them to a block A# of the
current decomposition of A. This is achieved by forming the product

(I + WYT)TA# = A# + YWTA#.

FAST MATRIX MULTIPLICATION 79

At stage k, W and Y are [m- (k - 1) n/no] x n/no matrices, while A# is
an [m--(&l) n/no] x(n-k n no matrix. Thus, using our fast technique, /)
the first multiplication, A41 = WTA#, requires 0(n~-2nzn3) operations,
where n1 = n/no, ns = n - kn/no, and ns = m - (k - l)n/nc (see Section
2.1), as does the second multiplication M2 = YM1. This means that at
each stage k = 1,2,. . , no - 1 we have approximately

n
C- (>(720

cI F+l-k)(no-k)

operations, for some constant c.
Summing over k and considering only the highest order terms, we obtain

a figure of
c
-n
2

+$a cm _ 5)

operations (a detailed derivation is given in [12]).
The generation of W and Y needs a total of (4mn’ - 2n3)/nc scalar op-

erations [4]. Thus, in total, we have approximately

a-1$a + 2””

n0)

operations.
Now suppose no = np for some /3 E [0, l]; then

2 = m :na-1+3@pafl + 41L2_P) _ n(ina-l+30-a@ + ~~2-8).
(

To minimize the order of 2 we require p* such that

giving us

@*=l-A.

For example, when n = 1000 and (Y = log, 7 (i.e., for Strassen’s method),
P* M 0.162, and therefore in this particular case the number of stages that
minimizes the order of the method is no = 71 4’ z 3, and the optimum block
size p z 330. Now,

z-/3*=1+-&

so the number of operations involved in the computation is, at best,

C1n1+w(4--a))(m - c2n) (3.1)

80 PHILIP A. KNIGHT

for certain constants cl and cz. For example, by replacing conventional
multiplication with Strassen’s method we can reduce the complexity of the
calculation from 0(mn2) to 0(mn1,s38).

Conventional QR decomposition, using Householder rotations, requires
2n2(m - n/3) operations. With the fast methods currently available the
constant cl in (3.1) is always considerably bigger than 2; hence for the
new method to be faster than normal (purely in terms of the number of
operations), a large matrix must be factorized. This is tempered to some
extent by a number of considerations. The optimum block size, in terms of
algebraic complexity, does not minimize the number of operations required
by block QR decomposition until the matrices involved are enormous (see
[12] for details). The consequence of this is that we can improve on the
operation count in the case of smaller matrices by choosing a block size
according to different criteria. For example, we could look at some specific
matrices and from these choose the ratio of block size to matrix dimension
that approximately optimizes the operation count emprically. Secondly,
the factored form of the orthogonal matrix Q is in block form too. This
can be exploited to achieve further potential speedups by using the fast
multiplication techniques when forming products of blocks in the solution
of least squares problems. A further source of possible improvement is that
the block nature of the algorithm could be exploited in parallelizing the
method, as it can when conventional multiplication is used [4, 51.

I thank Nick Higham for his guidance during my research and his advice
during the production of this document, and the referee for helpful sugges-
tions on improvements.

REFERENCES

1 D. H. Bailey, Extra high speed matrix multiplication on the Cray-2, SIAM
J. Sci. Statist. Comput. 9:603-607 (1988).

2 D. H. Bailey, K. Lee, and H. D. Simon, Using Strassen’s algorithm to accel-
erate the solution of linear systems, J. Supercomputing 4:357-371 (1991).

3 D. Bini and D. Lotti, Stability of fast algorithms for matrix multiplication,
Numer. Math. 36:63-72 (1980).

4 C. Bischof and C. F. Van Loan, The WY representation for products of
Householder matrices, SIAM J. Sci. Statist. Comput. 8:s2-~13 (1987).

5 P. Bjorstad, F. Manne, T. Sorevik, and M. VajterSic, Efficient matrix mul-
tiplication on SIMD computers, SIAM J. Matrix Anal. Appl. 13:386-401
(1992).

FAST MATRIX MULTIPLICATION 81

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

G. Brassard and P. Bratley, Algorithm&: Theory and Practice, Prentice-
Hall, Englewood Cliffs, N.J., 1988.
R. P. Brent, Algorithms for Matrix Multiplication, Technical Report CS 157,
Computer Science Dept., Stanford Univ. 1970.
R. P. Brent, Error analysis of algorithms for matrix multiplication and tri-
angular decomposition using Winograd’s identity, Namer. Math. 16:145-156
(1970).
D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic pro-
gression, in 19th Annual ACM Symposium on Theory of Computing, pp. l-6,
1987.
G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., Johns
Hopkins U.P., 1989.
N. J. Higham, Exploiting fast matrix multiplication within the level 3 BLAS,
ACM Trans. Math. Software, 16:352-368 (1990).
P. A. Knight, Exploiting Fast Matrix Multiplication, M.Sc. Thesis, Univ. of
Manchester, 1990.
J. Laderman, V. Y. Pan, and Xuan-He Sha, On practical algorithms for accel-
erated matrix multiplication, Linear Algebra Appl. 162-164:557-588 (1992).
V. Y. Pan, How can we speed up matrix multiplication? SIAM Rev. 26:393-
415 (1984).
A. Schonhage, Unitire Transformationen grosser Matrizen, Numer. Math.
20 (1973).
A. Schonhage, Fast Schmidt orthogonalization and unitary transformations
of large matrices, in Complexity of Sequential and Parallel Numerical Algo-
rithms (J. F. Traub, Ed.), Academic, 1973, pp. 283-291.
R. Schreiber and C. F. Van Loan, A storage-efficient WY representation
for products of Householder transformations, SIAM J. Sci. Statist. Comput.
10:53-57 (1989).
J. Spiess, Untersuchungen des Zeitgewinns durch neue Algorithmen zur
Matrix-Multiplikation, Computing, 17:23-36 (1976).
V. Strassen, Gaussian elimination is not optimal, Numer. Math. 13:354-356
(1969).
S. Winograd, A new algorithm for inner product, IEEE 7kans. Comput.
C-17:693-694 (1968).

Received 24 August 1992; final manuscript accepted 23 November 1992

