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ABSTRACT 

In the last twenty-five years there has been much research into “fast” ma- 
trix multiplication methods: ones that have an asymptotically smaller opera- 
tion count than conventional multiplication. Most fast methods are derived for 
square matrices, but they can be applied to rectangular matrices by a blocking 
technique. We obtain an expression for the order of the operation count for 
this blocked multiplication of rectangular matrices. We derive an exact opera- 
tion count for Strassen’s method with rectangular matrices and determine the 
recursion threshold that minimizes the operation count. We also show that when 
Strassen’s method is used to multiply rectangular matrices it is more efficient 
to use the method on the whole product than to apply the method to square 
submatrices. Fast multiplication methods can be exploited in calculating a QR 
decomposition of an m x n matrix. We show that the operation count can be 
reduced from O(mn2) to 0(mn1+(1’(4-a))) by using a fast multiplication method 
with exponent cx in conjunction with Bischof and Van Loan’s WY representation 
of a product of Householder transformations. 
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1. INTRODUCTION 

In the past twenty-five years a number of algorithms have been de- 
veloped that theoretically improve on the standard time needed for ma 
trix multiplication, usually by reducing the exponent of the number of 
operations needed. (Throughout this paper an operation represents any 
one of the scalar operations +, -, x, and -+.) One of the first published 
achievements in the field, and the most significant result in fast matrix 
multiplication, was the discovery by Strassen in 1969 [19] of a method for 
generating the product of two n x n matrices in O(n‘+‘) operations, where 
w = logs 7 M 2.807. This is the most widely used method, in current ap- 
plications, of those that reduce the exponent of the number of operations 
in matrix multiplication and is generally regarded as the only one that 
gives any useful improvements in practical computation [2, 111, but recent 
work by Laderman, Pan, and Sha [13] provides a new approach that could 
produce further speedups for modestly sized matrices. We devote a later 
section to an analysis of Strassen’s algorithm. 

Further improvements to the exponent have been achieved using bilinear 
and trilinear algorithms. With these one can show (see, e.g., [14]) that 
if there is a method for computing AB (where A is an m x n matrix 
and B is n x p) in K multiplications, then for all choices of r there is 
an algorithm for computing the product of two T x T matrices in fewer 
than Cr” multiplications, where C is a constant independent of r and 
w = 3 log,,, K. Strassen’s method is an example of this result when 
m = n = p = 2 and K = 7, as we shall see later. Pan was the first person 
to employ this method successfully, and in 1978 he reduced the exponent to 
2.795. This was achieved by analyzing a method that can multiply together 
two n x n matrices using in3 + 6n2 - $n multiplications. In particular, 
one can multiply together two 70 x 70 matrices in 143,640 multiplications, 
and this gives us the exponent for Pan’s method. 

Other techniques that can be used to reduce the exponent include bi- 
linear X-algorithms, where methods that evaluate part of the product of 
rectangular matrices can be used to calculate the product of square matri- 
ces efficiently, as well as generalized tensor products [14]. The minimum 
exponent so far discovered is 2.376 by Coppersmith and Winograd [9], al- 
though the authors express optimism that the theoretical minimum of 2 
can be attained. 

Results on the computational complexity of fast matrix multiplica- 
tion methods are usually given only for square matrices, but in this pa- 
per we give a result which shows the connection between the order of a 
method for square and rectangular matrices. We also derive exact expres- 
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sions for the operation counts for rectangular matrix multiplications with 
Strassen’s method. 

In 1973, Schonhage [15, 161 gave algorithms that exploit fast matrix 
multiplication methods to reduce the asymptotic order of the QR decompo- 
sition of a matrix, but as these require explicit formation of the orthogonal 
matrix Q, any possible benefits from reducing the exponent are swamped 
by the number of extra operations that must be performed [12]. In this pa- 
per we consider a blocked form of QR decomposition developed by Bischof 
and Van Loan [4] in which fast matrix multiplication can be exploited. 
Using our results for rectangular multiplication, we show that the order 
of operations for the method can be reduced through careful choice of the 
block size. 

2. FAST MATRIX MULTIPLICATION 

2.1. Rectangular Matrices 

The “speed” of a fast technique is usually measured by the order of the 
operation count for the multiplication of two n x n matrices (theoretically, 
a method with a smaller order will be faster asymptotically, i.e., for suffi- 
ciently large dimension n). It is straightforward to evaluate the algebraic 
complexity of rectangular matrix multiplication from this value, but this 
does not seem to have been noted before in the literature. Suppose that the 
method can perform the multiplication of two n x n matrices using O(na) 
operations, where 2 < (1~ < 3. If A and B are m x n and n x p matrices re- 
spectively, then the product AB can be formed in O(ny-2n2na) operations, 
where ni = min(m, n,p) and n2, ns are the other two dimensions. 

To see this, consider the case when m is the smallest dimension of A 
and B, and suppose n = jm and p = km for some integers j and k. Then 
the multiplication can be split into m x m blocks: 

AB = (Al A2 . Aj) 
f 

Bll ... B11, 

which involves a total of jk multiplications of m x m matrices, each involv- 
ing O(ma) operations. Thus the total number of operations is O(jkm”) 
or 0(mae2 np), as required, and we can show similar results for the cases 
when n and p are the smallest dimensions. The figure of O(ny-2nzns) is 
optimal for this scheme of splitting the multiplication, and it appears to 
be optimal over all splittings. 
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2.2. Strassen’s Method 

Strassen originally derived his algorithm for square matrix multiplica- 
tion, but it is not difficult to generalize to the rectangular case, and this 
was first done by Brent [7]. C onsider the product C of two matrices A and 
B that have dimensions 2”’ x 2” and 2n x 2P respectively. We can partition 
A, B, and C into four equally sized blocks 

and then Strassen’s method can be written accordingly: 

8 = C-411 + A22)(&1 + B22), P2 = (A21 + &2)&l, 
P3 = All(Bl2 - B22)r p4 = A22(B21 - Bll), 
p5 = (All + Al2P22, p6 = (-421 - All)(&l + B12), 

PT = (A12 - A22)(B21 + B22), 

Cl1 = PI + P4 - P5 + Py, Cl2 =P3+P5, 

c21 =P2+P4, C22=Pl+P3-P2+P& 

Since the blocks Aij, Bij are matrices whose dimensions are powers of 
2, we can compute the products PI,. . . , P7 using the same algorithm, and 
we can carry on the recursion until one of the dimensions of the blocks to 
be multiplied is 1. Alternatively, we can carry on the recursion to a certain 
level and then form the remaining products using conventional multiplica- 
tion. We are not restricted to using Strassen’s algorithm for matrices whose 
dimensions are a power of 2, and we can modify the method in a number 
of ways to cope with any odd dimensions that are encountered [ll]. 

Winograd derived a variation of the formula that uses 15 matrix addi- 
tions at each level of recursion rather than 18 [6]. However, this method 
has a weaker error bound (31, and so we shall not consider this variant 
any further. 

A question remains as to the technique that should be used when 
multiplying rectangular matrices. For example, when we use Strassen’s 
method we can divide the problem into square matrix multiplications, as 
we illustrated in Section 2.1, or we can use the algorithm on the whole 
system and recur with rectangular matrices until the smallest dimension 
involved reaches the threshold. Before we address this question, we derive 
expressions for the operation count for Strassen’s algorithm with rectangu- 
lar matrices. 
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2.3. Operation Counts for Strassen’s Method 

From Section 2.1 we know the order of the operation count for multi- 
plying an m x n and n x p matrix together by Strassen’s method. It is 
also known [ll] that to multiply two square matrices of dimension 2k using 
Strassen’s method requires 

7”-‘(2 x 8’ + 5 x 4T) - 6 x 4k 

operations, where 2’ is the threshold such that conventional multiplication 
is used when matrices of dimension I 2” are involved (the cutoff point). 

We now extend this result to obtain the number of operations involved 
in the multiplication of rectangular matrices. Upper bounds have been 
given for this previously [18], but here we give an exact figure. Suppose 
we have matrices of dimensions 2m x 2n and 2n x 2P. Let 2m = a2j, 2” = 
b2j, 2P = c2j, where j = min(m, n,p) (so a, b, c 2 1 and at least one of 
a, b,c is equal to 1). Let SR(M,N, P) d enote the number of operations 
involved in using Strassen’s method to multiply matrices of dimensions 
M x N and N x P, where R is the cutoff point [i.e., we stop recursion 
when min(M, N, P) I R]. Also, let A(M, N) be the number of operations 
involved in adding together two M x N matrices [therefore A(M, N) = 
MN]. Then, by considering the formulae for Strassen’s method in Section 
2.2 we get the recurrence relation 

= 7Ss’.(a29, b2j,c2j) + 5A(a23, b2j) + 5A(b2j,c2j) + 8A(a2j,c2j) 

= 7Sp(a2j, b2j, c2j) + (5ab + 5bc + 8ac)4j. 

This implies that we can write Ssr(a2j, b2j, c2j) in the form cu7j + p4j. 
Substituting this into the above expression, we have 

a7j+i + p4j+’ = 70!7j + 7p4j + (5ab + 5bc + 8ac)4j, 

from which we find that 

p = -$(5ab + 5bc + 8ac). 

We also know that 

S27.(a2T, b2T, ~2’) = 2abc8’ - ac4T, 

because at this stage we use conventional multiplication, and from this we 
deduce 

Q = 2abc($)T + $(ab + bc + ac)($)‘. 
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TABLE 1. VALUE OF cx VERSUS RECURSION THRESHOLD 

r Case 1: b > l,c > 1 Case 2: b = 1,c > 1 
0 $lbc + 5(b + c)] $(16c + 5) 
1 & [68bc + 20(b + c)] & (88c + 20) 
2 & [464bc + 80(b + c)] & (544~ + 80) 
3 & [3392bc + 320(b + c)] & (3712~ + 320) 
4 & [25856bc + 1280(b + c)] &(27136c + 1280) 

Note that Q is symmetric in a, b, c. To minimize the number of operations 
involved with Strassen’s method we should minimize CY by choosing the 
appropriate positive integer value for r (assuming j is large enough to 
make the ,B term negligible). We know that at least one of a, b, c equals 1, 
and since cy is symmetric, we can assume a = 1 without loss of generality. 
We also see that there is no reason why we should assume that b and c are 
powers of 2. If we stop recursion when the smallest dimension reaches a 
certain threshold, then the only condition that b and c need satisfy is that 
they are positive integers. There are now three cases to consider. 

Case 1: b > l,c > 1. Since b and c are greater than 1 and are 
integers, we know that b, c > 2. We see from Table 1 that we shall minimize 
a by choosing either r = 2 or r = 3. If r = 2 then 

a2 = Gbc + +(b + c) M 3.16bc + 0.54(6 + c), 

whereas if we choose r = 3 then 

a3 = f$$bc + $$$(b + c) z 3.30bc + 0.31(b + c). 

Clearly, as b and c get larger, the term multiplying bc will dominate, but 
we can find small values for b and c for which (~3 < ~2. This will occur if 

f$$$bc+ff$(b+c) < $$bc+ $(b+c), 

which simplifies to 
5c 

b<--- 
3c-5’ 

and this inequality is true if and only if c = 2, b 5 9; c = 3, b < 3; or 4 5 
c I 9, b = 2. 

Case 2: b = 1, c > 1. Here only c remains, and to minimize LY we 
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FIG. 1. A comparision of operation counts for matrix multiplication 

see from Table 1 that we need to pick r = 3, for which 

3712 320 
a=imc+iim M 3.61~ + 0.31. 

Case 3: b = 1, c = 1. Here we have the special case of multiplication 
of square matrices, and we can use 

S2’.(2k, 2”, 2”) = 7”-‘(2 x 8’ + 5 x 4’) - 6 x 4”. 

By examining this formula we find that it is minimized by letting r = 3 
(agreeing with [ll]), which gives (Y = 192/49 E 3.92. Figure 1 compares 
operation counts for n x n matrices using conventional multiplication and 
using Strassen’s method for a variety of cutoff points 2T. 

In summary, for the multiplication of matrices whose dimensions are 
m x n and n x p with m = a2j, n = b2J, p = c2j we have 

S&(m, n,p) = a7j + P4j, 
(u = 2abc(f)‘+ $(ab+bc+ac)(+)‘, 

p = -+(5ab + 5bc + 8ac). 

The values of r that minimize LY are given in the three cases above. If we 
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let r = 0 and let a = 1, we find that 

(r7j = [2bc+ @+bc+c)]7j 

= O(m”-2np), 

where w = log, 7, so we recover the result from Section 2.1. 
In practice we may have to perform extra operations that we have not 

considered here. For example, when coding Strassen’s algorithm in MATLAB 

we found we used more operations when calculating the indices of the 
submatrices during recursion. These extra operations can be incorporated 
into our recurrence relation, but we have not done this here, as they depend 
on the programming language used. 

We are now in a position to answer the question we posed at the end of 
the last section, namely: What technique should we use when multiplying 
together two rectangular matrices. ? Consider the case when we have matri- 
ces with dimensions 2”, 2n, and 2p, and suppose m < n, p. If we choose to 
split the problem into square matrix multiplications, then the total number 
of operations (to highest order terms) will be at least 

3.92 x 7m2n+P-2m, 

since we must perform 2n+p-2m multiplications of 2m x 2m matrices, whilst 
if we choose to carry out our recursion using rectangular blocks, we can 
carry out our task in 

3.16 x 2n+p-2m7m + 0.54(2”-” + 2P-m)7m 

operations (by picking r = 2 in case 1). As n-m and p-m increase, the first 
term of this expression becomes dominant and we see that asymptotically 
we can reduce the number of operations in the multiplication by [100(3.92- 
3.16)/3.92]% = 207 f o i we work with rectangular blocks. 

To conclude this section we review some of the performance results that 
have been published for Strassen’s method. Bailey et al. [2] mention that 
for some modern workstations (e.g., Sun-4 and Silicon Graphics IRIS 4D) 
Strassen’s method is faster than conventional multiplication for 16 x 16 
matrices, which we see from Figure 1 is the smallest possible size that 
can offer improvements in the operation count; but for most machines it 
is necessary to use larger matrices before performance improvements can 
be seen. For example, Brent [7] managed to reduce the time involved for 
conventional multiplication of 110 x 110 matrices by using an Algol-W 
version of Strassen’s method with just one level of recursion on an IBM 
360167, but he achieved bigger speedups for matrices whose dimensions 
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were less than 300 by using a method developed by Winograd [20]. Bailey 
[l] has achieved speedups of 45% for 128 x 128 matrices using a recursion 
threshold of 127 on a Cray-2, whereas the optimum operation count (using a 
threshold of 8) is only 25% less than that for conventional multiplication- 
35% of this speedup comes from Gay-specific techniques. Bjorstad et al. [5] 
have parallelized Strassen’s method on the MasPar MP-1 and have achieved 
impressive speedups over conventional parallel block techniques using a 
recursion threshold of 128. These last three examples illustrate the fact 
that on most machines overheads from sources such as data transfer mean 
that we are unlikely to optimize the time needed to multiply matrices by 
minimizing the number of operations involved. 

An important application of matrix multiplication is in the level 3 
BLAS, a set of matrix-matrix linear algebra operations. Higham [ll] has 
shown how Strassen’s method can be used to produce level 3 BLAS routines 
whose operation counts have smaller exponents than for the conventional 
methods. In the rest of this paper we consider ways of exploiting fast 
matrix multiplication techniques to develop fast methods for orthogonal 
decomposition. 

3. FAST BLOCK QR DECOMPOSITION 

3.1. Block QR Decomposition 

Bischof and Van Loan [4] have developed a method for computing the 
QR decomposition of a matrix based on a new way to represent products 
of Householder matrices. This representation leads to an algorithm that is 
rich in level 3 BLAS operations, which makes it ideal to use in combination 
with fast matrix multiplication techniques. We will show that by choosing 
the appropriate block size for the particular multiplication method used, 
a new algorithm can be produced that has a lower order operation count 
than standard QR decomposition techniques. 

The key to Bischof and Van Loan’s method is the so-called WY repre- 
sentation for the product of Householder matrices. This gives an expression 
for the product of k Householder matrices of the form I - 2uiuT/(uFui) 
(u, E R” is a nonzero vector) that can be written as Qk = 1 + wkYkT, 
where wk and Yk are both m x k matrices of rank k. The WY form clearly 
exists for the case k = 1, since we can choose 

W1=-2”’ 
upL1’ 

Yl = Ul, 
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and we can show by induction that 

Thus the WY block QR algorithm for decomposing an m x n matrix in no 
stages with block size p can be written as follows (assuming no, p E Z and 
nap = n): 

fork--l: no 
s = (h - l)p + 1 
Use standard QR decomposition to upper-triangularize 
A(s:m,s:s+p- 1) 
and to generate Householder vectors ug,. . . , ‘zL,+~_~ 
Y =z&, w = -2?4(?$4 
forj=s+l:s+p-1 

z = -2(I -t WY~)~~/~~~~~~, Y = [Y 7Lj], w = [IV Z] 
end 
A(s:m,s+p:n) = (I+ WYT)TA(s:m,s+p:n) (#) 

end 

It is with this final stage (#) that fast matrix multiplication techniques 
can be exploited. 

The WY method has been developed further through a compact rep- 
resentation 1171 that reduces the amount of storage space needed for the 
Householder factors. We do not consider this algorithm here, because our 
aim is to try to minimize operation counts for the QR decomposition. 
Studying the effect of the different factors on the operation count, we find 
that the algebraic complexity of the compact method will be the same as for 
the noncompact one, but the number of operations involved will be bigger. 

3.2. A Fast Method 
Suppose we wish to compute the decomposition of an m x n matrix 

A (m 2 n), using the block method in no stages with block size p = 
n/no E 2, and suppose also that we can multiply two IV x N matrices 
in O(P) operations. We assume for convenience that both m/p and n/p 
are integers. This makes the calculations neater, and it does not affect 
the final result, because if p is not a factor of m or n, we can simply pad 
the matrix with zeros until it is, and this will not change the order of the 
operation count of the algorithm. At each stage k = 1,2,. . . ,120 - 1 we 
must compute the factors W and Y and apply them to a block A# of the 
current decomposition of A. This is achieved by forming the product 

(I + WYT)TA# = A# + YWTA#. 
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At stage k, W and Y are [m- (k - 1) n/no] x n/no matrices, while A# is 
an [m--(&l) n/no] x(n-k n no matrix. Thus, using our fast technique, / ) 
the first multiplication, A41 = WTA#, requires 0(n~-2nzn3) operations, 
where n1 = n/no, ns = n - kn/no, and ns = m - (k - l)n/nc (see Section 
2.1), as does the second multiplication M2 = YM1. This means that at 
each stage k = 1,2,. . , no - 1 we have approximately 

n 
C- (>( 720 

cI F+l-k)(no-k) 

operations, for some constant c. 
Summing over k and considering only the highest order terms, we obtain 

a figure of 
c 
-n 
2 

+$a cm _ 5) 

operations (a detailed derivation is given in [12]). 
The generation of W and Y needs a total of (4mn’ - 2n3)/nc scalar op- 

erations [4]. Thus, in total, we have approximately 

a-1$a + 2”” 

n0 ) 

operations. 
Now suppose no = np for some /3 E [0, l]; then 

2 = m :na-1+3@pafl + 41L2_P) _ n( ina-l+30-a@ + ~~2-8). 
( 

To minimize the order of 2 we require p* such that 

giving us 

@*=l-A. 

For example, when n = 1000 and (Y = log, 7 (i.e., for Strassen’s method), 
P* M 0.162, and therefore in this particular case the number of stages that 
minimizes the order of the method is no = 71 4’ z 3, and the optimum block 
size p z 330. Now, 

z-/3*=1+-& 

so the number of operations involved in the computation is, at best, 

C1n1+w(4--a))(m - c2n) (3.1) 
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for certain constants cl and cz. For example, by replacing conventional 
multiplication with Strassen’s method we can reduce the complexity of the 
calculation from 0(mn2) to 0(mn1,s38). 

Conventional QR decomposition, using Householder rotations, requires 
2n2(m - n/3) operations. With the fast methods currently available the 
constant cl in (3.1) is always considerably bigger than 2; hence for the 
new method to be faster than normal (purely in terms of the number of 
operations), a large matrix must be factorized. This is tempered to some 
extent by a number of considerations. The optimum block size, in terms of 
algebraic complexity, does not minimize the number of operations required 
by block QR decomposition until the matrices involved are enormous (see 
[12] for details). The consequence of this is that we can improve on the 
operation count in the case of smaller matrices by choosing a block size 
according to different criteria. For example, we could look at some specific 
matrices and from these choose the ratio of block size to matrix dimension 
that approximately optimizes the operation count emprically. Secondly, 
the factored form of the orthogonal matrix Q is in block form too. This 
can be exploited to achieve further potential speedups by using the fast 
multiplication techniques when forming products of blocks in the solution 
of least squares problems. A further source of possible improvement is that 
the block nature of the algorithm could be exploited in parallelizing the 
method, as it can when conventional multiplication is used [4, 51. 

I thank Nick Higham for his guidance during my research and his advice 
during the production of this document, and the referee for helpful sugges- 
tions on improvements. 
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