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Abstract

It will be shown that for all numbers # and m with n > m>1 the Boolean pairs (4%, 4%) have
undecidable elementary theories.

The main subclasses of the arithmetical hierarchy and their mutual positions are
well-known. We have the classes 49,59 and IT9, n>1 (49 — the class of all recursive
sets) with X9, Mo C X9, ,, 0% | and AO =X0nm, n=1.

Let y be one of the classes: 22, 1T or A%, n>1. Then the following facts are known
or easy to see:

(1) (3, ©) is a distributive lattice. f X €y and X =* ¥ (ie. (X —Y)U(Y —X) is
finite) then Y € y. (We say that y is =*-closed). We denote by x* the class y modulo
=" and by X™* the equivalence class of an X resp. to =*. For sets X,Y we write
XC*Y if X — 7Y i1s finite.

(2) If y is 22 or 19 for any n>1, then Th((3,C)) (the elementary theory of the
structure (i, C)) is hereditarily undecidable, ' see e.g. [4, p. 381]. If y is 4%, n>=1, then
(%, €)* is the countable, atomless Boolean algebra. (Hence Th((y, C€)*) is decidable.)

What can be said about the position of the recursive sets inside the A9-sets from
the point of view of the lattice theory? How does the sublattice of recursive sets lie
inside the lattice of the A3-sets? How do the A9-sets extend the recursive ones when
both are considered as lattices?

We will give an answer, not only for m =1 and n =2, but for the general case
n > m>1. We consider the Boolean pairs (49, 4%)*, i.e. the structures (4%, C,R)*,
where (4%, C)* is the Boolean algebra of the A%-sets (mod =*) and R a unary relation
satisfied exactly for all sets in 4% (modulo =").

!Let L be a first-order language (i.e. L is a set of functions %, of relations # and of constants %). Let
T be a theory in L. T is called hereditarily undecidable if every subtheory T’ of T (in L) is undecidable.
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Now it holds

Theorem. For all numbers n and m with n > m>1, Th((4%,4%)) is (uniformly)
hereditarily undecidable.

Here uniformly means that for all pairs (49, 4%) there is an elementary definable
(with parameters) structure which can be defined by using the same formulas for each
n and m (and this definable structure has a hereditarily undecidable elementary theory).
We shall even show that for the same m, but arbitrarily » the same parameters can be
used.

Proof. Denote by &", n>1, the lattice of Z%-sets under inclusion. We shall show that
&1 is elementary definable (by using three formulas and two parameters) in (49, 4%)
for n>m>=1.2

The parameters A and Y: Let A be a hh-simple set with properties described be-
low and Y a small major subset of 4 (symbolically ¥ CsyA4). The set 4 has two
properties:

— ¥*(A4) (the r.c. supersets structure of A (modulo =*)) is isomorphic to €2 (i.e. the
Boolean algebra formed by all finite and cofinite subsets of N, N — the set of all
numbers). Thus &2 is the completely atomic Boolean algebra.

—~ A has an r.e. sequence (4;);»o of r.e. subsets of 4 with

(1) 4in4; =0 G#J) Usodi =4
(i1) (VR recursive set) ((4 U R)* is an atom in £*(4) = 3%k) (4 -Y)NR ="
(A= Y)NA)).

(ii1) (Vi)(3R recursive set) ((AUR)" — atom in £*(4) and 4;U(R—A) is recursive).
The existence of such a special hh-simple set follows easily from Lachlan’s general
construction of hh-simple sets. See for this e.g. [3].

Observe that from the properties of the sets 4; and the choice of ¥ we get that
A; — Y is infinite for every i>0 and uniquely determined. This means

(VR recursive) (4, — Y C*Ror(4;, — Y)NR="10).

Further every set 4; — Y is uniquely connected with exactly one atom (4 U R)* of
F*(4) (by (i) and (iii)).

Relativization of A and Y: We can relativize these properties to the X0 -sets. Thus
for every m>1 there are sets 4™ and Y with Y™ g, 4™ (defined in the obvious
sense using X9 -sets) and a X-sequence (4\™);5o such that LM (4M) = {X*: X €
20 4 C X} is isomorphic to @2 and for (4™);50 (i)—(iii) hold where in (ii) and
(iii) of “recursive” is replaced by “R € 4%”. (We will need this relativization for the
proof that pairs (4%, 4%) are undecidable for m > 1).

2 Indeed one parameter would be sufficient. But by using two the interpretation becomes clearer and easier
to understand.
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The sets 4™ and Y™ are X0 -sets, hence are A%-sets for n > m. Thus they can be

; 0 40
used as parameters in (4, 4,,).

The defining formulas: The elements of &"*! will be mapped to a definable collection
of A%-sets defined by the formula @g. @o(x, YU, 4) is

Y™ CxaxcA™.
We write ZM(Y™, 4 for the class
{Ze A Y™ CzCa™y

Let ¢1(x,z, Y™, 4™) be the (informal) expression:

() ([ N (4™ = Y =" 4" = Y] = 20 (4 -y ) =t 4" - v,
(1)

@1 will be used for the interpretation of C from &"*! into (49, 4%).

@ is not definable in the language of the Boolean pairs. Later in Lemma 2 we show

that ¢, is equivalent in (49, 4%) to a definable formula. But for recursion-theoretic

estimations (1) will be useful, e.g. in Lemma 1.
The third formula ¢,(x,z, Y™, 4™ is

01(x,2, Y™ A™Y A @ (z,x, Y™, 4),

This defines an equivalence relation on the structure of (4%, 4%). We write x C o5z for

©1(x,2, Y™, 4™y and x ~eop z for @a(x,z, Y™, A0),
Now we can show

Lemma 1. (ZU(Y AM) C )/ ~eor is isomorphic to "),

Proof. Let X be a 4%-set such that Y C X C 4™, Let Sy be the set
{ieN: XN - ymy=> (4" — yim)y}. 2)
At first we see that Sy belongs to X° 1> since (2) has the definition

@)y > 2}y € X N4 = y e v,

this is V(AL A 25) = Z0), hence X0, ,. (Here we use the fact that (4);5¢ is a
uniformly X -sequence.)
Further, we see that for X,Z € &M (Yim 40m)

XCrZ ifSyCS;
and thus

X =t Z iff Sy = Sz7.
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From this we get that the mapping
[X]/ = cor— Sx (3)

is an embedding of (F(Y™, 40M), C. o)/ ~eor into &1,
It remains to show that the mapping (3) is surjective. Let § € X9, . Then there is

n+l1*
a X0 -sequence (Ug)iso (of Z9_,-sets) such that

keS iff Uy is cofinite.

This fact we get by an easy relativization of the well-known fact that {e: W, =* N}
is Zg-complete (see e.g. [4, p. 68)]).
Next we have to relativize the following well-known fact:

“If A and B are r.e. sets with 4 CB and B — 4 not co-r.e. then there is an r.e.
sequence of finite and disjoint sets (Sy)s>0 With B~4 CJ,5( Sy € B and S,N (B—4) #
(0 for every n”.

(See for this e.g. [4, p. 184] or [3] in the Introduction.)

Since the construction of (S} },»0 is effective, this can be done uniformly if uniformly
r.e. sequences (4;)i»o and (B;);»¢ are given with B; — 4; is not co-r.e. for every i.

We relativize this to the sequences (Y™),5o and (Y™ U 4™);50. (4™ — ¥
are not co-X9, since Y Cy, A™ and by the properties (ii) and (iii)). Thus we get
a X%-sequence (S;¢)ie>o0 such that Y U AE"” — Y™ C,508.,: C Y™ UA,(-"') and
Sei (Y™ UA™ — ymy £ for all e and every i.

Now let X be the set

Y YU {8 e € U, i>0}.

X is 2% and so X € ZM(ym, 4m),

Let i € S; then U; is cofinite, hence 4™ — Y™ C* X by definition of X and the
finiteness of all sets S, ;. Hence by (2) i € Sy.

Let i € Sy. Then A,(-”') — Y™ C* X, Thus U; =* N, but this means i € S.

It remains to show that ¢; can be defined elementary with parameters.

Lemma 2. The expression ¢i(x,z, Y™, 4™ is equivalent (in (49,4%)) to the ele-
mentary formula
(VR € A%) [(4"™ UR)* is an atom in L™*(4™)
=3 { 4™ —Y"YNRC*x = (4™ — Y™)NRC*2}]. (4)
Proof. (1) = (4): Suppose (1) is satisfied for sets X and Z (in place of x and
z, tespectively). Let R be such that (4 U R)* is an atom in #"*(47™). Then

3440m U RY* is an atom in LU*(40"))” means

VT €48y (TNU™UR)=*0vA™URC* 4™ UT).
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(4™ — ymyn R =* 4™ — Y™ for some unique i, by (ii). Thus the second line in
(1) implies also the second one in (4).

(4) = (1): Suppose (4) is satisfied for sets X and Z from 49, If for some i
X 0 (A" —ymy =* 4" _y™ then by (iii) there is a A-set R with R N (4" — (™)
=* A" _ Y™ (sec the sentence before: Relativization of 4 and ¥, after (iii)). Thus
by (4) ZN AW — ymy =+ _ytm,

It is easy to see that “finiteness” is elementary definable in (49, 49,
relation =*. For X € A% X =* { means

), hence also the

(VY e (YCx=7YecA). (5)

If X is finite then obviously every subset of X belongs to 49.

If X is infinite and not from 4% then Y = X negates (5). If X is from 4% then X
has a 29 -subset (hence is from 49), not from 49,

Thus we have

Corollary. For all numbers n and m with n > m>1 the theory Th((4%,4%)) is
undecidable.

Proof. It was shown that ™' is elementary definable with parameters in (4%, 4%)
and Th(&"*') is hereditarily undecidable. Thus this holds also for Th((4%, 4%)).

Final remarks. The following problems remain still open:

(1) Are (49,45 ) and (49,45 ) elementary equivalent? We should note that
Harrington and Nies have shown that " and &™ are not elementary equivalent for
ny # ny. We believe this supports our conjecture that (A9, 4% ) and (49, 49, ) are not
elementary equivalent for n; # ny or m; # mj.

(2) Let 49 be the class of primitive recursive sets. Do the Boolean pairs (49, 49),
n>1, have undecidable theories?
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