ANNALS OF PURE AND APPLIED LOGIC

Annals of Pure and Applied Logic 87 (1997) 145-149

Boolean pairs formed by the Δ_n^0 -sets

E. Herrmann

Humboldt University, Institute of Mathematics, 10099 Berlin, Germany

Received 17 January 1996 Communicated by A. Nerode

Abstract

It will be shown that for all numbers n and m with $n > m \ge 1$ the Boolean pairs (Δ_n^0, Δ_m^0) have undecidable elementary theories.

The main subclasses of the arithmetical hierarchy and their mutual positions are well-known. We have the classes Δ_n^0, Σ_n^0 and $\Pi_n^0, n \ge 1$ (Δ_1^0 – the class of all recursive sets) with $\Sigma_n^0, \Pi_n^0 \subseteq \Sigma_{n+1}^0, \Pi_{n+1}^0$ and $\Delta_n^0 = \Sigma_n^0 \cap \Pi_n^0, n \ge 1$.

Let χ be one of the classes: Σ_n^0, Π_n^0 or $\Delta_n^0, n \ge 1$. Then the following facts are known or easy to see:

(1) (χ, \subseteq) is a distributive lattice. If $X \in \chi$ and $X = {}^* Y$ (i.e. $(X - Y) \cup (Y - X)$ is finite) then $Y \in \chi$. (We say that χ is =*-closed). We denote by χ^* the class χ modulo =* and by X^* the equivalence class of an X resp. to =*. For sets X, Y we write $X \subseteq {}^* Y$ if X - Y is finite.

(2) If χ is Σ_n^0 or Π_n^0 for any $n \ge 1$, then Th((χ, \subseteq)) (the elementary theory of the structure (χ, \subseteq)) is hereditarily undecidable, ¹ see e.g. [4, p. 381]. If χ is Δ_n^0 , $n \ge 1$, then $(\chi, \subseteq)^*$ is the countable, atomless Boolean algebra. (Hence Th($(\chi, \subseteq)^*$) is decidable.)

What can be said about the position of the recursive sets inside the Δ_2^0 -sets from the point of view of the lattice theory? How does the sublattice of recursive sets lie inside the lattice of the Δ_2^0 -sets? How do the Δ_2^0 -sets extend the recursive ones when both are considered as lattices?

We will give an answer, not only for m = 1 and n = 2, but for the general case $n > m \ge 1$. We consider the Boolean pairs $(\Delta_n^0, \Delta_m^0)^*$, i.e. the structures $(\Delta_n^0, \subseteq, R)^*$, where $(\Delta_n^0, \subseteq)^*$ is the Boolean algebra of the Δ_n^0 -sets (mod =*) and R a unary relation satisfied exactly for all sets in Δ_m^0 (modulo =*).

¹ Let L be a first-order language (i.e. L is a set of functions \mathscr{P} , of relations \mathscr{R} and of constants \mathscr{C}). Let T be a theory in L. T is called *hereditarily undecidable* if every subtheory T' of T (in L) is undecidable.

Now it holds

Theorem. For all numbers n and m with $n > m \ge 1$, $\text{Th}((\mathcal{A}_n^0, \mathcal{A}_m^0))$ is (uniformly) hereditarily undecidable.

Here uniformly means that for all pairs (Δ_n^0, Δ_m^0) there is an elementary definable (with parameters) structure which can be defined by using the same formulas for each n and m (and this definable structure has a hereditarily undecidable elementary theory). We shall even show that for the same m, but arbitrarily n the same parameters can be used.

Proof. Denote by \mathscr{E}^n , $n \ge 1$, the lattice of Σ_n^0 -sets under inclusion. We shall show that \mathscr{E}^{n+1} is elementary definable (by using three formulas and two parameters) in (Δ_n^0, Δ_m^0) for $n > m \ge 1$.²

The parameters A and Y: Let A be a hh-simple set with properties described below and Y a small major subset of A (symbolically $Y \subset_{sm} A$). The set A has two properties:

- L^{*}(A) (the r.e. supersets structure of A (modulo =*)) is isomorphic to ⊕2 (i.e. the Boolean algebra formed by all finite and cofinite subsets of N, N the set of all numbers). Thus ⊕2 is the completely atomic Boolean algebra.
- A has an r.e. sequence $(A_i)_{i\geq 0}$ of r.e. subsets of A with
 - (i) $A_i \cap A_j = \emptyset$ $(i \neq j), \bigcup_{i \ge 0} A_i = A$.
 - (ii) $(\forall R \text{ recursive set})$ $((A \cup R)^*$ is an atom in $\mathscr{L}^*(A) \Rightarrow (\exists !k)((A Y) \cap R) = (A Y) \cap A_k)$.

(iii) $(\forall i)(\exists R \text{ recursive set})$ $((A \cup R)^* - \text{atom in } \mathscr{L}^*(A) \text{ and } A_i \cup (R-A) \text{ is recursive}).$ The existence of such a special hh-simple set follows easily from Lachlan's general construction of hh-simple sets. See for this e.g. [3].

Observe that from the properties of the sets A_i and the choice of Y we get that $A_i - Y$ is infinite for every $i \ge 0$ and uniquely determined. This means

 $(\forall R \text{ recursive}) \quad (A_i - Y \subseteq^* R \text{ or } (A_i - Y) \cap R =^* \emptyset).$

Further every set $A_i - Y$ is uniquely connected with exactly one atom $(A \cup R)^*$ of $\mathscr{L}^*(A)$ (by (ii) and (iii)).

Relativization of A and Y: We can relativize these properties to the Σ_m^0 -sets. Thus for every $m \ge 1$ there are sets $A^{(m)}$ and $Y^{(m)}$ with $Y^{(m)} \subset_{\mathrm{sm}} A^{(m)}$ (defined in the obvious sense using Σ_m^0 -sets) and a Σ_m^0 -sequence $(A_i^{(m)})_{i\ge 0}$ such that $\mathscr{L}^{(m)*}(A^{(m)}) = \{X^*: X \in \Sigma_m^0, A^{(m)} \subseteq X\}$ is isomorphic to $\oplus 2$ and for $(A_i^{(m)})_{i\ge 0}$ (i)-(iii) hold where in (ii) and (iii) of "recursive" is replaced by " $R \in \Delta_m^0$ ". (We will need this relativization for the proof that pairs (Δ_n^0, Δ_m^0) are undecidable for m > 1).

 $^{^{2}}$ Indeed one parameter would be sufficient. But by using two the interpretation becomes clearer and easier to understand.

The sets $A^{(m)}$ and $Y^{(m)}$ are Σ_m^0 -sets, hence are Δ_n^0 -sets for n > m. Thus they can be used as parameters in (Δ_n^0, Δ_m^0) .

The defining formulas: The elements of \mathscr{E}^{n+1} will be mapped to a definable collection of \mathcal{A}_n^0 -sets defined by the formula φ_0 . $\varphi_0(x, Y^{(m)}, A^{(m)})$ is

 $Y^{(m)} \subseteq x \wedge x \subseteq A^{(m)}.$

We write $\mathscr{L}^{(n)}(Y^{(m)}, A^{(m)})$ for the class

$$\{Z \in \Delta_n^0: Y^{(m)} \subseteq Z \subseteq A^{(m)}\}.$$

Let $\varphi_1(x, z, Y^{(m)}, A^{(m)})$ be the (informal) expression:

$$(\forall i)([x \cap (A_i^{(m)} - Y^{(m)}) = *A_i^{(m)} - Y^{(m)}] \Rightarrow [z \cap (A_i^{(m)} - Y^{(m)}) = *A_i^{(m)} - Y^{(m)}]).$$
(1)

 φ_1 will be used for the interpretation of \subseteq from \mathscr{E}^{n+1} into $(\mathscr{A}^0_n, \mathscr{A}^0_m)$.

 φ_1 is not definable in the language of the Boolean pairs. Later in Lemma 2 we show that φ_1 is equivalent in (Δ_n^0, Δ_m^0) to a definable formula. But for recursion-theoretic estimations (1) will be useful, e.g. in Lemma 1.

The third formula $\varphi_2(x, z, Y^{(m)}, A^{(m)})$ is

$$\varphi_1(x, z, Y^{(m)}, A^{(m)}) \wedge \varphi_1(z, x, Y^{(m)}, A^{(m)}).$$

This defines an equivalence relation on the structure of (Δ_n^0, Δ_m^0) . We write $x \subseteq_{\text{cof}} z$ for $\varphi_1(x, z, Y^{(m)}, A^{(m)})$ and $x \approx_{\text{cof}} z$ for $\varphi_2(x, z, Y^{(m)}, A^{(m)})$.

Now we can show

Lemma 1. $(\mathscr{L}^{(n)}(Y^{(m)}, A^{(m)}), \subseteq_{\mathrm{cof}}) \approx_{\mathrm{cof}} is isomorphic to \mathscr{E}^{n+1}$.

Proof. Let X be a Δ_n^0 -set such that $Y^{(m)} \subseteq X \subseteq A^{(m)}$. Let S_X be the set

$$\{i \in \mathbb{N}: X \cap (A_i^{(m)} - Y^{(m)}) =^* (A_i^{(m)} - Y^{(m)})\}.$$
(2)

At first we see that S_X belongs to Σ_{n+1}^0 , since (2) has the definition

$$(\exists x)(\forall y > x)(y \in X \cap A_i^{(m)} \Rightarrow y \in Y^{(m)}),$$

this is $\exists \forall ((\Delta_n^0 \wedge \Sigma_m^0) \Rightarrow \Sigma_m^0)$, hence Σ_{n+1}^0 . (Here we use the fact that $(A_i^{(m)})_{i \ge 0}$ is a uniformly Σ_m^0 -sequence.)

Further, we see that for $X, Z \in \mathscr{L}^{(n)}(Y^{(m)}, A^{(m)})$

 $X \subseteq_{cof} Z$ iff $S_X \subseteq S_Z$

and thus

 $X \approx_{\operatorname{cof}} Z$ iff $S_X = S_Z$.

From this we get that the mapping

$$[X]/\approx_{\rm cof} \to S_X \tag{3}$$

is an embedding of $(\mathscr{L}^{(n)}(Y^{(m)}, A^{(m)}), \subseteq_{\mathrm{cof}})/\approx_{\mathrm{cof}}$ into \mathscr{E}^{n+1} .

It remains to show that the mapping (3) is surjective. Let $S \in \Sigma_{n+1}^0$. Then there is a Σ_{n-1}^0 -sequence $(U_k)_{k \ge 0}$ (of Σ_{n-1}^0 -sets) such that

 $k \in S$ iff U_k is cofinite.

This fact we get by an easy relativization of the well-known fact that $\{e: W_e =^* \mathbb{N}\}$ is Σ_3^0 -complete (see e.g. [4, p. 68]).

Next we have to relativize the following well-known fact:

"If A and B are r.e. sets with $A \subseteq B$ and B - A not co-r.e. then there is an r.e. sequence of finite and disjoint sets $(S_n)_{n \ge 0}$ with $B - A \subseteq \bigcup_{n \ge 0} S_n \subseteq B$ and $S_n \cap (B - A) \neq \emptyset$ for every n".

(See for this e.g. [4, p. 184] or [3] in the Introduction.)

Since the construction of $(S_n)_{n\geq 0}$ is effective, this can be done uniformly if uniformly r.e. sequences $(A_i)_{i\geq 0}$ and $(B_i)_{i\geq 0}$ are given with $B_i - A_i$ is not co-r.e. for every *i*.

We relativize this to the sequences $(Y^{(m)})_{i \ge 0}$ and $(Y^{(m)} \cup A_i^{(m)})_{i \ge 0}$. $(A_i^{(m)} - Y^{(m)})_{i \ge 0}$ are not co- Σ_m^0 , since $Y^{(m)} \subset_{sm} A^{(m)}$ and by the properties (ii) and (iii)). Thus we get a Σ_m^0 -sequence $(S_{i,e})_{i,e\ge 0}$ such that $Y^{(m)} \cup A_i^{(m)} - Y^{(m)} \subseteq \bigcup_{e\ge 0} S_{e,i} \subseteq Y^{(m)} \cup A_i^{(m)}$ and $S_{e,i} \cap (Y^{(m)} \cup A_i^{(m)} - Y^{(m)}) \neq \emptyset$ for all e and every i.

Now let X be the set

 $Y^{(m)} \cup \bigcup \{S_{i,e} : e \in U_i, i \ge 0\}.$

X is Σ_m^0 and so $X \in \mathscr{L}^{(n)}(Y^{(m)}, A^{(m)})$.

Let $i \in S$; then U_i is cofinite, hence $A_i^{(m)} - Y^{(m)} \subseteq^* X$, by definition of X and the finiteness of all sets $S_{e,i}$. Hence by (2) $i \in S_X$.

Let $i \in S_X$. Then $A_i^{(m)} - Y^{(m)} \subseteq^* X$. Thus $U_i =^* \mathbb{N}$, but this means $i \in S$.

It remains to show that φ_1 can be defined elementary with parameters.

Lemma 2. The expression $\varphi_1(x, z, Y^{(m)}, A^{(m)})$ is equivalent (in $(\Delta_n^0, \Delta_m^0))$) to the elementary formula

$$(\forall R \in \Delta_m^0) \quad [(A^{(m)} \cup R)^* \text{ is an atom in } \mathscr{L}^{(m)*}(A^{(m)}) \Rightarrow^3 \{(A^{(m)} - Y^{(m)}) \cap R \subseteq^* x \Rightarrow (A^{(m)} - Y^{(m)}) \cap R \subseteq^* z\}].$$
(4)

Proof. (1) \Rightarrow (4): Suppose (1) is satisfied for sets X and Z (in place of x and z, respectively). Let R be such that $(A^{(m)} \cup R)^*$ is an atom in $\mathscr{L}^{(m)*}(A^{(m)})$. Then

 $3 (A^{(m)} \cup R)^*$ is an atom in $\mathcal{L}^{(m)*}(A^{(m)})$ means

$$(\forall T \in \Delta_m^0) \quad (T \cap (A^{(m)} \cup R) =^* \emptyset \lor A^{(m)} \cup R \subseteq^* A^{(m)} \cup T).$$

148

 $(A^{(m)} - Y^{(m)}) \cap R =^* A_i^{(m)} - Y^{(m)}$ for some unique *i*, by (ii). Thus the second line in (1) implies also the second one in (4).

(4) \Rightarrow (1): Suppose (4) is satisfied for sets X and Z from Δ_n^0 . If for some $i X \cap (A_i^{(m)} - Y^{(m)}) = A_i^{(m)} - Y^{(m)}$ then by (iii) there is a Δ_m^0 -set R with $R \cap (A^{(m)} - Y^{(m)}) = A_i^{(m)} - Y^{(m)}$ (see the sentence before: Relativization of A and Y, after (iii)). Thus by (4) $Z \cap (A_i^{(m)} - Y^{(m)}) = -Y^{(m)}$.

It is easy to see that "finiteness" is elementary definable in (Δ_n^0, Δ_m^0) , hence also the relation $=^*$. For $X \in \Delta_n^0 X =^* \emptyset$ means

$$(\forall Y \in \Delta_n^0) \quad (Y \subseteq X \Rightarrow Y \in \Delta_m^0)). \tag{5}$$

If X is finite then obviously every subset of X belongs to Δ_m^0 .

If X is infinite and not from Δ_m^0 then Y = X negates (5). If X is from Δ_m^0 then X has a Σ_m^0 -subset (hence is from Δ_n^0), not from Δ_m^0 .

Thus we have

Corollary. For all numbers n and m with $n > m \ge 1$ the theory $\text{Th}((\Delta_n^0, \Delta_m^0))$ is undecidable.

Proof. It was shown that \mathscr{E}^{n+1} is elementary definable with parameters in $(\varDelta_n^0, \varDelta_m^0)$ and Th (\mathscr{E}^{n+1}) is hereditarily undecidable. Thus this holds also for Th $((\varDelta_n^0, \varDelta_m^0))$.

Final remarks. The following problems remain still open:

(1) Are $(\Delta_{n_1}^0, \Delta_{m_1}^0)$ and $(\Delta_{n_2}^0, \Delta_{m_2}^0)$ elementary equivalent? We should note that Harrington and Nies have shown that \mathscr{E}^{n_1} and \mathscr{E}^{n_2} are not elementary equivalent for $n_1 \neq n_2$. We believe this supports our conjecture that $(\Delta_{n_1}^0, \Delta_{m_1}^0)$ and $(\Delta_{n_2}^0, \Delta_{m_2}^0)$ are not elementary equivalent for $n_1 \neq n_2$ or $m_1 \neq m_2$.

(2) Let Δ_0^0 be the class of primitive recursive sets. Do the Boolean pairs (Δ_n^0, Δ_0^0) , $n \ge 1$, have undecidable theories?

References

- K. Ambos-Spies, A. Nies and R.A. Shore, The theory of the recursively enumerable weak truth-table degrees is undecidable, J. Symbolic Logic 57 (1992) 864-874.
- [2] L. Harrington and A. Nies, Coding in the lattice of enumerable sets, to appear.
- [3] E. Herrmann, Orbits of hyperhypersimple sets and the lattice of Σ_3^0 -sets, J. Symbolic Logic 48 (1983) 693–699.
- [4] R.I. Soare, Recursively enumerable sets and degrees (A study of computable functions and computably generated sets), in: Perspectives in Mathematical Logic (Springer, Berlin, 1987).

149