Boolean pairs formed by the Δ_{n}^{0}-sets

E. Herrmann
Humboldt University, Institute of Mathematics, 10099 Berlin, Germany

Received 17 January 1996
Communicated by A. Nerode

Abstract

It will be shown that for all numbers n and m with $n>m \geqslant 1$ the Boolean pairs $\left(\Delta_{n}^{0}, \Delta_{m}^{0}\right)$ have undecidable elementary theories.

The main subclasses of the arithmetical hierarchy and their mutual positions are well-known. We have the classes $\Delta_{n}^{0}, \Sigma_{n}^{0}$ and $\Pi_{n}^{0}, n \geqslant 1\left(\Delta_{1}^{0}\right.$ - the class of all recursive sets) with $\Sigma_{n}^{0}, \Pi_{n}^{0} \subseteq \Sigma_{n+1}^{0}, \Pi_{n+1}^{0}$ and $\Delta_{n}^{0}=\Sigma_{n}^{0} \cap \Pi_{n}^{0}, n \geqslant 1$.

Let χ be one of the classes: $\Sigma_{n}^{0}, \Pi_{n}^{0}$ or $\Delta_{n}^{0}, n \geqslant 1$. Then the following facts are known or easy to see:
(1) (χ, \subseteq) is a distributive lattice. If $X \in \chi$ and $X={ }^{*} Y$ (i.e. $(X-Y) \cup(Y-X)$ is finite) then $Y \in \chi$. (We say that χ is $=^{*}$-closed). We denote by χ^{*} the class χ modulo $={ }^{*}$ and by X^{*} the equivalence class of an X resp. to $=^{*}$. For sets X, Y we write $X \subseteq^{*} Y$ if $X-Y$ is finite.
(2) If χ is Σ_{n}^{0} or Π_{n}^{0} for any $n \geqslant 1$, then $\operatorname{Th}((\chi, \mathcal{S})$) (the elementary theory of the structure (χ, \subseteq)) is hereditarily undecidable, ${ }^{1}$ see e.g. [4, p. 381]. If χ is $\Delta_{n}^{0}, n \geqslant 1$, then $(\chi, \subseteq)^{*}$ is the countable, atomless Boolean algebra. (Hence $\operatorname{Th}\left((\chi, \subset)^{*}\right)$ is decidable.)

What can be said about the position of the recursive sets inside the Δ_{2}^{0}-sets from the point of view of the lattice theory? How does the sublattice of recursive sets lie inside the lattice of the Δ_{2}^{0}-sets? How do the Δ_{2}^{0}-sets extend the recursive ones when both are considered as lattices?

We will give an answer, not only for $m=1$ and $n=2$, but for the general case $n>m \geqslant 1$. We consider the Boolean pairs $\left(\Delta_{n}^{0}, \Delta_{m}^{0}\right)^{*}$, i.e. the structures $\left(\Delta_{n}^{0}, \subseteq, R\right)^{*}$, where $\left(\Delta_{n}^{0}, \subseteq\right)^{*}$ is the Boolean algebra of the Δ_{n}^{0}-sets $\left(\bmod =^{*}\right)$ and R a unary relation satisficd exactly for all sets in Δ_{m}^{0} (modulo $={ }^{*}$).

[^0]Now it holds
Theorem. For all numbers n and m with $n>m \geqslant 1, \operatorname{Th}\left(\left(\Delta_{n}^{0}, \Delta_{m}^{0}\right)\right)$ is (uniformly) hereditarily undecidable.

Here uniformly means that for all pairs $\left(U_{n}^{0}, \Delta_{m}^{0}\right)$ there is an elementary definable (with parameters) structure which can be defined by using the same formulas for each n and m (and this definable structure has a hereditarily undecidable elementary theory). We shall even show that for the same m, but arbitrarily n the same parameters can be used.

Proof. Denote by $\mathscr{E}^{n}, n \geqslant 1$, the lattice of Σ_{n}^{0}-sets under inclusion. We shall show that \mathscr{E}^{n+1} is elementary definable (by using three formulas and two parameters) in ($\Delta_{n}^{0}, \Delta_{m}^{0}$) for $n>m \geqslant 1$. ${ }^{2}$

The parameters A and Y : Let A be a hh-simple set with properties described below and Y a small major subset of A (symbolically $Y \complement_{\operatorname{sm}} A$). The set A has two properties:

- $\mathscr{L}^{*}(A)$ (the r.e. supersets structure of A (modulo $=^{*}$)) is isomorphic to $\oplus 2$ (i.e. the Boolean algebra formed by all finite and cofinite subsets of \mathbb{N}, \mathbb{N} - the set of all numbers). Thus $\oplus 2$ is the completely atomic Boolean algebra.
- A has an r.e. sequence $\left(A_{i}\right)_{i \geqslant 0}$ of r.e. subsets of A with
(i) $A_{i} \cap A_{j}=\emptyset(i \neq j), \bigcup_{i \geqslant 0} A_{i}=A$.
(ii) $\left(\forall R\right.$ recursive set) $\left((A \cup R)^{*}\right.$ is an atom in $\mathscr{L}^{*}(A) \Rightarrow(\exists!k)\left((A-Y) \cap R={ }^{*}\right.$ $\left.(A-Y) \cap A_{k}\right)$).
(iii) $(\forall i)\left(\exists R\right.$ recursive set) $\left((A \cup R)^{*}-\right.$ atom in $\mathscr{L}^{*}(A)$ and $A_{i} \cup(R-A)$ is recursive $)$. The existence of such a special hh-simple set follows easily from Lachlan's general construction of hh-simple sets. See for this e.g. [3].

Observe that from the properties of the sets A_{i} and the choice of Y we get that $A_{i}-Y$ is infinite for every $i \geqslant 0$ and uniquely determined. This means

$$
(\forall R \text { recursive }) \quad\left(A_{i}-Y \subseteq^{*} R \text { or }\left(A_{i}-Y\right) \cap R==^{*} \emptyset\right)
$$

Further every set $A_{i}-Y$ is uniquely connected with exactly one atom $(A \cup R)^{*}$ of $\mathscr{L}^{*}(A)$ (by (ii) and (iii)).

Relativization of A and Y : We can relativize these properties to the Σ_{m}^{0}-sets. Thus for every $m \geqslant 1$ there are sets $A^{(m)}$ and $Y^{(m)}$ with $Y^{(m)} \subset_{\mathrm{sm}} A^{(m)}$ (defined in the obvious sense using Σ_{m}^{0}-sets) and a Σ_{m}^{0}-sequence $\left(A_{i}^{(m)}\right)_{i \geqslant 0}$ such that $\mathscr{L}^{(m) *}\left(A^{(m)}\right)=\left\{X^{*}: X \in\right.$ $\left.\Sigma_{m}^{0}, A^{(m)} \subseteq X\right\}$ is isomorphic to $\oplus 2$ and for $\left(A_{i}^{(m)}\right)_{i \geqslant 0}$ (i)-(iii) hold where in (ii) and (iii) of "recursive" is replaced by " $R \in \Delta_{m}^{0}$ ". (We will need this relativization for the proof that pairs $\left(A_{n}^{0}, \Lambda_{m}^{0}\right)$ are undecidable for $\left.m>1\right)$.

[^1]The sets $A^{(m)}$ and $Y^{(m)}$ are Σ_{m}^{0}-sets, hence are Δ_{n}^{0}-sets for $n>m$. Thus they can be used as parameters in ($\Lambda_{n}^{0}, \Lambda_{m}^{0}$).

The defining formulas: The elements of \mathscr{E}^{n+1} will be mapped to a definable collection of Λ_{n}^{0}-sets defined by the formula $\varphi_{0} . \varphi_{0}\left(x, Y^{(m)}, A^{(m)}\right)$ is

$$
Y^{(m)} \subseteq x \wedge x \subseteq A^{(m)}
$$

We write $\mathscr{L}^{(n)}\left(Y^{(m)}, A^{(m)}\right)$ for the class

$$
\left\{Z \in \Delta_{n}^{0}: Y^{(m)} \subseteq Z \subseteq A^{(m)}\right\}
$$

Let $\varphi_{1}\left(x, z, Y^{(m)}, A^{(m)}\right)$ be the (informal) expression:

$$
\begin{equation*}
(\forall i)\left(\left[x \cap\left(A_{i}^{(m)}-Y^{(m)}\right)=^{*} A_{i}^{(m)}-Y^{(m)}\right] \Rightarrow\left[z \cap\left(A_{i}^{(m)}-Y^{(m)}\right)={ }^{*} A_{i}^{(m)}-Y^{(m)}\right]\right) \tag{1}
\end{equation*}
$$

φ_{1} will be used for the interpretation of \subseteq from \mathscr{E}^{n+1} into $\left(\Delta_{n}^{0}, \Delta_{m}^{0}\right)$.
φ_{1} is not definable in the language of the Boolean pairs. Later in Lemma 2 we show that φ_{1} is equivalent in $\left(\Delta_{n}^{0}, \Delta_{m}^{0}\right)$ to a definable formula. But for recursion-theoretic estimations (1) will be useful, e.g. in Lemma 1.

The third formula $\varphi_{2}\left(x, z, Y^{(m)}, A^{(m)}\right)$ is

$$
\varphi_{1}\left(x, z, Y^{(m)}, A^{(m)}\right) \wedge \varphi_{1}\left(z, x, Y^{(m)}, A^{(m)}\right)
$$

This defines an equivalence relation on the structure of $\left(\Delta_{n}^{0}, \Delta_{m}^{0}\right)$. We write $x \subseteq_{\text {cof }} z$ for $\varphi_{1}\left(x, z, Y^{(m)}, A^{(m)}\right)$ and $x \approx_{\text {cof }} z$ for $\varphi_{2}\left(x, z, Y^{(m)}, A^{(m)}\right)$.

Now we can show
Lemma 1. $\left(\mathscr{L}^{(n)}\left(Y^{(m)}, A^{(m)}\right), \subseteq_{\mathrm{cof}}\right) / \approx_{\mathrm{cof}}$ is isomorphic to \mathscr{E}^{n+1}.
Proof. Let X be a Δ_{n}^{0}-set such that $Y^{(m)} \subseteq X \subseteq A^{(m)}$. Let S_{X} be the set

$$
\begin{equation*}
\left\{i \in \mathbb{N}: X \cap\left(A_{i}^{(m)}-Y^{(m)}\right)=^{*}\left(A_{i}^{(m)}-Y^{(m)}\right)\right\} \tag{2}
\end{equation*}
$$

At first we see that S_{X} belongs to Σ_{n+1}^{0}, since (2) has the definition

$$
(\exists x)(\forall y>x)\left(y \in X \cap A_{i}^{(m)} \Rightarrow y \in Y^{(m)}\right)
$$

this is $\exists \forall\left(\left(\Delta_{n}^{0} \wedge \Sigma_{m}^{0}\right) \Rightarrow \Sigma_{m}^{0}\right)$, hence Σ_{n+1}^{0}. (Here we use the fact that $\left(A_{i}^{(m)}\right)_{i \geqslant 0}$ is a uniformly Σ_{m}^{0}-sequence.)

Further, we see that for $X, Z \in \mathscr{L}^{(n)}\left(Y^{(m)}, A^{(m)}\right)$

$$
X \subseteq_{\operatorname{cof}} Z \quad \text { iff } S_{X} \subseteq S_{Z}
$$

and thus

$$
X \approx_{\mathrm{cof}} Z \quad \text { iff } S_{X}=S_{Z}
$$

From this we get that the mapping

$$
\begin{equation*}
[X] / \approx_{\mathrm{cof}} \rightarrow S_{X} \tag{3}
\end{equation*}
$$

is an embedding of $\left(\mathscr{L}^{(n)}\left(Y^{(m)}, A^{(m)}\right), \subseteq_{\text {cof }}\right) / \approx_{\text {cof }}$ into \mathscr{E}^{n+1}.
It remains to show that the mapping (3) is surjective. Let $S \in \Sigma_{n+1}^{0}$. Then there is a Σ_{n-1}^{0}-sequence $\left(U_{k}\right)_{k \geqslant 0}$ (of Σ_{n-1}^{0}-sets) such that

$$
k \in S \quad \text { iff } U_{k} \text { is cofinite. }
$$

This fact we get by an easy relativization of the well-known fact that $\left\{e: \boldsymbol{W}_{e}=* \mathbb{N}\right\}$ is Σ_{3}^{0}-complete (see e.g. [4, p. 68]).

Next we have to relativize the following well-known fact:
"If A and B are r.e. sets with $A \subseteq B$ and $B-A$ not co-r.e. then there is an r.e. sequence of finite and disjoint sets $\left(S_{n}\right)_{n \geqslant 0}$ with $B-A \subseteq \bigcup_{n \geqslant 0} S_{n} \subseteq B$ and $S_{n} \cap(B-A) \neq$ \emptyset for every $n "$.
(See for this e.g. [4, p. 184] or [3] in the Introduction.)
Since the construction of $\left(S_{n}\right)_{n \geqslant 0}$ is effective, this can be done uniformly if uniformly r.e. sequences $\left(A_{i}\right)_{i \geqslant 0}$ and $\left(B_{i}\right)_{i \geqslant 0}$ are given with $B_{i}-A_{i}$ is not co-r.e. for every i.

We relativize this to the sequences $\left(Y^{(m)}\right)_{i \geqslant 0}$ and $\left(Y^{(m)} \cup A_{i}^{(m)}\right)_{i \geqslant 0} .\left(A_{i}^{(m)}-Y^{(m)}\right.$ are not co $-\Sigma_{m}^{0}$, since $Y^{(m)} \subset_{s m} A^{(m)}$ and by the properties (ii) and (iii)). Thus we get a Σ_{m}^{0}-sequence $\left(S_{i, e}\right)_{i, e \geqslant 0}$ such that $Y^{(m)} \cup A_{i}^{(m)}-Y^{(m)} \subseteq \bigcup_{e \geqslant 0} S_{e, i} \subseteq Y^{(m)} \cup A_{i}^{(m)}$ and $S_{e, i} \cap\left(Y^{(m)} \cup A_{i}^{(m)}-Y^{(m)}\right) \neq \emptyset$ for all e and every i.

Now let X be the set

$$
Y^{(m)} \cup \bigcup\left\{S_{i, e}: e \in U_{i}, i \geqslant 0\right\}
$$

X is Σ_{m}^{0} and so $X \in \mathscr{L}^{(n)}\left(Y^{(m)}, A^{(m)}\right)$.
Let $i \in S$; then U_{i} is cofinite, hence $A_{i}^{(m)}-Y^{(m)} \subseteq^{*} X$, by definition of X and the finiteness of all sets $S_{e, i}$. Hence by (2) $i \in S_{X}$.

Let $i \in S_{X}$. Then $A_{i}^{(m)}-Y^{(m)} \subseteq^{*} X$. Thus $U_{i}=^{*} \mathbb{N}$, but this means $i \in S$.
It remains to show that φ_{1} can be defined elementary with parameters.
Lemma 2. The expression $\varphi_{1}\left(x, z, Y^{(m)}, A^{(m)}\right)$ is equivalent (in $\left(\Delta_{n}^{0}, \Delta_{m}^{0}\right)$) to the elementary formula

$$
\begin{align*}
& \left(\forall R \in \Delta_{m}^{0}\right) \quad\left[\left(A^{(m)} \cup R\right)^{*} \text { is an atom in } \mathscr{L}^{(m) *}\left(A^{(m)}\right)\right. \\
& \left.\quad \Rightarrow^{3}\left\{\left(A^{(m)}-Y^{(m)}\right) \cap R \subseteq^{*} x \Rightarrow\left(A^{(m)}-Y^{(m)}\right) \cap R \subseteq^{*} z\right\}\right] \tag{4}
\end{align*}
$$

Proof. (1) \Rightarrow (4): Suppose (1) is satisfied for sets X and Z (in place of x and z, respectively). Let R be such that $\left(A^{(m)} \cup R\right)^{*}$ is an atom in $\mathscr{L}^{(m) *}\left(A^{(m)}\right)$. Then

[^2]$\left(A^{(m)}-Y^{(m)}\right) \cap R={ }^{*} A_{i}^{(m)}-Y^{(m)}$ for some unique i, by (ii). Thus the second line in (1) implies also the second one in (4).
(4) \Rightarrow (1): Suppose (4) is satisfied for sets X and Z from Δ_{n}^{0}. If for some i $X \cap\left(A_{i}^{(m)}-Y^{(m)}\right)=^{*} A_{i}^{(m)}-Y^{(m)}$ then by (iii) there is a Δ_{m}^{0}-set R with $R \cap\left(A^{(m)}-Y^{(m)}\right)$ $=^{*} A_{i}^{(m)}-Y^{(m)}$ (see the sentence before: Relativization of A and Y, after (iii)). Thus by (4) $Z \cap\left(A_{i}^{(m)}-Y^{(m)}\right)={ }^{*}-Y^{(m)}$.

It is easy to see that "finiteness" is elementary definable in $\left(\Delta_{n}^{0}, \Delta_{m}^{0}\right)$, hence also the relation $=^{*}$. For $X \in \Delta_{n}^{0} X={ }^{*} \emptyset$ means

$$
\begin{equation*}
\left.\left(\forall Y \in \Delta_{n}^{0}\right) \quad\left(Y \subseteq X \Rightarrow Y \in \Delta_{m}^{0}\right)\right) . \tag{5}
\end{equation*}
$$

If X is finite then obviously every subset of X belongs to Δ_{m}^{0}.
If X is infinite and not from Δ_{m}^{0} then $Y=X$ negates (5). If X is from Δ_{m}^{0} then X has a Σ_{m}^{0}-subset (hence is from Λ_{n}^{0}), not from Λ_{m}^{0}.

Thus we have

Corollary. For all numbers n and m with $n>m \geqslant 1$ the theory $\operatorname{Th}\left(\left(\Delta_{n}^{0}, \Delta_{m}^{0}\right)\right)$ is undecidable.

Proof. It was shown that \mathscr{E}^{n+1} is elementary definable with parameters in $\left(\Lambda_{n}^{0}, A_{m}^{0}\right)$ and $\operatorname{Th}\left(\mathscr{E}^{n+1}\right)$ is hereditarily undecidable. Thus this holds also for $\operatorname{Th}\left(\left(\Delta_{n}^{0}, \Delta_{m}^{0}\right)\right)$.

Final remarks. The following problems remain still open:
(1) Are $\left(\Delta_{n_{1}}^{0}, \Delta_{m_{1}}^{0}\right)$ and $\left(\Delta_{n_{2}}^{0}, \Delta_{m_{2}}^{0}\right)$ elementary equivalent? We should note that Harrington and Nies have shown that $\mathscr{E}^{n_{1}}$ and $\mathscr{E}^{n_{2}}$ are not elementary equivalent for $n_{1} \neq n_{2}$. We believe this supports our conjecture that $\left(\Lambda_{n_{1}}^{0}, A_{m_{1}}^{0}\right)$ and $\left(\Lambda_{n_{2}}^{0}, A_{m_{2}}^{0}\right)$ are not elementary equivalent for $n_{1} \neq n_{2}$ or $m_{1} \neq m_{2}$.
(2) Let Δ_{0}^{0} be the class of primitive recursive sets. Do the Boolean pairs $\left(\Delta_{n}^{0}, \Delta_{0}^{0}\right)$, $n \geqslant 1$, have undecidable theories?

References

[1] K. Ambos-Spies, A. Nies and R.A. Shore, The theory of the recursively enumerable weak truth-table degrees is undecidable, J. Symbolic Logic 57 (1992) $864-874$.
[2] L. Harrington and A. Nies, Coding in the lattice of enumerable sets, to appear.
[3] E. Herrmann, Orbits of hyperhypersimple sets and the lattice of Σ_{3}^{0}-sets, J. Symbolic Logic 48 (1983) 693-699.
[4] R.I. Soare, Recursively enumerable sets and degrees (A study of computable functions and computably generated sets), in: Perspectives in Mathematical Logic (Springer, Berlin, 1987).

[^0]: ${ }^{1}$ Let L be a first-order language (i.e. L is a set of functions \mathscr{F}, of relations \mathscr{R} and of constants \mathscr{C}). Let T be a theory in $L . T$ is called hereditarily undecidable if every subtheory T^{\prime} of T (in L) is undecidable.

[^1]: ${ }^{2}$ Indeed one parameter would be sufficient. But by using two the interpretation becomes clearer and easier to understand.

[^2]: ${ }^{3 \text { " }}\left(A^{(m)} \cup R\right)^{*}$ is an atom in $\mathscr{L}^{(m) *}\left(A^{(m)}\right)$ " means
 $\left(\forall T \in \Delta_{m}^{0}\right) \quad\left(T \cap\left(A^{(m)} \cup R\right)={ }^{*} \emptyset \vee A^{(m)} \cup R \subseteq^{*} A^{(m)} \cup T\right)$.

