Some extensions of a property of linear representation functions

Min Tang a,⁎, Yong-Gao Chen b

a Department of Mathematics, Anhui Normal University, Wuhu 241000, China
b Department of Mathematics, Nanjing Normal University, Nanjing 210097, China

A R T I C L E I N F O

Article history:
Received 26 March 2008
Received in revised form 9 July 2009
Accepted 13 July 2009
Available online 24 July 2009

Keywords:
Additive representation functions
Erdős–Fuchs theorem

ABSTRACT

Let \(A = \{a_1, a_2, \ldots\}(a_1 < a_2 < \cdots) \) be an infinite sequence of nonnegative integers. Let \(k \geq 2 \) be a fixed integer and for \(n \in \mathbb{N} \), let \(R_k(A, n) \) be the number of solutions of \(a_1 + a_2 + \cdots + a_k = n \) with \(a_1, a_2, \ldots, a_k \in A \). The other one predicted that \(R_2(A, n) \) cannot be asymptotically well approximated by its average value; more precisely, \(\sum_{n=0}^{\infty} R_2(A, n) = cN + O(1) \) cannot hold for any constant \(c > 0 \). In this paper, we obtain the analogous results for \(R_k(A, n) \), \(R_k^{(1)}(A, n) \) and \(R_k^{(2)}(A, n) \).

1. Introduction

In 1941, Erdős and Turán [2] made two conjectures in additive number theory, which have had an important impact on the field. One of them conjectured that if \(A \) is a basis of \(\mathbb{N} \), then \(R_2(A, n) \) is unbounded, which is called the Erdős–Turán conjecture. The other one predicted that \(R_2(A, n) \) cannot be asymptotically well approximated by its average value; more precisely, \(\sum_{n=0}^{\infty} R_2(A, n) = cN + O(1) \) cannot hold for any constant \(c > 0 \). Fifteen years later, Erdős and Fuchs [1] proved that \(\sum_{n=0}^{\infty} R_2(A, n) = cN + o(N^{1/4}(\log N)^{-1/2}) \) cannot hold for any constant \(c > 0 \). The importance of the Erdős–Fuchs theorem is based on the fact that the special case \(A = \{1^2, 2^2, \ldots\} \) of it corresponds to the circle problem. Up until now, this original result had been extended in various directions [3,5,6]. Recently, Horváth [4] proved that if \(d > 0 \) is an integer, then there does not exist \(n_0 \) such that \(d \leq R_2^{(2)}(A, n) \leq d + \left[\sqrt{2d} + \frac{1}{2} \right] \) for \(n > n_0 \).

In this paper, we obtain the analogous results for \(R_k(A, n) \), \(R_k^{(1)}(A, n) \), and \(R_k^{(2)}(A, n) \).

Theorem 1. Let \(d > 0 \) be an integer. If \(R_k(A, n) \geq d \) for all sufficiently large integers \(n \), then \(R_k(A, n) \geq d + 2\sqrt{d} + 1 \) for infinitely many integers \(n \).

⁎ Corresponding author.
E-mail addresses: tmzzz2000@163.com (M. Tang), ygchen@nju.edu.cn (Y.-G. Chen).

0012-365X/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
Theorem 2. If there exist two positive integers d and n_0 such that
\[d \leq R_k^{(1)}(A, n) \leq d + \left[\frac{2\sqrt{k}d + 1}{k!} \right] \text{ for all } n > n_0, \tag{1}\]
then $R_k(A, n)$ is unbounded.

Theorem 3. Let $d > 0$ be an integer. If $R_k^{(2)}(A, n) \geq d$ for all sufficiently large integers n, then $R_k^{(2)}(A, n) \geq d + \frac{2\sqrt{k}d + 1}{k!}$ for infinitely many integers n.

Remark. On the representation function $R_k(A, n)$, Horváth even [3] proved that
\[\sum_{n=0}^{N} R_k(A, n) = cN + o(N^{1/4}(\log N)^{1-\frac{3}{4}}) \tag{2}\]
cannot hold for any constant $c > 0$.

Motivated by the Erdős–Turán conjecture, we pose the following conjecture.

Conjecture. (i) If $R_k(A, n) \geq 1$ for all sufficiently large n, then $R_k(A, n)$ is unbounded.

(ii) If $R_k^{(1)}(A, n) \geq 1$ for all sufficiently large n, then $R_k^{(1)}(A, n)$ is unbounded.

For $k = 2$, Conjecture (i) is the Erdős–Turán conjecture. Since $R_k^{(2)}(A, n) \leq R_k(A, n) \leq k!R_k^{(2)}(A, n)$, Conjecture (i) is equivalent to

Conjecture. (iii) If $R_k^{(2)}(A, n) \geq 1$ for all sufficiently large n, then $R_k^{(2)}(A, n)$ is unbounded.

2. Proofs

Lemma ([4]). For large N, we have
\[\int_{0}^{1} \frac{1}{|1 - z|} d\alpha \ll \log N, \tag{3}\]
where $z = re^{2\pi i\alpha}$, $r = 1 - \frac{1}{N}$ and α is a real variable.

Proof of Theorem 1. Suppose that there is a number n_0 such that $d \leq R_k(A, n) < d + 2\sqrt{d} + 1$ for $n > n_0$. Let l be the largest integer that is less than $2\sqrt{d} + 1$. For $n > n_0$ we have
\[R_k(A, n) = d + v(n), \quad \text{where } 0 \leq v(n) \leq l. \tag{4}\]
Let c be a real number such that $d + l - \sqrt{d} + 1 < c < d + \sqrt{d}$. It is easy to obtain that
\[(d + j - c)^2 < d + j \quad \text{for } j = 0, 1, \ldots, l. \tag{5}\]
Thus we can choose some $\delta > 0$ such that
\[\frac{(d + j - c)^2}{d + c} \leq 1 - \delta \quad \text{for } j = 0, 1, \ldots, l. \tag{6}\]
So by (4) and (6) we have
\[(R_k(A, n) - c)^2 \leq (1 - \delta)R_k(A, n) \quad \text{for } n > n_0. \tag{7}\]
Let $z = re^{\alpha}$, where $r = 1 - \frac{1}{N}(N \in \mathbb{N}$ is “large”) and $e^{\alpha} = e^{2\pi i\alpha}(\alpha \text{ real})$, and write
\[F(z) = \sum_{a \in A} z^a. \]
Then
\[F^k(z) = \sum_{n=0}^{\infty} R_k(A, n)z^n \quad \text{for } |z| < 1. \tag{8}\]
Let
\[J = \int_0^1 \left| F^k(z) - c \frac{1}{1 - z} \right| \, d\alpha. \] (9)

By the triangle inequality we have
\[J \geq \int_0^1 |F^k(z)| \, d\alpha - |c| \int_0^1 \frac{1}{|1 - z|} \, d\alpha. \] (10)

Let
\[J_1 = \int_0^1 |F^k(z)| \, d\alpha. \]

By Hölder’s inequality and Parseval’s formula, we have
\[J_{2/k} = (\int_0^1 |F(z)|^k \, d\alpha)^{2/k} \cdot (\int_0^1 1 \, d\alpha)^{1-2/k} \]
\[\geq \int_0^1 |F(z)|^2 \, d\alpha = \sum_{a \in A} r^{2n} = F(r^2). \]

Thus
\[J_1 \geq F^{k/2}(r^2). \] (11)

By (4) and (8) we have
\[F^k(r^2) = \sum_{n=0}^{\infty} R_k(A, n) r^{2n} \geq d \sum_{n>n_0} r^{2n} > (r^2)^{n_0+1} \frac{1}{1 - r^2} \gg N. \] (12)

Thus by (12) and the lemma we have
\[\int_0^1 \frac{1}{|1 - z|} \, d\alpha = o\left(F^{k/2}(r^2) \right) \quad \text{(as } N \to +\infty). \] (13)

Therefore by (10), (11) and (13) we have
\[J \geq (1 - o(1)) F^{k/2}(r^2). \] (14)

By (8) and (9), Cauchy’s inequality and Parseval’s formula
\[J \leq \left(\int_0^1 \left| F^k(z) - c \frac{1}{1 - z} \right|^2 \, d\alpha \right)^{1/2} \]
\[= \left(\int_0^1 \left| \sum_{n=0}^{\infty} (R_k(A, n) - c) z^n \right|^2 \, d\alpha \right)^{1/2} \]
\[\leq \left(\sum_{n=0}^{\infty} (R_k(A, n) - c)^2 r^{2n} \right)^{1/2}. \] (15)

Thus, by (7) and (8) and the assumption, we have
\[J \leq (1 - \delta) R_k(A, n) r^{2n} + \sum_{n \leq n_0} ((R_k(A, n) - c)^2 - (1 - \delta) R_k(A, n)) r^{2n} \]
\[= \left((1 - \delta) F^k(r^2) + O(1) \right)^{1/2}. \] (16)

So
\[J \leq (1 - \delta + o(1))^{1/2} F^{k/2}(r^2). \] (17)

From (14) and (17), we have \((1 - o(1)) F^{k/2}(r^2) \leq (1 - \delta + o(1))^{1/2} F^{k/2}(r^2) \), i.e., \(1 - o(1) \leq 1 - \delta \), this cannot hold for sufficiently large \(N \).

This completes the proof of Theorem 1. \(\square \)
Proof of Theorem 2. Suppose that A is a sequence satisfying (1) and $R_k(A, n)$ is bounded. Let $T = \{ n \in kA | R_k^{(1)}(A, n) = R_k^{(2)}(A, n) \}$.

Since $R_k^{(1)}(A, n)$ is bounded, we have $x^{-1/k} |A \cap [1, x]|$ is bounded. Note that $R_k^{(2)}(A, n) \geq R_k^{(1)}(A, n)$,

$$\sum_{n \leq x} R_k^{(2)}(A, n) - R_k^{(1)}(A, n) \leq k(k-1)/2 |A \cap [1, x]|^{k-1} \ll x^{1-1/k},$$

and the trivial fact that if the difference is non-zero, then it is at least 1, we obtain $R_k^{(2)}(A, n) = R_k^{(1)}(A, n)$ for almost all n. Since (1) implies that $R_k^{(1)}(A, n) > 0$ for all but finitely many n, we obtain $R_k^{(2)}(n) = R_k^{(1)}(n) > 0$ for almost all n, that is, T is infinite.

By the assumption, if $n \in T$ and $n > n_0$, then

$$R_k(A, n) = k!(d + v(n)), \quad \text{where} \quad 0 \leq v(n) \leq \left\lfloor \frac{2 \sqrt{k!d + 1}}{k!} \right\rfloor. \quad (18)$$

Let c' be a real number such that

$$k!(d + l) - \sqrt{k!(d + l)} < c' < k!d + \sqrt{k!d}, \quad (19)$$

where

$$l = \left\lfloor \frac{2 \sqrt{k!d + 1}}{k!} \right\rfloor.$$

It is easy to see that $k!(d + l) - \sqrt{k!(d + l)} < k!d + \sqrt{k!d}$. So c' exists. By (19) we have

$$(k!(d + j) - c')^2 < k!(d + j) \quad \text{for} \quad j = 0, 1, \ldots, l.$$

Thus we can choose some $\delta > 0$ such that

$$\frac{(k!(d + j) - c')^2}{k!(d + j)} \leq 1 - \delta \quad \text{for} \quad j = 0, 1, \ldots, l. \quad (20)$$

So by (18) and (20) we have

$$(R_k(A, n) - c')^2 \leq (1 - \delta)R_k(A, n) \quad \text{for} \quad n \in T \quad \text{and} \quad n > n_0. \quad (21)$$

Define z and $F(z)$ as in the proof of Theorem 1, and let

$$J = \int_0^1 \left| F(z) - c' \frac{1}{1-z} \right| \, dz.$$

Then similar to the discussion as in the proof of Theorem 1, we have

$$J \geq (1 - o(1))Fk/2(r^2). \quad (22)$$

On the other hand, by (21) and the assumption, we have

$$J \leq \left(\sum_{n=0}^{\infty} (1 - \delta)R_k(A, n)r^{2n} + \sum_{n \geq n_0} \left((R_k(A, n) - c')^2 - (1 - \delta)R_k(A, n) \right)r^{2n} \right)^{1/2}$$

$$= \left((1 - \delta)Fk(r^2) + O(1) + O\left(\sum_{n \geq n_0 \cap kA \cap T} r^{2n} \right) \right)^{1/2}.$$

For $m = 1, 2, \ldots, k - 1$, let

$$T_m = \left\{ \sum_{\mu=1}^{m} j_\mu a_{j_\mu} \in kA | \begin{array}{l} 1 \leq j_\mu \leq k, \ a_{j_\mu} \in A, \ \mu = 1, \ldots, m \ \text{and} \\ j_1 + \cdots + j_m = k \\ a_{j_\mu} \neq a_{j_\nu} \quad \text{for} \quad 1 \leq \mu \neq \nu \leq m \end{array} \right\},$$

and let $f(m)$ denote the number of integer solutions of

$$j_1 + \cdots + j_m = k, \quad 1 \leq j_1, \ldots, j_m \leq k.$$
Then for fixed $k \geq 2$, we have
\[kA \setminus T \subseteq \bigcup_{m=1}^{k-1} T_m \quad \text{and} \quad \sum_{m=1}^{k-1} f(m) = O(1). \]

Note that $r < 1$, we have
\[
\sum_{n > n_0 \atop n \in kA \setminus T} r^{2n} \leq \sum_{n \in kA \setminus T} r^{2n} \leq \sum_{m=1}^{k-1} \sum_{n \in T_m} r^{2m(r_1 + \cdots + r_m a_m)} \\
\leq \sum_{m=1}^{k-1} \sum_{n \in T_m} r^{2(n_1 a_1 + \cdots + n_m a_m)} \\
\leq \sum_{m=1}^{k-1} f(m) \sum_{a_1, \ldots, a_m \in A} r^{2(a_1 + \cdots + a_m)} \\
\ll \left(\sum_{a \in A} r^{2a} \right)^{k-1} = (F(r^2))^{k-1} = o(F^k(r^2)),
\]

so
\[
J \leq (1 - \delta + o(1))^{1/2} F k^{1/2} (r^2).
\]

By (22) and (23), we have $1 - o(1) \leq 1 - \delta$, this cannot hold for large N.

This completes the proof of Theorem 2. □

Proof of Theorem 3. Suppose that there is a number n_0 such that $d \leq R_k^{(2)}(A, n) < d + \frac{2\sqrt{2d} + 1}{k} - \frac{1}{k}$ for $n > n_0$, by $R_k(A, n) \leq k! R_k^{(2)}(A, n)$ we have $R_k(A, n)$ is bounded. Let $T = \{ n \in kA | R_k^{(1)}(A, n) = R_k^{(2)}(A, n) \}$.

Now the remainder of the proof is similar to the proof of Theorem 2. □

Acknowledgements

We would like to thank the referees for their many helpful suggestions. The first author was supported by the Youth Foundation of Mathematical Tianyuan, Grant No. 10726074 and the National Natural Science Foundation of China, Grant No. 10901002. The second author was supported by the National Natural Science Foundation of China, Grant No. 10771103.

References