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Abstract

This paper proposes a theory for estimating the Macroscopic Fundamental Diagram (MFD) on inhomogeneous corridors and

networks using probabilistic methods. By exploiting a symmetry property of the stochastic MFD, whereby it exhibits identical

probability distributions in free-flow and congestion, it is found that the network MFD depends mainly on two dimensionless

parameters: the mean block length to green ratio and the mean red to green ratio. The theory is validated with an exact traffic

simulation and with the empirical data from the city of Yokohama. It is also shown that the effect of buses can be approximated

with the proposed theory by accounting for their effect in the red to green ratio parameter.
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1. Introduction

It has been shown experimentally by Geroliminis and Daganzo (2008) that the average flow on an urban network

can be accurately predicted knowing the average density in the network. This urban-scale Macroscopic Fundamental

Diagram (MFD) appears as an invaluable tool to overcome the difficulties of traditional planning models. Although

it is still under debate whether it depends on trip origins and destinations and route choice, there is no question that

network topology and control parameters such as block length, existence of turn-only lanes, and traffic light settings

play a key role.

Existing methods to estimate the MFD analytically for simple homogeneous arterial corridors can be categorized

into three types: (i) empirical (Geroliminis and Daganzo, 2007, 2008; Wu et al., 2011; Saberi and Mahmassani,

2012; Geroliminis and Sun, 2011; Geroliminis and Ji, 2011; Cassidy et al., 2011; Knoop, 2012; Gayah and Daganzo,

2011; Buisson and Ladier, 2009; Daganzo et al., 2011), (ii) analytical (Daganzo and Geroliminis, 2008; Leclercq

et al., 2014), and (iii) simulation (Ji et al., 2010; Mazlomian et al., 2010; Geroliminis and Boyacı, 2013; Haddad and

Geroliminis, 2012; Haddad et al., 2013; Knoop and Hoogendoorn, 2011; Knoop et al., 2011). Existing analytical

results are based on the method of cuts for homogeneous corridors, i.e. with equal block size, signal settings and

constant offset, and therefore, one can focus on the cuts from a single intersection to compute the MFD for the

whole corridor. Despite this apparent simplicity, this approach quickly becomes intractable, more so if buses are
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introduced (Chiabaut et al., 2014). Even with no buses the homogeneous corridor method cannot be scaled up without

complications to estimate the network MFD mainly because a network path cannot be guaranteed to have constant

offset all along, even for homogeneous networks.

To overcome these difficulties, in this paper we introduce the concept of stochastic corridors, where any particular

inhomogeneous corridor–with different block lengths and signal timing–is seen as a particular realization. Stochastic

corridors are in fact probabilistically homogeneous in the sense that the distribution of these network parameters does

not change in time or space. This approach allows the estimation of the network MFD, for which analytical methods

are currently unavailable.

This paper is organized as follows. Section 2 develops the theory of stochastic corridors, which is based on renewal

theory. The existence of short blocks is examined in detail in section 3, as it can severely reduce corridor capacity.

Section 4 is devoted to comparing the theory both with an exact traffic simulation and the empirical data from the city

of Yokohama presented in Geroliminis and Daganzo (2008). Finally, section 5 presents a discussion.

2. Stochastic corridors

Consider an inhomogeneous corridor consisting of a large sequence of road segments of different length, each one

delimited by a traffic signal with settings that vary in time and across segments. This particular corridor is viewed here

as a realization of a ”stochastic corridor” random variable, where the length of each segment and the red and green

times of its signals are random variables �, r and g, respectively, assumed to be independent. We use the symbols μ, σ
and δ = σ/μ for the mean, standard deviation, and coefficient of variation of a random variable, whose name will be

indicated as subscript; e.g., block lengths are assumed i.i.d. with mean and variance μ�, σ
2
� . Turning movements are

not considered in our analysis.

We use the superscripts “�” and “�” to differentiate variables pertaining to forward and backward cuts, respectively,

while the superscript “ − ” will be used as their placeholder. All links in the network are assumed to obey a triangular

fundamental diagram (FD) with free-flow speed w�, wave speed −w� and jam density κ; the saturation flow is therefore

Q = κw�w�/(w� + w�).

Our formulation is based on variational theory Daganzo (2005a,b), which corresponds to the solution of the kine-

matic wave model of Lighthill and Whitham (1955); Richards (1956) when expressed as a Hamilton-Jacobi partial

differential equation. This solution–known as the Hopf-Lax formula (Lax, 1957; Hopf, 1970)–states that the number

of vehicles that have crossed location x by time t, N(t, x), can be expressed in variational form as:

NP = inf
B∈BP

{NB + ΔBP} (1)

where P is a generic point with coordinates (t, x), BP is the set of all points in the boundary that are in the domain of

dependence of P, the point B ≡ (tB, xB) is in BP, NP ≡ N(t, x) and NB ≡ N(tB, xB), and ΔBP is the “cost” or maximum

number of vehicles that can cross the minimum path joining B and P; see Fig. 1a. (Notice that in the absence of

bottlenecks, such as traffic lights, all valid paths–including the minimum path–between B and P have the same cost

and it is customary to compute ΔBP along the straight line BP.)

To derive the corridor MFD, consider the initial value problem in Fig. 1b where the vehicle number N(tB, xB) is

known in the boundary tB = 0 such that the density, k, is constant. Noting that in this case, NB = NO + (x − xB)k with

NO ≡ N(0, x), we can write

NP − NO = min
B
{ΔBP + (x − xB)k} . (2)

The MFD is defined as the steady-state flow at any location x; i.e.:

q(k) ≡ lim
t→∞

1

t
(NP − NO) (3a)

= min
B
{lim
t→∞

1

t
(ΔBP + (x − xB)k)}, (3b)

= min
v
{φ(v) + vk}. (3c)
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Fig. 1. Definitions of variables in variational theory.

Expression (3c) is the method of cuts (Daganzo and Geroliminis, 2008), where v ≡ (x − xB)/t is the average speed

of the cut and φ(v) ≡ ΔBP/t is its maximum passing rate. This method has proven very useful for deterministic

homogeneous problems where φ(v) can be evaluated analytically.

In non-homogeneous corridors the main difficulty is identifying all valid paths between B and P and selecting the

one with minimum cost. This problem is exacerbated when the corridor contains short blocks because the minimum

path becomes increasingly difficult to calculate. To tackle this problem, this paper proposes using renewal theory to

approximate (3b).

When the corridor does not contain short blocks we propose the following approximation. Much as in the method

of cuts, the multitude of valid paths in a network is replaced by a small number of “observers” that wander through

the network with simple rules with the hope that they will capture the most important valid paths. In our case, we add

the restriction that observers must be statistically independent because otherwise the problem becomes intractable.

In the proposed method, observers are emanated at time t and travel backwards in time in a series of “renewal

cycles” generated by a strategy, s, until reaching the boundary at some location xB = xs
B
, while having crossed a

maximum number of vehicles of ΔBP = Δ
s
BP

. In each renewal cycle, the observer starts at the beginning of a red

phase, travels for a number of intersections (without crossing a red phase), stops at a given intersection and stays there

until the beginning of the previous red phase; see Fig. 2. We define the following strategies, starting at the beginning

of a red phase:

• s0 (stationary observer): stay in the same intersection until reaching the boundary,

• s−
1
: travel at speed w− backwards in time, stop when hitting a red phase and stay there until the beginning of the

red,

• s−
2
: similar to s−

1
but stop at every intersection.

These strategies will generate a total of seven cuts, a number that has been found to be sufficient for the homogeneous

case (Leclercq and Geroliminis, 2013). Now, the minimum is taken across s instead of B; setting x = 0 without loss

of generality, we rewrite (3b) as:

q(k) = min
s
{qs(k)}, where: (4a)

qs(k) = lim
t→∞

1

t
Xs

B(t), (4b)

Xs
B(t) = Δs

BP − xs
Bk, (4c)
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Fig. 2. Definition of strategies in the time space diagram.

where qs(k) is the cut for strategy s, or the long-term rate of the stochastic process Xs
B
(t), which can be written as:

Xs
B(t) =

m(t)∑
i=1

Xs
i , (5)

where Xs
i

is the contribution (reward) to Xs
B
(t) during renewal cycle i and ms(t) is the number of renewal cycles needed

to reach the boundary. As illustrated in Fig. 2, for each renewal cycle i, let Ys
i

be its duration, gs
i

(and rs
i
) the time the

observer spends in a green (red) phase, ns
i

the number of intersections crossed, Ls
i

the distance traveled. For clarity in

notation (i) we have omitted in these definitions the placeholder “–” to differentiate forward and backward cuts, and

(ii) hereafter we also omit s-dependencies as much as possible.

The advantage of this formulation is that XB(t) becomes a renewal reward process since both Xi and Yi are random

variables whose distribution is independent of i; i.e.: Xi
d
= X and Yi

d
= Y, where the symbol “

d
=” means “equal in

distribution”. This is true in our case because, as it will become clear later, we also have that gi
d
= T , ri

d
= r, ni

d
= n,

and Li
d
= L. The main result of renewal theory is that the limit distribution of qs in (4b) is Normal and depends on the

first moments of (X, Y); i.e.:
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Theorem 1. (Distribution of cuts). The distribution of qs(k) is normal with mean μs and variance σ2
s/t, where:

μs = μX/μY (6a)

σ2
s =
μ2

X

μY

(δ2
X + δ

2
Y − 2cor(X, Y)δYδX), (6b)

and cor(X, Y) ≡Cov(X, Y)/(σXσY ) is the correlation between X and Y.

Proof. As explained in Serfozo (2009), this result is the application of the Central Limit Theorem to renewal reward

processes, which in general states that:

μs ≡ E[Xs
B(Y)]/μY , (7a)

σ2
s ≡ V[Xs

B(Y) − μsY]/μY , (7b)

In our case X = Xs
B
(Y) and V[X − μsY] = σ2

X
+ μ2

sσ
2
Y
− 2μsCov(X, Y), and the result follows.

Note that σ2
s/μ

2
s = μY ((δX − δY)2 + 2(1 − cor(X, Y))δXδY ) > μY (δX − δY )2 since the correlation 0 < cor(X, Y) < 1 in

our case. It follows that the coefficient of variation of qs(k), δs ≡ σs/(μst
1/2), satisfies:

δs > |δX − δY |(
μY

t
)1/2. (8)

This lower bound for the variations in qs(k) should be tight because cor(X, Y) ≈ 1 due to the common terms in X and

Y. Also note that δs diminishes slowly with time.

To obtain Xs
i
, we recall from variational theory with a triangular fundamental diagram that the contribution to Δs

BP

in (4c) is Qgi for forward cuts and Qgi + κLi for backward cuts, while the contribution to the term xs
B
k is −Lik and Lik,

respectively. Therefore,

X
�
i
= L

�
i
k + Qg

�
i
, (9a)

X�i = (κ − k)L�i + Qg�i , while renewal cycle durations are: (9b)

Y−i = L−i /w
− + g−i + r−i . (9c)

It can be seen that the MFD is a function of a large number of parameters: fundamental diagram parameters w�,Q, κ
and at least two parameters per random variable �, r and g. To facilitate our analysis we note that the problem can

be expressed in terms of only three parameters by reformulating it in dimensionless form and applying a density

transformation, as shown next.

2.1. Canonical formulation

In this section we reduce the formulation to the minimum number of parameters. Towards this end, we (i) set all

coefficients of variation equal to δ for simplicity, i.e.,

δ ≡ δ� = δg = δr, (10)

(ii) express in dimensionless form the fundamental diagram parameters, (iii) network parameters, and (iv) perform a

density transformation.

For the dimensionless formulation of fundamental diagram parameters, let θ = w�/w�, and measure flow in units

of capacity and density in units of jam density. This gives:

Q = 1, κ = 1, w� = θ + 1 and w� = (θ + 1)/θ. (11)

Notice that this rescaling implies, hereafter, that time is measured in units of critical headway and space in units jam

spacing. For the network parameters, let ρ be the long-run red to green ratio, and λ be the mean dimensionless block
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length measured in units of the mean critical block length μ�∗ ≡ μg/(1/w
� + 1/w�); i.e., λ = μ�/μ�∗ ; see Fig. 3a. As

noted in the figure, since (1/w� + 1/w�) = 1 by (11), we have �∗ = g, and:

ρ ≡
μr

μg

and λ ≡
μ�

μg

. (12)

The density transformation is a mapping (q, k)→ (q, k′) that keeps the same flow but expresses density relative to the

line L : q = (1 − 2k)(1 + θ)/(θ − 1); see Fig. 3b.

k′ = k −
1

2

(
1 −

(
1

w�
−

1

w�

)
q

)
. (density transformation) (13)
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Table 1. Values of the parameters appearing in the RHS of (15) for each strategy. The “=” sign indicates that the entry is equal to the one on the

left.

s0 s1 s2

μn 0 (1 + ρ)/ρ 1

σ2
n 0 (1 + ρ)/ρ2 0

μL 0 μnμ� =

σ2
L

0 μnσ
2
� + σ

2
nμ

2
� =

μR μr
1
2
μr(1 + δ

2) 1
2

(
ρ(1 + δ2) + 2

)
μr/(1 + ρ)

σ2
R
σ2

r (δμR)2 (δ2(ρ(δ2+4ρ+14)+4)+9ρ)μ2
r

4(ρ+1)2

μG μg 0 1
2
μg(1 + δ2)/(1 + ρ)

σ2
G
σ2

g 0
(δ2((δ2+6)ρ+4)+ρ)μ2

g

4(ρ+1)2

This transformation has the advantage of making our problems symmetric; see Fig. 3c. Now (9) becomes:

X = (1 − 2|k′|)L/2 +G, (14a)

Y = L/2 +G + R, (14b)

Notice that the transformed density domain is k′ ∈ [−1/2, 1/2]. It follows that the first moments of (X, Y) are given

by:

μX = (1 − 2|k′|)μL/2 + μG, μY = μL/2 + μG + μR, (15a)

σ2
X = (1 − 2|k′|)2σ2

L/4 + σ
2
G, σ2

Y = σ
2
L/4 + σ

2
G + σ

2
R, (15b)

Cov(X, Y) = (1 − 2|k′|)σ2
L/4 + σ

2
G. (15c)

The values of the parameters appearing in the right-hand side (RHS) of (15) are strategy-specific and are summarized

in Table 1. These entries are based on the definition of each strategy; the following observations are in order: (i)

ns−
1 > 0 is a Geometric random variables with parameter ρ/(1 + ρ); (ii) L =

∑n
j=1 � j for s1 ; (iii) the random variables

R and G, correspond to g and r for s0, they correspond to the “age” of a renewal process for s1, and they are given

by a combination of these for s = s2. To see this latter point, notice that when stopping at an intersection, strategy s1

always lands on a red phase, but strategy s2 could land on either red or green phases. This explains the strategy-s2

entries for R and G in the table, as it represents a weighted average of both cases. The derivation for these entries is

detailed in Appendix A.

The age of a renewal process is a random variable that represents the time since the last occurrence. In our case,

when an observer reaches an intersection during, say, a red phase, it gives the time since the beginning of the red; see

Fig. 2. It has known equilibrium distribution. In the case of R this is (G is analogous):

FR(y) ≡ lim
t→∞

P(R ≤ y) =
1

μr

∫ y

0

(1 − Fr(z))dz (16)

where Fr(·) is the CDF of the red time r. It has also been shown that μR = μr(1 + δ
2
r )/2, a result known as the

inspection paradox (see e.g. Ross, 2000). The variance, however, depends on Fr; it can be shown that the entries

(δμR)2 and (δμG)2 in Table 1 are upper bounds.

With all, we can now evaluate qs given in (7) which turns out to be the function of λ, ρ, and δ only. For the mean

we have:

μs0
=

1

1 + ρ
, (17a)

μs1
(k′) =

1 − 2|k′|

1 + c
, where: c ≡ (1 + δ2)ρ2/(λ(1 + ρ)), (17b)

μs2
(k′) =

1 + δ2 + λ(ρ + 1)(1 ± 2k′)

δ2
(
ρ2 + 1

)
+ (ρ + 1)(λ + ρ + 1)

. (17c)
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It can be seen that the mean of s0 and s1 depend on a single quantity, ρ and c, respectively, while the mean s2 depends

on all three parameters λ, ρ and δ. It is not difficult to see that the mean flow for all cuts is decreasing in ρ and

non-decreasing in λ, as expected. Also, μs1
(and μs2

) decreases (increases) approximately linearly with δ2.

For the squared coefficients of variation, δ2
s ≡ σ

2
s/μ

2
s , we get:

δ2
s0
=
μg

t

2δ2ρ2

ρ + 1
, (18a)

δ2
s1
=
μg

t

(
1 + δ2

)2
ρ3
(
1 + δ2(1 + 2ρ)

)
2(1 + ρ)

((
1 + δ2

)
ρ2 + (1 + ρ)λ

) , (18b)

δ2
s2

(k′) =
μg

t
f (λ, ρ, δ, k′), (18c)

where f (·) is a rather intractable rational function given in Appendix B. Examination of (18) both analytically and

numerically reveals that δ2
s for all strategies is proportional to μg/t and increases (approximately) linearly with both

δ2 and ρ; λ-dependencies are none, decreasing, and concave for strategies s0, s1 and s2, respectively. Also note that

δ2
s1

is independent of k′, which is unexpected and means that the standard deviation σs1
is a linear function of k′, with

maximum at k′ = 0 and vanishing at k′ = ±1/2.

2.2. Corridor MFD

To compute the corridor MFD we recall that the flow at a given density k′ is the minimum of the flow given by

each cut. Since the cuts proposed here can be safely assumed to be statistically independent, we have that the CDF of

the corridor MFD, Fq(k′)(q) = P(q(k′) < q), can be expressed as:

Fq(k′)(q) = 1 − (1 − Fs0
(q))B

∏
s∈Ω

(1 − Fs,k′(q)), (19)

where Ω = {s
�
1
, s�

1
, s
�
2
, s�

2
} and Fs,k′(q) is this CDF of the s-cut, given by Theorem 1, i.e. normal distribution with

parameters given by (17) and (18). The term (1 − Fs0
(q))B corresponds to the CDF of the minimum of B stationary

cuts; this is the only cut requiring this treatment since all other cuts travel at non-zero speeds and therefore visit all

intersections in the corridor.

3. Comparison with simulation

In this section we compare the proposed approximations with the traffic simulation described in Appendix C. This

simulation is an exact numerical solution of the kinematic wave model of Lighthill and Whitham (1955); Richards

(1956) with a triangular fundamental diagram. It can be categorized as a mesoscopic car-following model, whose

boundary conditions have been adapted to replicate the problem analyzed in this paper. The corridor is assumed to be

a ring road, such that exiting flow immediately reenters the corridor. It is important to note that the simulation requires

the same inputs as the theory proposed here: λ, ρ, δ, and also the distribution for �, r and g. Note that the fundamental

diagram parameters θ,Q and K needed for the simulation do not affect the results when presented in canonical form.

For each simulation run, we generate (i) the length and (ii) signal settings for each segment as described earlier,

and (iii) the initial density to load the corridor at t = 0. The output is the average flow over the whole simulation

period of T using Edie’s definitions Edie (1965). A typical simulation run produces the vehicle trajectories shown on

Fig. 4. This process was repeated 8,000 times for each of the 27 combinations of λ = {0.5, 1, 2}, ρ = {0.5, 1, 2} and

δ = {0, 0.1, 0.3}.
Notice that the case δ = 0 implies deterministic input and therefore a homogeneous corridor, where one would

need to define the offset between neighboring traffic signals. Instead, and to make our theory applicable, we set the

very first signal cycle start time as uniformly distributed in the time interval (−(μr + μg), 0) for every intersection,

which produces a random sequence of offsets.

Hereafter we take advantage of the following theorem to expedite the simulation and analysis by focusing on one

side of the transformed fundamental diagram, since the results for the other side are simply a mirror image.
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Fig. 4. Example time-space diagram generated by a typical simulation run. Parameter values: λ = 0.5, ρ = 1 and δ = 0.3.

Theorem 2. (Symmetry). The distribution of the MFD is symmetric with respect to line L.

Proof. This is true because under transformation (13): (i) X−
i

d
= X and Y−

i

d
= Y, X and Y given in (14), for all renewal

cycle i generated under strategy s, and therefore (ii) μ�s = μ
�
s and σ�s = σ

�
s in (6). Fact (i) follows from L

�
i

d
= L�

i
, g
�
i

d
= g�

i
,

r
�
i

d
= r�

i
, and from the term (1 − 2|k′|) being symmetric with respect to k′ = 0.

3.1. Insight from simulation results

The visual inspection of the (q, k) scatter plots produced by the simulation reveals considerable insights; i.e.:

1. only the first two moments of random variables �, r and g have a significant effect in the shape of the MFD, not

so the particular probability distribution,

2. the variance in the flow vanishes at k = 0 and k = κ and appears to be a linearly related to k in the vicinity of

these points, which is consistent with the observations regarding (18b),

3. the number of blocks in the corridor, B, has no significant effects in the mean MFD for B > 5, only in its variance;

see Fig. 5 (top row),

4. the length of the simulation run, T , has no significant effects in the mean MFD for T > 5, only slightly in its

variance; see Fig. 5 (bottom row),

5. capacity increases with λ and decreases with ρ and δ, as expected, but the effects of λ and ρ are the strongest.

Note that assertions 1 and 2 are based on the visual inspection of the simulation output, which are not included as

figures in the paper due to space limitations.

Based on these observations, in the following comparison we use lognormal distributions for �, r and g, B = 15

blocks and T = 15 min simulation runs.

3.2. Comparison

In 21 of the 27 experiments analyzed here, we can say that model (19) captures the general shape of both the

median and the variance the MFD with remarkable accuracy. A sample of these cases is presented in Fig. 6, which

shows q − k′ diagrams where the dots represent individual simulation runs, and the black curves depict the percentile
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Fig. 5. Box-and-whisker plots for the capacity from the traffic simulation with different number of blocks in the corridor, B. Capacity was estimated

only considering data points with a transformed density k′ ∈ [−0.1, 0.1], resulting in a sample size in excess of 1000 in all cases.

curves obtained from (19). Notice that by Theorem 2 we show only one half of the MFD since the other one is a mirror

image. The figure also displays the mean s-cuts μs from (17); notice that the median predicted by (19) is always below

the mean cuts because of the minimum operation involved in (4).

The six cases where discrepancies are observed correspond to very short blocks with moderate red times, i.e.

λ = 0.5 and ρ ≤ 1. These discrepancies are in the order of 15% in capacity, and can be explained by the effect of

short blocks, which is not accounted for explicitly in our model. Interestingly, for long red times the model seems to

capture most of this effect as in this case cuts s−
1

and s−
2

remaining well below s0 near k′ = 0; see lower-right diagram

in Fig. 6.

4. Network MFD ≈ stochastic corridor MFD: evidence from Yokohama

This section describes the notable finding that, in the case of the Yokohama network, if one evaluates the proposed

corridor MFD model (19) at the mean values of λ and ρ across the whole network one obtains a surprisingly good

approximation of the empirical network MFD reported in Geroliminis and Daganzo (2008). This data consisted of

5-min vehicle counts and occupancy measurements from 500 loop detectors located on most major intersections in a

10 km2 area in downtown Yokohama, over a weekend day and a weekday in December 2001.

Notice that all parameters needed to evaluate our model were obtained directly from Table 1 in Geroliminis and

Daganzo (2008); i.e., the mean values λ = 0.8 and ρ = 1.65, along with the values for θ,Q and K needed to perform

the transformation. We used δ = 0.2 but results do not vary significantly with other choices in the range 0.1-0.3.

Fig. 7a presents the original Yokohama data and its transformed version along with the model percentiles in part b

of the figure. The good agreement is apparent, especially near capacity. Notice that using this transformation reveals

that data points in either sides of the symmetry line overlap nicely in Fig. 7b. This indicates that networks may also

subject to the symmetry property put forward in Theorem 2.
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Fig. 6. Comparison between corridor MFD and simulation: q− k′ diagrams where dots represent an individual simulation run and the black curves

depict the percentile curves obtained from (19). The uniform distribution was used in the simulation.

We conjecture that this good agreement might be explained if, across the Yokohama network, (i) link densities are

homogeneous, and (ii) random variables �, g and r are each i.i.d. To see this, consider an alternative definition of the

network MFD consisting of flow-density averages across a set of network paths instead of the individual blocks that

conform the network. This definition is expected to work well if the density along network paths is approximately

constant, and if averages across paths are weighted by this density. These conditions are met when condition (i) is

true, and weighted averages can be replaced by simple averages. If in addition (ii) is satisfied, all network paths can

be viewed as a realization of a stochastic corridor, and therefore it stands to reason that the stochastic corridor MFD

could be a good approximation of the network MFD.

5. Discussion

The main result of this paper is the empirical evidence suggesting that the distribution of the network MFD (i) is

a function of parameters λ, ρ and δ defined here, (ii) can be evaluated with the corridor formulas presented here, and

(iii) is symmetric when using transformation (13). This result is important because it means that real urban networks

can be well approximated by estimating only three observable parameters. This opens the door for a simplified way to

analyze complex urban networks, and enables the application of existing control algorithms that rely on the knowledge

of the network MFD.
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Fig. 7. Yokohama data and comparison with simulation results. Table 1 in Geroliminis and Daganzo (2008) was used to derive λ = 0.8 and

ρ = 1.65, along with the values for θ,Q and K needed to perform the transformation. We use δ = 0.2.

We have seen that corridor capacity increases with λ and decreases with ρ and δ, as expected. This suggests that

a practical solution to gridlock due to short blocks is reducing cycle times, as this would increase λ while keeping

ρ approximately constant. Of course, one should also consider the effect of lost times, which are absent in our

framework. We can also say that designing cities with square blocks of constant length, and-or using a constant split

ratio on main arterials should be beneficial since in these cases the value of δ would decrease.

The following paragraphs address some of the limitations of the proposed framework, which are being investigated

by the authors.

The cuts proposed here were chosen to minimize the overlap of the corresponding observers in the (t, x) plane, to

avoid statistical dependencies due to path overlaps. Additional cuts can be defined with the framework proposed here

but chances are that they will be correlated. In such case, instead of the MFD distribution formula (19) one should use

its general counterpart that involves the joint distribution of all cuts, which may be challenging to identify. Notice,

however, that even for the few cuts proposed here independence cannot be guaranteed for all parameter values; e.g.,

when ρ is very large, observers s1 and s2 would be identical since both would stop at every intersection.

For simplicity in the model analysis, we assumed starting in section 2.1 that all coefficients of variations are equal.

While this assumption may be violated in practice, it is expected that it will still provide a good approximation

because we have seen that λ and ρ are the parameters that affect the shape of the MFD the most. However, from an

analytical perspective this assumption is not necessary and closed-form expressions can also be obtained, albeit more

complicated.

The existence of turning movements is not considered in the present model. However, the good agreement with

the Yokohama MFD suggests that this is a reasonable approximation. The case of heavy turning movements could be

tackled with the Hamilton-Jacobi formulations including source terms.

x

t

-wb
w#

�1

l

�2 �3�2 �3�1

shortest path

detour

influence triangles

l* =3 3�

Fig. 8. Detours a corridor with short blocks.
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The effect of short blocks remains a challenge. They can alter the minimum paths in ways not captured by the

model proposed here. In particular, the stationary cut would no longer be a straight-line observer, but one that “takes

detours” through several neighboring intersections and eventually comes back; see Fig. 8a. A detour will be taken by

the minimum path each time a red phase on the neighboring intersection falls inside the “influence triangle” of the

green phase on the original intersection; see Fig. 8. The height of this triangle is the critical block length �∗ = g, and

therefore a detour can happen if � < g. Since the random variable �∗ − g has mean μg(λ− 1) and variance μ2
gδ

2(λ2 + 1),

it can be shown that, assuming normality and to a first-order approximation, if

λ < 1 + δ, (short block condition), (20)

the probability of detours is non-negligible. The magnitude of the corresponding capacity loss would also depend on

ρ, and we saw in section 3.2 that our model is able to capture the capacity losses even when (20) is violated, except in

the cases λ = 0.5 and ρ ≤ 1, which remain elusive. In the meantime, the following regression model gives the mean

MFD capacity of all the experiments simulated in this paper:

mean capacity =
1

1 + ρ
(
0.58δλ + 1.64λ2 − 5.3λ + 4.99

) , (21)

with an adjusted R2 = 0.997 and a standard error of 0.026. Notice that this expression should give the universal shape

of network capacity and does not require recalibration. This is true because all parameters are dimensionless and they

are the only ones appearing in the formulation proposed in this paper.

In closing, we conjecture that the effect of buses can be approximated with the proposed theory by accounting for

their effect in ρ, even for homogeneous networks. To illustrate this, Fig. 9 presents simulation results of a homoge-

neous network with constant block length and signal settings, λ = 1, ρ = 1 and zero offset, (a) without buses and (b)

with buses running at 2min headways in 10% of the streets making regular stops just upstream of every intersection.

As expected, the MFD without buses is not symmetric and exhibits no variance. However, the presence of buses

has a smoothing effect restoring symmetry to the MFD. This can be explained by the link between stationary and

moving bottlenecks (Laval and Daganzo, 2006; Chiabaut et al., 2014), which means that buses have the same effect

of a sequence of traffic lights, and therefore they change the distribution of the red to green ratio in the network. We

are currently working on an analytical method to obtain the ”adjusted” ρ value given the operational parameters of the

bus fleet. The preliminary result in part b of the figure is encouraging, where it can be seen that the model proposed

here fits the simulation data well with the ”adjusted” ρ value.

homogeneous network without buses(  )a (  )b

free-flow

congestion

with buses

10 0 , 90
th th th
, 5 percentiles

(model)

Fig. 9. The effect of buses. Simulation results of a homogeneous network with λ = 1, ρ = 1 and zero offset, (a) without buses and (b) with buses

running at 2min headways in 10% of the streets making regular stops just upstream of every intersection. In part b the model percentiles from (19)

assume λ = 1, ”adjusted” ρ = 1.7 and δ = 0.2.
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Appendix A. Derivation of R and G for strategy s2

As mentioned in the main text, when stopping at an intersection, strategy s3 can land on either a red or green

phase. Here we are interested in the first moments of the time the observer spends on a red and green phase during

a renewal cycle, R and G, respectively. Let R∗ and G∗ be the time between the landing point and the beginning of

the corresponding phase, i.e. the age of a renewal process with distribution given by (16). Let p = ρ/(1 + ρ) be the

probability that the observer lands on a red, and let I be the indicator variable that equals 1 when the observer lands

on a red, and 0 if it lands on a green. Therefore, E[I] = p and V[I] = p(1 − p). We have:

R = R∗I + r(1 − I), (A.1a)

G = G∗(1 − I) + 0I, (A.1b)

with means given by

μR = μR∗ p + μr(1 − p), (A.2a)

μG = μG∗ (1 − p), (A.2b)

and variances:

σ2
R = σ

2
R∗ p

2 + (1 − p)2σ2
r + p(1 − p)(E[(R∗)2] + E[r2] + 2μrμR∗ ), (A.3a)

σ2
G = σ

2
G∗ (1 − p)2 + E[(G∗)2]p(1 − p), (A.3b)

Where we have used the conditional variance formula, e.g. σ2
G
= E[V[G|G∗]] + V[E[G|G∗]]. In addition, for (A.3a)

one needs Cov(IR∗, r(1− I) = μrμR∗V[I]. Replacing the terms in the RHS of (A.2) and (A.3) by the expressions given

in the main text results in the entries for R and G in Table 1.

Appendix B. Function f (λ, ρ, δ, k′)

For completeness, here we give expression for f (λ, ρ, δ, k′) in (18c):

f (λ, ρ, δ, k′) =
ρ2A + 4k′2λ2(ρ + 1)2B + 4|k′|λ(ρ + 1)ρC

2(ρ + 1)(δ2(ρ2 + 1) + (ρ + 1)(λ + ρ + 1))(δ2 + λ(ρ + 1)(1 − 2|k′|)2
(B.1)

where:

A =δ10ρ(ρ + 1)2 + δ8ρ(2λ(ρ + 1)2 + 5ρ2 + 12ρ + 9) + δ6·

(2λ2ρ4 + (5λ2 + 6λ + 10)ρ3 + 2(2λ2 + 7λ + 14)ρ2 + (λ2 + 8λ + 34)ρ + 8) + δ4·

(λ2ρ(4ρ + 7)(ρ + 1)2 + λ(6ρ3 + 34ρ2 + 36ρ + 8) + 2(5ρ3 + 16ρ2 + 29ρ + 8)) + δ2·

(λ2(ρ + 1)2(2ρ2 + 15ρ + 8) + 2λ(ρ3 + 21ρ2 + 24ρ + 4) + 5ρ3 + 18ρ2 + 45ρ + 8) + ρ·

(9λ2(ρ + 1)2 + 18λ(ρ + 1) + ρ2 + 4ρ + 13)

B =δ6(2ρ4 + ρ3 + 2ρ2 + ρ + 2) + δ4(4ρ4 + 7ρ3 + 4ρ2 + 7ρ + 4) + δ2·

(2ρ4 + 15ρ3 + 10ρ2 + 7ρ + 2) + 9ρ3 + ρ
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C =δ8ρ(ρ2 − 1) + δ6(ρ + 1)(2λρ3 + (λ + 3)ρ2 + (λ − 3)ρ − 2) + δ4·

(λ(4ρ4 + 11ρ3 + 9ρ2 + 4ρ + 2) + 3ρ3 + 8ρ2 − 5ρ − 4) + δ2·

(λ(2ρ4 + 17ρ3 + 24ρ2 + 11ρ + 2) + ρ3 + 16ρ2 − 3ρ − 2) + ρ(9λρ2 + (9λ + 8)ρ − 2)

Appendix C. Traffic simulation

This traffic simulation used in this paper is mesoscopic car-following model that gives the exact numerical solu-

tion of the kinematic wave model of Lighthill and Whitham (1955); Richards (1956) with a triangular fundamental

diagram, in terms of the position of vehicle n at time t, X(t, n). Here we use the lattice implementation as described

in Laval and Leclercq (2013), where vehicle number and time are discretized in increments of Δn and Δt. A “tilde”

denotes a dimensionless quantity, e.g. t̃ = t/Δt. This gives the lattice X-model in Laval and Leclercq (2013):

Xt̃,̃n = min
{
Xt̃−1,̃n + θΔx, Xt̃−1,̃n−1 − Δx

}
(C.1)

To keep the solution exact, θ has to be an integer and Δn = κΔx,Δt = Δx/w. The increment Δx is arbitrary and gives

flexibility to this model; it is set such that smallest segments in our simulation has at least eight spatial increments,

i.e. Δx = max[1/κ, �min/8]. The parameters used on the simulation are: w = 20 km/hr, κ = 150 veh/km, θ = 4,

μ� = .2 km, number of signals B = 15, and simulation time T = 15 min. The remaing variables are therefore:

μg = μ�(1/w
� + 1/w�)/λ and μr = μgρ. Finally, we calculate the average flow over the whole simulation period using

Edie’s definitions Edie (1965); i.e.:

q =
Δn

LT Q

∑
ñ

(XT̃ ,̃n − X0,̃n). (C.2)
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