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Separation of two particles is characterized by a magnitude of the bond energy, which limits the accumu-
lated energy of the particle interaction. In the case of a solid composed of many particles a magnitude of
the average bond energy – the failure energy – exists, which limits the energy that can be accumulated in
an infinitesimal material volume under strain. The energy limiter controls material softening, which indi-
cates failure. Thus, by limiting the stored energy density it is possible to include a description of material
failure in the constitutive model. When the failure energy, i.e. the energy limiter, is introduced in the con-
stitutive model it can be calibrated in macroscopic experiments. Traditional elasticity models do not have
energy limiters and they allow for the unlimited energy accumulation under the strain increase, which is
physically meaningless because no material can sustain large enough strains without failure. We use
elasticity with energy limiters for modeling dynamic failure propagation in brittle solids. Two models
of isotropic Hookean solids with energy limiters are introduced and examined in simulations of the pen-
etration of a projectile into a brittle plate in the present work. The first model uses the energy limiter with
the overall energy term while the second model has separate energy limiters for the volumetric and devi-
atoric components. The results of the penetration simulation obtained by using both models are similar
qualitatively. It is remarkable that the penetration depth is mesh-independent for fine meshes even with-
out the special regularization procedures. This is the first work where the methods of elasticity with
energy limiters are used in dynamic analysis of brittle failure.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Continuum mechanics approaches for modeling material failure
can be divided in two groups: surface and bulk models. The surface
models, pioneered by Barenblatt (1959), appear by name of Cohe-
sive Zone Models (CZM) in the modern literature. They present
material surfaces – cohesive zones – where displacement disconti-
nuities occur. The discontinuities are enhanced with constitutive
laws relating normal and tangential displacement jumps with the
corresponding tractions. There are a plenty of proposals of
constitutive equations for the cohesive zones: Dugdale (1960), Rice
and Wang (1989), Tvergaard and Hutchinson (1992), Xu and Nee-
dleman (1994) and Camacho and Ortiz (1996), for example. All
CZM are constructed qualitatively as follows: tractions increase,
reach a maximum, and then approach zero with the increasing
separation. Such a scenario is in harmony with our intuitive under-
standing of the rupture process. Since the work by Needleman
(1987) CZM are used increasingly in finite element simulations of
crack tip plasticity and creep; crazing in polymers; adhesively
bonded joints; interface cracks in bimaterials; delamination in
composites and multilayers; fast crack propagation in polymers
ll rights reserved.
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and etc. Cohesive zones can be inside finite elements or along their
boundaries (Xu and Needleman, 1994; Moes et al., 1999; De Borst,
2001). Crack nucleation, propagation, branching, kinking, and ar-
rest are a natural outcome of the computations where the discon-
tinuity surfaces are spread over the bulk material. The latter is in
contrast to the traditional approach of fracture mechanics where
stress analysis is separated from a description of the actual process
of material failure.

The models of bulk failure, pioneered by Kachanov (1958,
1986), Rabotnov (1963), appear by name of Continuum Damage
Mechanics (CDM) in the modern literature. Originally, CDM aimed
at analysis of the gradual failure accumulation and propagation in
creep and fatigue and it appeared almost simultaneously with the
cohesive zone approach. The need to describe the failure accumu-
lation, i.e. evolution of the material microstructure, explains why
CDM is very similar to plasticity theories including (a) the internal
damage variable (inelastic strain), (b) the critical threshold condi-
tion (yield surface), and (c) the damage evolution equation (flow
rule). The subsequent development of the formalism of CDM (sum-
marized in: Krajcinovic, 1996; Skrzypek and Ganczarski, 1999;
Lemaitre and Desmorat, 2005) left its physical origin well behind
the mathematical and computational techniques and, eventually,
led to the use of CDM for the description of any bulk failure –
see a discussion by Kachanov (1994). Theoretically, the approach

https://core.ac.uk/display/82614299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.ijsolstr.2010.08.016
mailto:cvolokh@technion.ac.il
http://dx.doi.org/10.1016/j.ijsolstr.2010.08.016
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr


Fig. 1. Theory versus experiment for uniaxial tension of AAA material. r11 and k are
the axial Cauchy stress and stretch accordingly (Volokh and Vorp, 2008).

1 We do not specify the tensorial norm intentionally because various norms can be
used.

2 More sophisticated models to control softening are presented in Trapper and
Volokh (2010), for example.
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of CDM is very flexible and it allows reflecting physical processes
triggering macroscopic damage at small length scales. Practically,
the experimental calibration of CDM is not trivial because it is dif-
ficult to measure the damage parameter directly. The experimental
calibration should be implicit and include both the damage evolu-
tion equation and criticality condition.

A physically-motivated alternative to damage mechanics in the
cases of failure related with the bond rupture has been considered
recently by Gao and Klein (1998), Klein and Gao (1998) who
showed how to mix the atomic/molecular and continuum descrip-
tions in order to simulate material failure. They applied the so-
called Cauchy–Born rule linking micro- and macro- scales to
empirical potentials, which include a possibility of the full atomic
separation. The continuum-atomistic link led to the formulation of
the macroscopic strain energy potentials allowing for the stress/
strain softening and strain localization. The continuum-atomistic
method is effective at small length scales where purely atomistic
analysis becomes computationally intensive. Unfortunately, a di-
rect use of the continuum-atomistic method in macroscopic failure
problems is not very feasible because its computer implementation
includes a numerically involved procedure of the averaging of the
interatomic potentials over a representative volume. In order to
bypass the computational intensity of the continuum-atomistic
method while preserving its sound physical basis the softening
hyperelasticity approach was developed by Volokh (2004), Volokh
(2007), Volokh (2008b). The basic idea of softening hyperelasticity
is to formulate an expression of the stored macroscopic energy,
which would include the energy limiter(s) – the average bond en-
ergy. Such a limiter automatically induces strain softening, that is a
material failure description, in the constitutive law.

To motivate the introduction of energy limiters we briefly de-
scribe the continuum-atomistic link. A more detailed exposition
of the issue can be found in Volokh (2008b), for example.

Interaction of two particles (atoms, molecules, etc.) can be de-
scribed as follows:

wðFÞ ¼ uðFÞ �u0; u0 ¼min
L

uðF ¼ 1Þ: ð1:1Þ

Here w is the particle interaction potential; F is the one-dimensional
deformation gradient which maps the distance between particles
from the reference, L, to the current, l, state: l = FL. To be specific
we choose the Lennard–Jones potential, for example, u = 4e[(r/
l)12�(r/l)6], where e and r are the bond energy and length constants
accordingly. By direct computation we can find the energy limiter
or the failure energy, U. Indeed, increasing deformation we cannot
increase the energy unlimitedly

wðF !1Þ ¼ �u0 ¼ U ¼ constant: ð1:2Þ

Analogously to the case of the pair interaction it is possible to
consider particle assemblies. Applying the assumption of applica-
bility of continuum mechanics to the description of such assem-
blies, i.e. using the Cauchy–Born rule, it is possible to derive the
following stored energy function analogously to (1.1)

wðCÞ ¼ uðCÞh i � uh i0; uh i0 ¼min
L

uðC ¼ 1Þh i: ð1:3Þ

Here C = FTF is the right Cauchy–Green deformation tensor
where F = @y/@x is the deformation gradient of a generic material
macro-particle of body X occupying position x at the reference
state and position y(x) at the current state of deformation. The
average in (1.3) is defined as uðCÞh i ¼ V�1

0

R
V�0

4e½ðr=LkCkÞ12�
ðr=L Ck kÞ6�DV dV in the case of the Lennard–Jones potential, where
the tensorial norm designates stretch in the bond direction; DV is
the volumetric bond density function; and V�0 is the integration
volume defined by the range of influence of u; and V0 is the refer-
ence representative volume.
Analogously to (1.2), we can find the energy limiter, U, increas-
ing the deformation unlimitedly

U ¼ wð Ck k ! 1Þ ¼ � uh i0 ¼ constant: ð1:4Þ

Thus, the average bond energy sets a limit for the energy accumu-
lation. This conclusion generally does not depend on the choice of
the particle potential and it is valid for any interaction that in-
cludes a possible particle separation.

Contrary to the conclusion above traditional hyperelastic mod-
els of materials do not include the energy limiter. The stored en-
ergy of hyperelastic materials is defined as:

w ¼W: ð1:5Þ

Here W is used for the strain energy of the intact material, which
can be characterized as follows:

Ck k ! 1) w ¼W !1; ð1:6Þ

where k. . .k is a tensorial norm.1

In other words, the increasing strain increases the accumulated
energy unlimitedly. Evidently, the consideration of only intact
materials is restrictive and unphysical. The energy increase of a
real material should be limited as it was shown above,

Ck k ! 1) w! U ¼ constant; ð1:7Þ

where the average bond energy, U = constant, can be called the
material failure energy.

Eq. (1.7) presents the fundamental idea of introducing a limiter
of the stored energy in the elasticity theory. Such a limiter induces
material softening, indicating material failure, automatically. The
choice of the limited stored energy expression should generally be
material/problem-specific.

An example of the experimental calibration of energy limiters
can be found in Volokh and Vorp (2008) for the case of the material
of abdominal aortic aneurysm (AAA). AAA is rubberlike and its
strain energy can be written as follows: w = U�Uexp(�a1

(trC � 3)/U � a2(trC � 3)2/U), where a1 and a2 are the elasticity
constants of the material; and U is the energy limiter (failure en-
ergy). The uniaxial tension test results are shown in Fig. 1, where
the model was fitted with the following constants: a 1 = 10.3 N/
cm2; a2 = 18.0 N/cm2; U = 40.2 N/cm2. It is worth emphasizing that
energy limiters set failure energy per unit volume contrary to the
traditional approach which sets failure energy per unit area.

The softening hyperelasticity approach is computationally sim-
ple yet physically appealing. The approach proved itself in a num-
ber of problems varying from failure of brittle materials to rubbers
and soft biological tissues2: Volokh (2004), Volokh (2007), Volokh



Fig. 2. Stress–strain curve in hydrostatic tension/compression: the complete failure
criteria (2.9) are met at the starred point.

Fig. 3. Stress–strain curve in simple shear: the complete failure criteria (2.9) are
met at the starred points.
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(2008a), Volokh (2008b), Trapper and Volokh (2008), Trapper and
Volokh (2009), Volokh and Trapper (2008), Volokh and Vorp
(2008). Besides, Gei et al. (2004), Gearing and Anand (2004) used
variants of hyperelasticity with softening in the context of ductile
and ductile–brittle failure accordingly. One should be careful, how-
ever, with treating ductile behavior by using energy limiters because
material failure during plastic deformation is essentially due to
microstructural changes rather than the bond rupture. The latter
means that the approach of energy limiters may not be applicable
in the case of inelasticity on physical grounds.

All mentioned works use elasticity with energy limiters for the
prediction of the global material/structural instability. The present
work aims at extending the approach to the problems of the dy-
namic failure propagation. The outline of the paper is as follows.
In Section 2 we introduce two different models of the Hookean so-
lid with energy limiters and discuss their features by considering
deformations under hydrostatic tension/compression and simple
shear In Section 3 we present the results of 3D simulations of the
high-velocity penetration of an elastic–plastic projectile into a brit-
tle plate described by the introduced models of elasticity with en-
ergy limiters. We compare the results for the different models and
monitor the influence of mesh size on the depth of the projectile
penetration. The general discussion of the proposed approaches
and simulation results is present in Section 4.

2. Hookean elasticity with energy limiters

The Hookean elasticity defined below is a limit case (after line-
arization) for any theory embedding the energy limiters

W ¼ k
2
ðtreÞ2 þ le : e ¼ K

2
ðtreÞ2 þ le : e; ð2:1Þ

r ¼ @W
@e
¼ kðtreÞ1þ 2le ¼ KðtreÞ1þ 2le; ð2:2Þ

e ¼ e� tre
3

1; ð2:3Þ

2e ¼ @u
@x
þ @u

@x

� �T

; ð2:4Þ

where W is the strain energy; r is the Cauchy stress tensor; 1 is the
identity tensor; e is the deviator of the small strain tensor e;
u = y(x) � x is the displacement vector; K ¼ kþ 2

3 l is the bulk mod-
ulus; k ¼ Em

ð1þmÞð1�2mÞ and l ¼ E
2ð1þmÞ are the Lame moduli; E is the Young

modulus; and m is the Poisson ratio.
In what follows we modify (2.1) enforcing various descriptions

of material failure.

2.1. The 1st model with energy limiters

The first model with the energy limiter, U, takes the following
form

w ¼ U�U 1þ
ffiffiffiffi
K
U

r
tre

 !
exp �

ffiffiffiffi
K
U

r
tre� l

U
e : e

 !
; ð2:5Þ

r ¼ @w
@e
¼ eK ðtreÞ1þ 2~le; ð2:6Þ

where

eK ¼ K exp �
ffiffiffiffi
K
U

r
tre� l

U
e : e

 !
; ð2:7Þ

~l ¼ l 1þ
ffiffiffiffi
K
U

r
tre

 !
exp �

ffiffiffiffi
K
U

r
tre� l

U
e : e

 !
: ð2:8Þ

When linearized the model reduces to the Hooke law, (2.1) and
(2.2): eK ¼ K and ~l ¼ l.
Targeting simulations of the dynamic failure processes it is
important to complete the model with criteria for dropping failed
finite elements. We choose specifically

w P U and rk k ¼
ffiffiffiffiffiffiffiffiffiffiffi
r : r
p

¼ 0: ð2:9Þ

This criterion takes into account a possibility of the unbounded en-
ergy accumulation under hydrostatic compression. In the latter case
the stored energy can exceed the limiting value without the decline
in stresses.

We consider two simple homogeneous deformations to get bet-
ter insight in the presented material model. We start with the
hydrostatic tension/compression. In this case we have e11 =
e22 = e33 and r11 = r22 = r33 and the constitutive law reduces to

r11 ¼ 3Ke11 exp �
ffiffiffiffi
K
U

r
3e11

 !
: ð2:10Þ

Fig. 2 presents (2.10) graphically for a sample brittle material:
E = 315,000 MPa; m = 0.24; U = 0.65 MPa.

It is easily observed that failure starts at the limit point in ten-
sion and it is completed at the starred point where the criteria for
dropping failed finite elements, (2.9), are obeyed. There is no mate-
rial failure in pure hydrostatic compression.

Now we consider simple shear. In this case we have only
e12 = e21 and r12 = r21 and the constitutive law reduces to

r12 ¼ 2le12 exp �2
l
U

e2
12

� �
: ð2:11Þ

Fig. 3 presents (2.10) graphically for a sample material: E = 315,000
MPa; m = 0.24; U = 0.65 MPa.



Fig. 4. Stress–strain curve in hydrostatic tension/compression: the complete failure
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Failure starts at the limit points and it is completed at the
starred points where the criteria for dropping failed finite ele-
ments, (2.9), are obeyed.

Remark 1. In computations we set value Tol = 10�5 for zero
tolerance in (2.9)2: krk 6 Tol. Dropping the failed elements is
necessary in order to prevent from the material healing when a
returning wave of deformation can restore the failed elements. The
element ‘killing’ or removing procedure is an integral part of the
available finite element software dealing with the failure simula-
tions. Usually, the elements are removed forcefully when a
criterion of the removal is obeyed. In our case, however, contrary
to the widespread finite element technologies there is no need to
kill the elements – they die on their own – and it is only necessary
remove the failed elements.
criteria (2.18) are met at the starred point.

Fig. 5. Stress–strain curve in simple shear: the complete failure criteria (2.18) are
met at the starred points.
2.2. The 2nd model with energy limiters

The second model introduces separate failure modes related
with volumetric and shape changes with the help of two energy
limiters, U1 and U2,

w ¼ w1 þ w2; ð2:12Þ

w1 ¼ U1 �U1 1þ

ffiffiffiffiffiffi
K
U1

s
tre

 !
exp �

ffiffiffiffiffiffi
K
U1

s
tre

 !
; ð2:13Þ

w2 ¼ U2 �U2 exp � l
U2

e : e
� �

; ð2:14Þ

r ¼ @w
@e
¼ eK ðtreÞ1þ 2~le; ð2:15Þ

where

eK ¼ K exp �

ffiffiffiffiffiffi
K
U1

s
tre

 !
; ð2:16Þ

~l ¼ l exp � l
U2

e : e
� �

: ð2:17Þ

When linearized the model reduces to the Hooke law, (2.1) and
(2.2): eK ¼ K and ~l ¼ l.

We choose the following criteria of the element failure

w1 P U1 and jtrrj ¼ 0 or w2 ¼ U2: ð2:18Þ

The first criterion takes into account the possibility of the un-
bounded energy accumulation under hydrostatic compression as
in the case of the 1st model in the previous subsection. The second
criterion is related with the distortional failure.

In the case of the hydrostatic tension/compression we have
e11 = e22 = e33 and r11 = r22 = r33 and the constitutive law reduces to

r11 ¼ 3Ke11 exp �

ffiffiffiffiffiffi
K
U1

s
3e11

 !
: ð2:19Þ

Fig. 4 presents (2.19) graphically for a sample brittle material:
E = 315,000 MPa; m = 0.24; U1 = 0.55 MPa.

Failure starts at the limit point in tension and it is completed at
the starred point where the criteria for dropping failed finite ele-
ments, (2.18), are obeyed. There is no material failure in pure
hydrostatic compression.

In this case of simple shear we have e12 = e21 and r12 = r21 and
the constitutive law reduces to

r12 ¼ 2le12 exp �2
l
U2

e2
12

� �
: ð2:20Þ

Fig. 5 presents (2.20) graphically for a sample brittle material:
E = 315,000 MPa; m = 0.24; U2 = 0.45 MPa.
Failure starts at the limit points and it is completed at the
starred points where the criteria for dropping failed finite ele-
ments, (2.18), are obeyed.

3. Dynamic failure simulations

We implement the described analytical models with the help of
the user defined subroutine VUMAT within ABAQUS/EXPLICIT
(2008) finite element software. It is important to emphasize that
during the process of material failure some finite elements can un-
dergo large Rigid Body Motion (RBM) without developing large
stretches/strains. RBM can distort the results of analysis if the
small deformation formulations of the previous section are
adopted. To suppress the influence of RBM in numerical simula-
tions it is possible, for example, to replace the linear strain, e, with
the Green strain

E ¼ 1
2
ðFT F� 1Þ ¼ 1

2
ðU2 � 1Þ: ð3:1Þ

Here the polar decomposition of the deformation gradient,
F = RU, is used where the proper orthogonal tensor, R, represents
local rotations and the symmetric positive definite tensor, U, repre-
sents local stretching. Evidently, the Green strain is not affected by
RBM and, moreover it approximately coincides with the linear
strain for small deformations.

Substituting the Green strain in the strain energy functions
introduced in the previous section we obtain the 2nd Piola–Kirch-
hoff stress



Fig. 6. High-velocity penetration of a projectile into a brittle plate.

Fig. 7. Constitutive description of the elastic–plastic projectile.
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S ¼ @wðEÞ
@E

; ð3:2Þ

which is related to the Cauchy stress as follows:

r ¼ ðdet FÞ�1FSFT : ð3:3Þ

It is important that in the considered cases of brittle materials
the stretching is small, which implies

r ffi RSRT ; ð3:4Þ

or

S ffi RTrR: ð3:5Þ

The latter equation means that the 2nd Piola–Kirchhoff stress is
equal to the Cauchy stress rotated to the reference configuration.
Thus, S has a clear and convenient physical meaning.3 Obviously,
the material failure indicators are invariant with respect to the
choice of r or S in computations.

We simulate 3D impact and penetration of a cylindrical projec-
tile on the edge of a plate fixed at its bottom – Fig. 6.

The projectile is elastic–plastic with mass density, q = 7.85 g/
cm3; elasticity modulus, E = 207,000 MPa; Poisson ratio, m = 0.3;
and the stress–strain curve defined in Fig. 7.

The brittle plate has mass density, q = 3.67 g/cm3; elasticity
modulus, E = 315,000 MPa; Poisson ratio, m = 0.24; and its constitu-
tive models have been defined in the previous section. Since the
plate is thin the failed material is not stored and there is no need
to consider its hydrostatic resistance.

We present four series – Figs. 8–11 – of dynamic simulations of
impact at the velocity of 300 m/s by using different meshes.

The first series of simulations presented in Fig. 8 is based on the
first material model with energy limiters with failure energy,
U = 0.65 MPa. We use three variants of the 3D finite element mesh:
the coarse mesh of 21,600 = 60 � 60 � 6 brick elements; the inter-
mediate mesh of 51,200 = 80 � 80 � 8 is 80 brick elements; and
the fine mesh of 100,000 = 100 � 100 � 10 brick elements. The
plate is cut into two pieces. During penetration a cavity is created
in front of the projectile, which propagates and leads to the total
fracture – Fig. 8a. The dissipated energy is presented in the dimen-
sionless form in Fig. 8b where it is shown how the relative volume
of the eroded elements evolves in time. In order to calculate the
absolute value of the dissipated energy it is necessary to multiply
the absolute volume of the eroded elements by the constant of
the failure energy, U = 0.65 MPa.
3 Similar situation takes place in the case of stiff yet flexible thin-walled structures.
Similar results are observed in the second series of simulations
presented in Fig. 9, which is based on the second material model
with energy limiters and failure energies, U1 = 0.55 MPa and
U2 = 0.45 MPa. 3D meshes of 21,600 = 60 � 60 � 6; 51,200 = 80 �
80 � 8; and 100,000 = 100 � 100 � 10 brick elements have been
used. All element failures occurred in distortion when elements
reached the critical failure energy U2 = 0.45 MPa. In order to calcu-
late the absolute value of the dissipated energy it is necessary to
multiply the absolute volume of the eroded elements shown in
Fig. 9b by U2 = 0.45 MPa.

Though the similarity in the projectile propagation has been ob-
served for various meshes it is interesting to analyse the depth of the
penetration when the projectile stops without cutting the plate
completely. For this purposes we increased the magnitude of failure
energies. The third series of simulations presented in Fig. 10 is based
on the first material model with failure energy: U = 1.3 MPa. We use
three 3D finite element meshes of 100,000 = 100 � 100 � 10;
274,400 = 140 � 140 � 14; and 583,200 = 180 � 180 � 18 brick ele-
ments. The projectile penetrates approximately to the middle of the
plate without cutting it. There is a slight effect of the mesh size: the
coarse mesh is a bit stiffer.

Similar results on the arrested penetration are observed in the
fourth series of simulations presented in Fig. 11, which is based
on the second material model with failure energies, U1 = 1.1 MPa
and U2 = 0.9 MPa. Again, we use three 3D finite element meshes
of 100,000 = 100 � 100 � 10; 274,400 = 140 � 140 � 14; and
583,200 = 180 � 180 � 18 brick elements and observe that the
coarse mesh leads to a stiffer response while the intermediate and
fine meshes provide similar results. Again, all element failures oc-
curred in distortion when elements reached the critical failure en-
ergy U2 = 0.9 MPa. In order to calculate the absolute value of the
dissipated energy it is necessary to multiply the absolute volume
of the eroded elements shown in Fig. 11b by U2 = 0.9 MPa.
4. Discussion

The Hookean model of brittle solids allows material to accu-
mulate strain energy unlimitedly. The latter is unphysical and
the possibility of material failure should be included in the theo-
retical description. A way to describe failure is to introduce en-
ergy limiters in the expression of the strain energy. This idea is
essentially an extension of the description of two particle separa-
tion to large amounts of particles – continuum. The methods of
elasticity with energy limiters are dramatically simpler than the
existing methods of Continuum Damage Mechanics, for example,
that are traditionally used for modeling bulk failure. We strongly
emphasize, however, that the elasticity with energy limiters is not
a universal substitute for Continuum Damage Mechanics. Materi-
als exhibiting essential structural changes during deformation,
e.g. plasticity, creep, fatigue, are beyond the scope of the methods
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Fig. 9. Projectile penetration in the case of the second material model with U1 = 0.55 MPa and U2 = 0.45 MPa: (a) accumulated failure at 1, 2, 3, and 4 ms, (b) relative eroded
volume (dissipated energy) for various finite element meshes.
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Fig. 8. Projectile penetration in the case of the first material model with U = 0.65 MPa: (a) accumulated failure at 1, 2, 3, and 4 ms, (b) relative eroded volume (dissipated
energy) for various finite element meshes.
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of energy limiters, which do not describe the structural changes in
materials except for the complete failure because of the bond
rupture.
Elasticity with energy limiters is an example of material models
with softening. Generally, material models with softening have
been extensively discussed in the literature. It is clear from the
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Fig. 10. Projectile penetration in the case of the first material model with U = 1.3 MPa: (a) accumulated failure at 1, 2, 3, and 4 ms, (b) relative eroded volume (dissipated
energy) for various finite element meshes.
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Fig. 11. Projectile penetration in the case of the second material model with U1 = 1.1 MPa and U2 = 0.9 MPa: (a) accumulated failure at 1, 2, 3, and 4 ms, (b) relative eroded
volume (dissipated energy) for various finite element meshes.
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discussions that such models fail to predict, for example, the width
of the shear band without introducing a characteristic material
length. The reason is that the physical processes triggering the
band formation take place at the length scales where the classical
length-independent continuum mechanics may not be applicable.
Extrapolating from the shear band example, the whole approach
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of the constitutive equations with softening within the framework
of the classical/local continuum mechanics was questioned. It was
argued that the models with softening exhibit the ‘pathological’
mesh-sensitivity in the finite element analysis. That meant specif-
ically that the results of computations would not converge to a lim-
it under the mesh refinement. For example, the width of the failure
zone localized within a strip of one element width would decrease
with the mesh refinement. The latter observation can be inter-
preted as follows: the finite element meshes ‘search’ for the mini-
mum failure size and cannot find it. Such mesh-sensitivity
indicates that deformation tends to localize in material volumes
smaller than the representative ones4 or, in other words, the path-
ological mesh-sensitivity is an indicator of the failure the classical/
local continuum mechanics. The results of our computations show
that failure may not tend to localize sharply in material volumes
smaller than the representative material volumes of continuum
mechanics and, consequently, there is no pathological mesh-sensi-
tivity. No sharp localization – no pathology. Even in the absence of
sharp localizations or in the cases where such localizations are di-
rectly enforced in analysis high strain gradients and the bifurcation
multiplicity are two main sources of mesh-sensitivity. Evidently
the necessity to treat high strain gradients by refining the mesh is
not specific of the material models with softening – this is the cen-
tral issue of the finite element analysis as a whole. The bifurcation
multiplicity, which means that the solution of the governing equa-
tions splits into multiple branches at a critical bifurcation point, is
more typical of the models with softening. It is worth noting that
both bulk and surface (cohesive zone) models can suffer from the
bifurcation multiplicity. The latter may trigger some uncertainty,
i.e. mesh dependency, of numerical simulations. It seems reasonable
to assume that the numerical uncertainty reflects the real physical
uncertainty of the problem of material failure. One can regularize
mathematics not physics.

Finally, we emphasize again that the developed approach aims
at modeling the massive bulk failure that cannot be tackled by the
cohesive zone or embedded discontinuity approach, which pre-
scribes the appearance of cracks in advance. It is probably possi-
ble to extend the considered approach to modeling sharp
localizations – cracks. The main complexity here is that the elas-
ticity with energy limiters (as well as the classical continuum
damage mechanics) does not possess a characteristic length. The
latter is the reason why results of the finite element simulations
will depend on the size, h, of the element when failure tends to
localize in narrow zones – cracks. To make the calculations objec-
tive it is necessary to derive the physically reasonable value of the
element size. Let us assume that the volumetric failure energy is
U and, consequently, the energy dissipated by one spatial ele-
ment is � Uh3. If failure localizes into a surface with the surface
failure energy G then the dissipated element energy is � Gh2.
Equalizing both element energies, we get the element size:
h � G/U. Of course, the derivation of G requires tests where the
failure localization is controlled by the preexisting notches, for
example. Alternatively, other regularization procedures can be
considered. For example, the regularization can be based on the
generalized continuum formulation embedding the characteristic
length – higher-order, gradient, or non-local theories (de Borst
and van der Giessen, 1998); or the Hillerborg et al. (1976) ap-
proach where a characteristic length is introduced directly in
the finite element model; or, possibly, by introducing the rate
dependence in the constitutive or balance equations (Needleman,
1988; Zhang et al., 2002).
4 We do not specify the size of the representative volume though that is possible
for every specific material.
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