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1. Introduction

The aim in this work is to study the Cauchy problem of the generalized two-dimensional (2D)
Ginzburg-Landau equation:

U — (@ 4 B AU+ [uP(F - Vu) +u? (X - ViD) + (@1 + fidlul*u=0, x.1)eR*xRY,  (11)

u(x, 0) = up(x) € H(R?), (1.2)
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where i(x, t) is the complex conjugate of u(x,t), 8, 1 are real numbers, & >0, a1 > 0; ¥ = (¥1, 12)
and i = (A1, A2) are complex vectors.

The generalized Ginzburg-Landau (GGL) equation arises as the envelope equation for a weakly sub-
critical bifurcation to counter-propagating waves. It is also of importance in the theory of interaction
behavior, including complete interpenetration as well as partial annihilation, for collision between
localized solutions corresponding to a single particle and to a two particle state. For details of the
physical backgrounds of the GGL equation, one can refer to [1,5,6].

Ify = » =0, then Eq. (1.1) becomes the Ginzburg-Landau (GL) equation

ur — (o + B)Au+ (aq + B |ul*u=0, (x,t) eR?>xR*. (1.3)

It is an important model in the description of spatial pattern formation and of the onset of instabil-
ities in non-equilibrium fluid dynamical systems, as well as in the theory of phase transitions and
superconductivity [4].

For the well-posedness of 2D GL equation (1.3), Bu [3] showed that the Cauchy problem (1.3)
and (1.2) is locally well-posed in H? if o > 0, ; > 0, and globally well-posed in H3 if |81] < %oq
or BB1 > 0. In fact, the condition o7 > 0 is redundant for local result, which is killed in this paper
without any penalty. One can find it in this paper.

For 1D and 2D GGL equation (1.1), there are several papers [7,8,10,13,14] related to the well-
posedness of the Cauchy problem (1.1) and (1.2). Notice that these papers mainly consider the global
well-posedness in energy space H' or H2. Moreover, these authors treated Eqs. (1.1) and (1.3) as
parabolic equations, used the time-space LP-L" estimates method [13,14] or semigroup method [12]
to obtain the local results.

Recently, Molinet and Ribaud [11] used the Bourgain’s space with dissipation to consider the KdV-
Burgers equation

U 4+ Uxx — Uxx +UUx =0, (x,t) e R x R™. (1.4)

They showed that it is globally well-posed in H® with s > —1. Enlightened by some ideas in [11], we
will use this method to consider Eq. (1.1) in both 1D and 2D cases. In fact, for 1D GGL equation, we
showed that the Cauchy problem (1.1) and (1.2) is locally well-posed in HS with s > 0, and globally
well-posed in H® with s > 0 under some conditions in [9].

In this paper, we consider the Cauchy problem (1.1) and (1.2) in two-dimensional case. We will
prove that if o > 0, then it is locally well-posed in H® with s > 1/2. Furthermore, it is globally well-
posed in H with s > 1/2 under some conditions. The space H'/2 is critical one for Eq. (1.1). Therefore,
our results on local and global well-posedness are sharp except the endpoint s =1/2.

1.1. Definitions and notations

The Cauchy problem (1.1) and (1.2) is rewritten as the integral equivalent formulation

t
ux,t) = Sa (H)up — / Sat —t)(Jul (@ - Vu) +u? (k- VD) + (@1 + Bri)|ul*u) @) dt’,  (15)
0

where Sy (t) = f)j]e*ifﬂ‘é‘ze*"'“‘g‘zfx is the semigroup associated to the linear GGL equation.
For s,b € R, we define the Bourgain’s spaces with dissipation for (1.1) endowed with the norms

lully,, = |@i(z — 1€12) + g1 ac, r>||L§ i (1.6)

2 teR

Iully,, =€z +16P) + e aE Dl - 7
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The norm standard spaces X, and )_(s’b for the Schrodinger equation are defined [2]

lullx,, = &)z - 187 ac, Oz, (1.8)
Iull,, =€ +1e) 3Dl pe (19)

Denote ii(§, T) = Fu(x, t) by the Fourier transform in ¢ and x of u and F.yu by the Fourier transform
in the (-) variable. Notice that ||ﬂ||;,S'b = |lully,,- The spaces Y} and Ys.p turn out to be very useful to
consider the well-posedness of the dispersive equation with dissipative term, such as Egs. (1.1), (1.4),
etc.

Define A ~ B by using the statement: A < C1B and B < C;A for some constant C; > 0, and define
A « B through the statement: A < ClzB for some large enough constant C; > 0. We use A < B to
denote the statement that A < CB for some large constant C.

Let ¥ € C°(R) with » =1 on [—%, %] and suppy C [—1,1], ¥ is positive and even. Define
Ys(-) =¥ (87 1(-)) for some non-zero § € R.

1.2. Main method and results

Considering the local well-posedness of the Cauchy problem (1.1) and (1.2), we would apply a fixed
point argument to the following truncation version of (1.5)

t
ux, t) =9 (6)Sa(tuo — ¥ (t) f Sa(t—t)(ul(y - Vu)
0

+ul (k- Vi) + (1 + Bri)|ulu) ) dt (1.10)

for any u, u with compact support in [—T, T] in the integral of right side.

Indeed, if u solves (1.10) then u is a solution of (1.5) on [0, T] with T < 1. Therefore, following
some ideas in [11], we mainly prove the trilinear, multilinear estimates as follows, which will be
obtained in Section 3,

|l - Vu)”ys,—1/2+5 < c||u|\§,w2, (111)
|u2G - Vﬁ)||YH/M < C||u||§,m, (112)
[ |u|4u”ykl/2+5 < C||u||?,341/2. (1.13)

And from linear estimates obtained in Section 2, we can obtain the local result. Then the global well-
posedness will be obtained by some a priori estimates obtained in Section 4 and regularity of solution
given in Lemma 2.3.

Denote Z7 = C([0, T]; H5) N Yl]/z, the main results of the paper are listed as below.

Theorem 1.1. Let ug € H*(R?) with s > 1/2. Then there exists a constant T > 0, such that the Cauchy problem
(1.1) and (1.2) admits a unique local solution u(x, t) € Zt. Moreover, given t € (0, T), the map ug — u(t) is
smooth from H® to Zt and u belongs to C((0, T); HT°).

> T2
Theorem 1.2. Let ug € HS(R?) (s > 1/2). Assume A :=1 — % > 0. Moreover, if one of the following
conditions holds

(1) BB1>0; (1.14)
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(1.15)

2) Bp1 <0, min{ﬂ Iﬂn} /5

aA AT 2
i X 2 5 V| + X
(i) <§(|ﬂ\a1+|ﬁ1|a)(1—%>, (116)

then for any T > 0, Cauchy problem (1.1) and (1.2) admits a unique solution u(x, t) € Zr. Moreover, given
t € (0, T), the map ug — u(t) is smooth from H* to Zt and u belongs to C((0, +-00); HT).

(3)  BB1<O,  IBp1l— («/Oﬂh -

Remark. In fact, similarly with the proofs of Theorems 1.1 and 1.2, we can also prove that the Cauchy
problem of 3D GGL equation (1.1) is locally well-posed in HS (s > 1), and globally well-posed in H*
(s > 1) under some conditions.

2. Linear estimates

In this section, we give some linear estimates for Eqs. (1.1) similarly with the dissipative KdV
equation (1.4). In fact, in the proofs of the following lemmas, we only make computations with respect
to the time variable t or the Fourier transform in ¢, which are similar with those of Propositions 2.1-
2.4 in [11]. Here, we omit the details.

Lemma 2.1. Let s € R and « > 0. Then

[¥©Sa®uolly,, , < Clluollus. (21)

Lemma2.2.lets€R, 0 <8< § and a > 0. Then

t
HW) f Sa(t —t") f(t')dt’ SCUfllYg 1jaes- (2.2)
0

Y512

Lemma23.letseR, a>0,and 0 < K % Then for f € Ys _1/2+s,

t
/ Sa(t—t)f()dt' e C(RT, HST2). (2.3)
0

Moreover, if { fu} is a sequence and fy — 0in Ys _1/245 asn — oo, then

t

/ Sa(t —t) fa(t)dt’

0

— 0, asn— oo. (2.4)
L"X’(]R*,HS*M)

3. Trilinear, multilinear estimates and local well-posedness

In this section, the trilinear and multilinear estimates are obtained by using Tao’s [k; Z]-multiplier
method. Then, we can obtain the local well-posedness for the Cauchy problem (1.1) and (1.2) by the
linear estimates in Section 2 and the trilinear and multilinear estimates. In fact, Theorem 1.1 can be
proved by Lemmas 2.1-2.3 and Corollary 3.6.

We firstly list some useful notations and properties for multilinear expressions [15]. Let Z be any
abelian additive group with an invariant measure dé. For any integer k > 2, we denote [} (Z) by the
“hyperplane”

N2 ={&,....8) €Z" &+ +& =0},
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which is endowed with the measure

f f= / fE 81, =81 — - = &1)dEr .. dEq,

Ti(Z) Zk=1

and define a [k; Z]-multiplier to be any function m: I',(Z) — C. If m is a [k; Z]-multiplier, we define
Imll,z) to be the best constant, such that the inequality

k
<lmligsz [ il

j=1

k
| me]ne

(2 =

holds for all test functions f; defined on Z. It is clear that ||m||j,z) determines a norm on m, for test
functions at least. We are interested in obtaining the good boundedness on the norm. We will also
define ||m||,z) in situations when m is defined on all of Z¥ by restricting to I}(Z).

We give some properties of ||m||,z;, especially for the case k = 3. This corresponds to the bilinear
X;,p estimates of Schrédinger equation (Ys, estimates of GGL equation) since multilinear estimates
can be reduced to some bilinear estimates (we can find it later).

Let

§1+6+6=0, nTu+n+13=0, (3.1)
Gi=Tj+hj€),  hiEp==gP, j=1,2,3. (32)

Then we will study the problem of obtaining
Im(&1. 70, (2. 72). (53, 1)) || 3 posey S 1. (3.3)

where m((&1, 1), (&2, T2), (€3, T3)) is some [k; Z]-multiplier in I'3(R? x R).
From (3.1) and (3.2), it follows that

01+ 02 + 03 =h(%1, 62, 83). (34)
By symmetry, there are only two possibilities for the h;: the (+ 4 +) case
hi(§) =ha(§) = h3(§) = |51 (3.5)
and the (+ + —) case
mE =h) =617, hs@=—I§. (3.6)
Of the two cases, the (+ + +) case is substantially easier, because the resonance function
h(gr, &2, 83) = 1511° + 52l + 153/ (3.7)

does not vanish except at the origin. The (+ + —) case is more delicate, because the resonance func-
tion

h(g1, &2, £3) i= 61> + &2 — 1551 (3.8)
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vanishes when &; and & are orthogonal. Notice that for £1, &, £3 € R?, the resonance identity is given
by

|h(&1, &2, 8)| = |1&117 + 1621° — 16312 = 211 - &l ~ |E1 1162l | /2 — L(&1. &2)].

In particular, we may assume

h(&1, 5, 69)| S IE111&l, (39)

and that

(3.10)

Z(El,$2)=%+O(|h(§1’gz’&)|).

€11152]

By dyadic decomposition of &, 6; and h(&i, &, £3), we assume that || ~ Nj, [6j] ~ L; and
|h(¢1,&2,53)| ~ H. Where Nj, Lj and H are presumed to be dyadic, i.e. these variables range over
numbers of form 2¥ (k € Z).

It is convenient to define Npax > Nped = Npmin to be the maximum, median, and minimum of Ny,
N3, Ns3. Similarly, define Lygx > Lined > Lmin Whenever Lq, Ly, L3 > 0. Without loss of generality, we
can assume

Nimax 2 1, Lmin 2 1. (3.11)

We adopt the following summation conventions. Any summation of the form Lyqx ~ --- is a sum
over the three dyadic variables L1, Ly, L3 > 1. Therefore, denote for abbreviation, for instance,

> - ¥

Lmax~H L1,L2,L321:Linax~H

Similarly, any summation of form Ny ~ --- sum over three dyadic variables N1, N2, N3 > 0:

2. = 2

Nmax~Nmea~N N1,N2,N3>0:Nmax~Nmeq~N

By dyadic decomposition of £;, 6}, as well as h(&1, &, £3), we estimate the following expression to
replace (3.3)

> > > m((N1,L1), (N2, Ly), (N3, L3)) XNy Ny Na: Hly Lo L3 <1, (312)
Nmax21 H L1l L3>1 B3R xR
where X, N, N3:H:L;,L,,L; 1S the multiplier
3
XNy Ny NasHiLy L. Ls (60 T) 5= Xincey i~ | | Xigjion; Xigi~L; (3.13)
j=1

m((&1, T), (€2, 72), (€3, 73)) =m(Ny x L1, N2 x Ly, N3 x L3) if |£j| ~Nj and |oj| ~Lj. (3.14)
From the identities (3.1) and (3.4), X, N,,N3:H;L;,1,.1; vanishes unless

Nmax ~ Nined; (3.15)
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and
Limax ~ max(H, Lyeq). (3.16)

By the comparison principle and Schur’s test [15], it suffices to prove, for Nygx 2 1, that

S Y m((N L) (Na La). (N3, L)) XNy Ny it o 3 2y S 1. (317)
Nmax~Nmed~N Ly,L,L321

or

Z Z Z m((N1,L1), (N2, L2), (N3, L3)) [ XNy Ny.Ns: H: Ly Lo s |3 R2 xRy S 1. (318)
Nmax~Nmea~N Lmax~Lmeq H<Lmax

Therefore, we only need to estimate

1 XNy Ny N3 Hi Ly Lo Ls | 3, R2 R - (3.19)
Then we have the following lemma about the boundedness of (3.19).
Lemma 3.1. (See [15].) Let H, N1, N2, N3, L1, L2, L3 > 0 obey (3.15), (3.16).

e For the (+ + +) case, let the dispersion relations be given by (3.5), then H ~ Nﬁwx. It follows that

(3.19) S LY2N7al® N2 min(NimaxNimin, Liea) /2. (3.20)

~ “min min
e For the (+ + —) case, let the dispersion relations be given by (3.6), then H < N1N». It follows that:
o The ((++) case). If N1 ~ Ny > N3, then (3.19) vanishes unless H ~ Nf, in which case one has

(3.19) S LY2Npal N2 min(NimaxNimin, Liea) /2. (3.21)

~ “min min

o The ((+ —) coherence). If we have

Ni~N33>Ny,  H~Ly>L1,13,N3, (3.22)
then we have
1/2 \—1/2 3,1/2 H 1z
(3.19) S LYZNmat N2 min(H, TLmed) : (3.23)
min

Similarly with the roles of 1 and 2 reversed.
o In other cases, we have

1/2
Nimak” Nyt min(H, Linea)'/? min(L T) : (3.24)

min
min

(3.19) < L1/2

~ “min

Lemma 3.2 (Comparison principle). (See [15].) If m and M are [k; Z]-multipliers and satisfy |m(&)| < |M(&)|

forall & € I(Z), then ||m||jk,z) < [IM ||k, z)- Also, if m is a [k; Z]-multiplier, and a1, . .., ai are functions from
Z to R, then
k k
m@ [JajEn|  <Imlgez [ ] lajlliy.- (3.25)
j=1 [k; Z1 j=1
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Lemma 3.3 (Composition and TT*). (See [15].) If k1, k» > 1 and mq, my are functions on Z¥' and Z*2 respec-
tively, then

Hml(glv cees Ek] )m2($k1+15 LN} §k1+k2)” [k14ko; Z]

< "m1($17 ERE] Sk])” [k14+1;2] Hm2($15 cee gkl)”[kz-H;Zj' (3'26)

As a special case, for all functions m : Z¥ — R, we have the TT* identity

Imr..... om=&1, - &0 |z = IMEn o 80 [,y (327)

Using these lemmas above, we will prove the main theorems in this section. We firstly give some
notations about the following multilinear estimates. Define

oi=1i— &% Gi=t+E2 i=1,2,...k (3.28)

E&1+&+---+& =0, T1+T+--+ 17 =0. (3.29)

Denote éj, Tj by variables different from &1,&,...,&; 71, T2,..., Tk respectively. Also define ¢; =
Tj —1§1? or Tj+ &1

|0 lmax = max{|o7, |, ..., (o P B o/ N o/ H o/ PP [/ 1}, (3.30)

|0 |mea = med{|oj, |, ... |, 12161, 1 - 161, |5 1Oy | - - [0y, 1}, (3.31)

€ lmax = max (1€, |- &, 15 &l o1& 1), (3:32)

18 lmea = med {11, ... 15 1 &l 1y, 1} (333)

For convenience, by the dyadic decomposition of &;, o}, Gj, & and &;, we assume that |£| ~ N,
loj| ~Lj, loj|~Lj; |§j| ~ Nj and |0} ~Ij. Define Nmax = Nmed = Nmin to be the maximum, median,
and minimum of {le,sz,...,Njk1 ; Nll,ﬁlz,...,ﬁlkz}.

Similarly, define Lmax 2> Limed 2 Lmin to be the maximum, median, and minimum of {Lj,,Lj,, ...,
ijl ; Lll,le,...,lez}. Notice that indices above ji,..., ji,; l1,...,lr, and nq,...,ng, are different in
the following different cases.

3

Theorem 3.4 (Trilinear estimates). Let s > 1/2 and 0 < § K % Then

IVauais]y, | <Cllutllyg, szl lusly, .. (334)

”u1u2Vﬁ3”Yl,1/2+5 < CHU] ||Y5_1/2 ||U2HY5,1/2 Hu3||yS11/2' (335)

Remark. In the following proof and that of Theorem 3.5, the claims (3.17) and (3.18) can be obtained
similarly. For simplicity, we sometimes prove them without distinguishing. That is, we sometimes
define

o= > o Y Y. (3.36)

L1,L2,L321 L1,L3,L321:Lmax~H Lmax~Lmed H<Lmax
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Proof of Theorem 3.4. First, we prove (3.34). (3.35) can be obtained similarly. By duality and the
Plancherel identity, it suffices to show

”m((él 5 T])v L) (547 T4)) H[4,]R2 xR]

K(&1,62,83,84)
(ion + 1611212 (io + 1£212)1/%(i63 + [€312)1/2(i54 + |£4]2)1/2 78

[4,R2><R]
<1, (3.37)
where
|&11(£4)"
K (&1, &, &3, = 3.38
G182 55,50 = (e () (3:38)
E1+&5 +8+8,=0, T1+T2+13+14=0. (3.39)

Without loss of generality, we can assume |&1] ~ |&|max ~ |&Imed, Where |&|max = max{|&1], |&2],
|&3], |€4|}; otherwise, we can obtain the result similarly. We separately consider three cases

(A) [&l~1&l,  (B) l&al~I&l,  (Q) 18]~ sl (3.40)

First, we consider Case (A). It follows that

m((1. ), ..., (64, Ta))

|€1] (82)7°(83)°
~ (ioy + |&212)1/2(io1 + |£112)1/2 (164 + |€412)1/273 (153 + |£32)1/2
(62)7° (&3)7°
™ (iog + 16212) /4 (104 4 184]2)1/278 (i03 + |&3|2) /2 (io1 + |£1|2)1/4
=mg_1((62, T2), (€4, Ta))Ma_2((§1, T1). (£3, T3)). (341)

A

By Lemmas 3.2 and 3.3, it suffices to show

”m((-fb 'L']), ) (547 'E4)) ” [4,R2xR]
S Ima-1 (2, ©2), €4, ™) || 3 2 ey [ Ma—2 (G170, €3, 7)) || 5.2y

<1. (3.42)

Then we will prove the two following inequalities separately

Hma,1 ((525 72), (&4, 7:4)) ” [3,R2xR] 5 1, (343)

Ima-2 (@1, 70). 3. 79)) | 3 g ey < 1- (3.44)

Situation A-I. For mgq_1((&2, 12), (54,]4)), we choqse two variables §3 and 73 such that & +§4+§3 =
0 and Ty + 74 + T3 = 0. Let 63 = ¥3 — |&3]% or T3 + |&3)? in different cases. It is the (+ + —) case. Then

|02 + G4 + 63| = (52, €4, 83)| S €Iy, WheTe [ |may = max{|&], &l |&3]}.
We can separately consider the following four cases:
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Case (1): |&2] ~ 64 ~ |€3],  Case (2): |&2] ~ &l > |53],
Case (3): |62l ~ 183> |&al,  Case (4): [€a] ~ &3] > |&2].

Case A-I-1. Assume that Ny ~ N4 ~ 1~V3 ~ Nmax ~ Nmin ~ N. We apply (3.24) to bound the left side
of (3.43) by

5 5 (N)"SLY2N=12N1/2 min{H, Lyneq)!/2 min{1, H/N2}/2
(Ly +N2>1/4(L4+N2)1/2—5

Nmax~Nmea~N Lz,L4,I32]

(NY=5L3 . min{H, Lypeq}'/? min{1, H/N%}1/2

< min . 3.45
~ Z Z (Lmed + N2)1/4_26L8 Ly d ( !
Nmax~Nmed~N L2,L4,L321 e

If Lineq < H, then for s > 28 + 1/2 + 5¢ with any small ¢ > 0, it follows that

5 5 (N)=SL8 . L12 min{1, H/N?}1/?
(L med+N2>1/4728L£ L

Nmax~Nmeda~N L2,L4I3Zl med
K3 1/4+42¢
< Z Z me Lmed
~ s|E
Nimax~Nmed~N L2,L4,I321 < ) min mEd
1

’S Z Z <N)S—28—1/2—56N8L5 L€

Nmax~Nmea~N Lz,L4,Z32] med

<1, (3.46)
If Lineq > H, then for s > 28 + 1/2 + 5¢, it follows that

—s7é 1/2 i 241/2
Z Z (N)=5L3 . H'2min{1, H/N?}!/
(Lmeq + N2)1/4=2¢ 12 L°

Ninax~Nmed~N Ly,L4,13>1 min"™med

LB H1/4+2£

S0 S DR

Nmax~Npea~N Lz,L4,I3zl min~med

1

S Z Z <N)572571/2758N6L6 L€

Nmax~Nmeqa~N L2,L4,Z3Zl med

<1. (3.47)

Case A-I-2. Assume N ~ Nmax ~ Ny~ N4 > N3 ~ Nmin-
Subcase A-I1-2-1. If H ~ L3 > Ly, Lq, N then for s > 28§ 4+ 1/2 + 5¢, we use (3.23) to bound the
left side of (3.43) by

mm'

(NY=LY2 min{H, o Linea)!?

min

Z Z L N2y1/4(L NZ 1/2-46
NmaxNNmed"’NLz,L4,L3zl < 2+ ) ( 4t )
<N> SLB

s H 1/2
min MIN{H, WLmed} /

DY
~ — L + N2 1/4—26L8 L‘E
Nmax~Nmea~N Lz,L4,L32] < med ) med
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—s78 1/2
D DR DL Lk
~ (Lmea + N2)V/4-26LE LE

Nmax~Nmea~N L],Lz,igzl med
s 12

DD M
~ — <N)s+1/2 46L8 L LE

Nmax~Nmed~N Lz,L4,L321 min~med

s yl1/2

DYDY
~ <N)s—1/2—5£ 26 N26+1 N“"Ls L8

Nmax~Nmea~N Lz,L4,’i_4321 med
<1 (3.48)

Subcase A-1-2-2. For other cases, we can obtain the result similarly with Case A-I-1.

Case A-I-3. Assume that N ~ Npgx ~ Ny ~ N3 > N4 ~ Npin. Let 63 = T3 — |&3|2. Then it holds that
(&2, €4, 83)] ~ |& 1%

If Lingx ~ Lmea > H ~ N2, then for s > 28 4+ 1/2 + 5g, we use (3.21) to bound the left side of (3.43)
by

1 1/28n—1/201/2 1/2
Z Z (N) SLminN /Nminmm{NNmin:Lmed}/

2 —
(L + N2)/4(Lg + N2, 125

Nmax~Nmea~N Lmax~Lmea>>H

—s .
< Z Z (N) ™ Nmin _
(Lmed + N2)1/4—26—8L L

Nmax~Nmed™~N Lmax~Lmea>>H min*™med

<1, (3.49)

If Lmax ~ H ~ N2, we can obtain the result similarly as above.

Case A-I-4. Assume that N ~ Npax ~ Ng ~ N3 3> Ny ~ Npin. Let 63 = 73 + |€3|2. Then one knows
that |h(£2, &4, £3)| ~ |&|2,4¢- We can obtain the result similarly with Case A-I-3.

Situation A-II. For me_»((£1, T1), (€3, T3)), we choose two variables & and 7, such that & + & +
& =0and 11 + 13+ T = 0. Let 6, = T — |&|? or T, + |&|? in different cases. It is the (++ —) case.

Then |01 + 63 + 62| = |h(&1. &3, £2)| S |6 12,00, Where [€ |max = max{|&1], &3], [E2]}.
We can separately consider four cases:

Case (1): |61~ &3~ |&l,  Case (2): |&1] ~ 181> |&l,

Case (3): |&3] ~ 160> [&1],  Case (4): [&1]~ &2l > &3],

Case A-II-1. If Ny ~ N3 ~ ﬁz ~ Nmax ~ Nmin ~ N, similarly with Case A-I-1, we prove that (3.44)
holds for s > 1/2 4 5¢.

Case A-1I-2. If N ~ Npax ~ N1 ~ N3 > Ny ~ Nmin, similarly with Case A-I-2, we prove that (3.44)
holds for s > 1/2 + 5¢. _

Case A-II-3. Assume that N ~ Npgx ~ N3 ~ N2 3> N1 ~ Npip. Let 65 = T, + |&[?, it holds that
(1. 83, E2) ~ |E ]2y

If Linax ~ H ~ N2, for s >1/2 + 5¢, we use (3.21) to bound the left side of (3.44) by

1/2 \,— 1/2 .
5 e Ly N~Y2N 2 min{NNoin, Linea}!/?
2 \1/4 2\1/2
NoaxNaea~N 1y 15 T 1 (L1 + Npin) /4(Ls 4+ N2)1/
1/4

< Z Z LminNmin
~ <N)S<L3+N2>1/2—28L5 L€,

Nmax~Nmea~N Ly ,L3,Zzzl min
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< 1
~ Z Z NELE L€
Nmax~Nmed~N L1,L3,I221 med ™ min
<1. (3.50)
If Lingx ~ Lmea > H, then similarly as above, we can obtain the result for s > 1/2 —|— 5¢.
Case A-II-4. Assume that N ~ Npax ~ N1 ~ Nz > N3 ~ Npin. Let 65 =15 — |§2| it holds that

|h(&1, &3, E2)| ~ |§|max Then for s > 1/2 + 5¢, we can obtain the result similarly as above.
Next, we consider Case (B). It follows that

€1 (62) % (&3)°
(io3 +1&312)1/2(ioy + |6112)1/2 (164 + |£4[2) /2 (i02 + |5212)1/2

< (&2)7° (&3)7°
(iog + (21212 (io1 + £112)1/4 (163 + |&312)1/4(i54 + |£4)%)1/278

=mp_1((51. 71), (62, T2))Mp—2((&3. 73), (€4, Ta)). (3.51)

m((E1, 1), -, (62, T0)) S

Situation B-1. For my_1((§1, T1), (62, 1:2)) we choose two variables & and T such that & +&; +$0 =
0 and 71+ 72 + 7o = 0. Let 6o = 73 — |&o|?, it is the (+++) case. Then |01+ 02+ 60 = |h (&1, £2. &0)| ~
|$|max, where |£|mex = max{|&1], €21, |&o]}. Similarly with Case A-I-3, we can obtain the result for
s>1/2+ 5¢.

Situation B-II. For mp_»((£3, 73), (44, r4)) we take two variables & and 75 such that &; +E4+§5
and T3 + T4 + 75 = 0. Let 65 = T5 + |€5/2, it is the (++ +) case. Then |03 + 04 + 65| = |h(&3, &4, 55)| ~
|& |max, where |£|mex = max{|&3], |€al, |&5]}. Similarly with Case A-I-3, we can obtain the result for
s>25+1/2+5¢.

Finally, we consider Case (C). It follows that

€1 (52)(83)°
(i04 + [£412)1/270(ioy + |6112)1/2 (i63 + |£3]2) /2 (i02 + |€2]%)1/2

(62)° (63)7°
™ (o2 + |&212) 12 (io1 + [E112)1/4 (i03 + |5312)1/3 (104 + |8412) /470

=mp_q (€1, 1), (&2, T2))Mp_2((€3. T3), (64, Ta)). (3.52)

m(1, ), ..., (62, 74)) S

Similarly with Case (B), we can obtain the results for s > 25 + 1/2 + 5¢. This completes the proof
of Theorem 3.4. O

Theorem 3.5 (Multilinear estimate). Let s > 1/2 and 0 < § K % Then
”ul u2u3ﬁ4a5 ” Ys,—1/2+45 < C ”ll] ”Ys,]/z ”u2 ” Y512 ||U3 ” Ys,1/2 ”u4llygy1/2 ||U5 ” Ys1/2- (353)

Proof. Similarly with the proof of Theorem 3.4, by duality and the Plancherel identity, it suffices to
prove

Hm((éls T])v R (%‘65 TG)) ” [6.]R2 xR]

(iGa + |641*)71/2(iG5 + |851*) "1/ (iGs + |86]*) /2
(ion + 1&112)1/2 (o2 + [£2]2) /2 (i03 + |&3%)1/2 [6.R2xR]

, (3.54)

K(&1,62,83,84, 85, 86)

where
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(&)
K(§1,&2,83,84, &5, = s 3.55
(61 82:85. 84,85, 86) = (e S 835 B (6o ) (355)
S1+& +E&5+86+8+5=0, T+ +13+T74+15+176=0. (3.56)

By symmetry, we separately consider two cases

(D) &l < 1€1] = max{|&1], €], €3, 1al, €51},
(E) 6] < 154l = max{|&1], &2, [€3]. |€al. |E5]}.

In fact, the proofs of the cases |&| < |&2| and |&| < |&3] are similar with that of Case (D). The proof
of the case |&g| < |&5] is similar with that of Case (E).
First, we consider Case (D). It follows that

1

K (1,82, 83,84, &5, S yravyravyravyraed
(618263805580 S G Sy e o

(3.57)

and

(64 + |E4]2) 71/ 2(iG5 + |&5]%) 71/ 2(iG6 + |&6]2) /2T 1
(ioy + [£112)12 (o + |£212)1/2 (103 + €312) 12 (£2)5(£3)% (£a)5 (5)°
(G4 + |E412) 712 (2) S (Ea) ™5 (iGs + |E5|%) 7/ 2(iG6 + |E6]) /2T
= (ior + 1&112) 2oy + |&2[?) 1/ (ios + |8312)1/2 (£3)5 (£5)°
=mg_q (1. 71), (€2, T2). (€4, Ta))Mg—2((&3. 13), (5. T5). (§6. Tp))- (3.58)

m((&1. 7). ... (5. T6)) <

By Lemmas 3.2 and 3.3, it suffices to prove

[m(1. 7). ... (6. T6)) ||[6R2X]R]

S [ma-1 (1, ), (52, 72), Gas ™)) || 4 o ey [Ma—2((63, T3), G5, T5), (6, T6)) || (4 m2cmy

<1 (3.59)
Situation D-1. We first prove

Ima—1(&1, 7). (€2, 72), (54, ™) | g g2y S 1- (3.60)
We choose two variables & and 73 such that & + & + & +& =0 and 71 + 7o + T3 + 74 = 0.
Let 63 = 73 + |12, it follows that |07 + 02 + 63 + 04l = |h(E1, 62, &3, §a)| < || 7q Where [§|max =

max{|&1], |&2], |&3], |€4]}. Moreover, we have
|0 lmax ~ 10 lmea > |1, &2, &3, €4) . (3.61)

or

|0 lmax ~ |h(&1. &2, &3. £4). (3.62)

where |0 |max = max{|o1], |02], |03], |04|}. Without loss of generality, we can assume

2 2
|U|rnax ~ |0|med 2 |'§|max ~ |é|med7 (363)
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or

10 Imax < 1E[2ax ~ 1€ [2eq- (3.64)

First, we consider the case: |0 |max ~ |0 lmed = |§|2max.
Case D-I-1. If |01| = |0 |max OF |0 |med> then it follows that

(163 +1€51%)/* (§2) > (£a)
(io1 + [6112)1/2(i02 + |£2|2) /(164 + £4]2) /2 (165 + [£312) /4

(52)(64)°

myq_q ((élﬁ T])v (525 Tz)a (54, 14)) S_/

< =

™ ior + |E112) /40y + [£212)1/2(i64 + |£a12)1/2(i65 + |E3]2)1/4
- (&)~ . (Ea)~S

Y ion 4+ 6112) V4 io2 + 16212)1/2 (iGg + |£412)1/2(iG3 + |E3]2)1/4

=mg_n1 (&1, 71), B2, T2))Mg—12((E3. T3), (54, Ta)). (3.65)

Then we can obtain (3.60) similarly with Case (B) in the proof of Theorem 3.4 for s > 1/2 + 5¢.
Case D-I-2. If |02| = |0 |max O |0 |med, then it follows that

(i63 + &312) /4 (&) =S (8a) S
(io1 + 18112)1/2(i02 + |6212) V/2(i64 + |64|2)1/2(i63 + |£5(2)1/4
(&2) S (&a)~°
(io1 + 18112)1/2(i02 + |62|2) V/4(i64 + 16412)1/2(i63 + |£5]2)1/4
(&)~ . (Ea)~S
N ion 4+ 1€112)1/2(io2 + 16212) 14 (iG4 + |£412)1/2(iG3 + |E3]2)1/4

=mg_11 (€1, 71), 2. T2)) - Ma—12((E3, T3). (€4, ). (3.66)

ma_1 (1. 71). (&2, T2), (4. T4)) S

A

Similarly with the above, we can obtain the result for s > 1/2 + 5¢.
Case D-I-3. If |04| = |0 |max OF |0 |med, then

(i63 + &3 1%) V4 (&) 5 (8a)~°
(io1 + |£112)1/2 (0 + |£212)1/2 (G4 + |£4|2)1/2 (i3 + |E32)1/4
(£2)5(84)°
(ion + 1&112)1/2(i07 + |6212)/2(iG4 + |£4|2)V/4(i53 + |£5]2)1/4
(€)= _ (€0~
™ ioy 4 |E2]2)1/2(i63 + |E32)1/4 (164 + E412) /A (ioq + 1£112)1/2

=mg_11 (&2, 12), €3, 3)) - ma—12((E1. T1). (€4, Ta)). (3.67)

ma_1((&1. 1), (2. T2), (4. T4))

A

A

Similarly with Case (A) in the proof of Theorem 3.4, we can obtain the result for s > 1/2 + 5¢.

Next, we consider the case: |0 |max S |§|2max ~ |E|r2ned. In fact, we can obtain (3.60) for s > 1/2 + 5¢

to consider the following cases similarly as above

|€1] ~ |E|max ~ |E|lmed  corresponding to Case D-I-1,
1€2] ~ & lmax ~ |€lmea  corresponding to Case D-I-2,

1€4] ~ |&|lmax ~ |Elmea  corresponding to Case D-I-3.
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Situation D-IL In this situation, we will prove
Ima2((&3. 73). (E5. T5). (€. 76)) | 1 g2y S 1- (3.68)

We choose two variables & and 7 such that & + & + &5 + & =0 and 73 + T4 + 75 + 76 = 0. Let
&4 = T4 — |E4|?. Similarly with Situation D-I, we can obtain (3.68) for s > 28 + 1/2 + 5¢.

Gathering (3.60) and (3.68), we have (3.59).

Next, we consider Case (E). It follows that

1
K(&1,82,83,84,565, {—, 3.69
G182, 83,80, 55.50) S G ey o (&) (3.69)
and
(54 + 1Ea2)~1/2(i65 + 65 2) 12 (iG6 + [86|2) ~1/2+S )

me((€1,71), .-, (56, T6)) <

(ioy +16112)1/2(ioz + |5212) /2 (o3 + |&312) 12 (£1)%(62)5(£3)" (65)°

(i64 + 16412) 712 (&) =S (61) ™S (ios + |&512)~1/2(iG6 + |£6/|%) ~1/2T°
= ion + |&12)1/2(ioy + |£,]2)1/2 (io3 + a|312)1/2(£3)5 (&5)°

i=me—1((&1, 1), (62, T2), (62, T))Me—2((&3, T3), (&5, T5), (56, T6))- (3.70)

In fact, by symmetry about o; and &7, similarly with Case (D), we can obtain

”me((S]a 7),---, (&, 7:6)) H[G,RZXRJ 5 1. (371)
Gathering (3.59) and (3.71), we have (3.54). This completes the proof of Theorem 3.5. O

Corollary 3.6. Let 0 < § < % Then there exist {1, Cs > 0 such that for uy, uz, us € Y5 12, U3, iy, Us € 75,1/2
with compact supportin [T, T],

[Vwnuaus|y, |, < CT v plluzllv s lusly, .. (3.72)
w1tz Vislly, o0 < CsTH utlly, o lually, o lusllyg (3.73)
||U]U2U3ﬂ4ﬁ5 ”Ys_,]/prg g CBTM ||U] ”Yg,]/z ||l,l2 ||Y$_]/2 ||U3 ”ng1/2 |Iu4||Y341/2 ”u5||Y3,1/2 . (374)

Proof. In fact, from Theorem 3.5, we can complete the proof of Corollary 3.6 by the inequality for
f () with compact support in [-T, T]

f.9

- < CsTH| fll 2, for any 6 > 0. O (3.75)

[

L2
4. Some a priori estimates and global well-posedness
In this section, we first give some a priori estimates for Eqs. (1.1). Then we can obtain that the

local solution obtained in Section 3 can be extended to the global one by using Lemma 2.3 and the
a priori estimates. Therefore, Theorem 1.2 can be obtained.
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v T2
Lemma 4.1. (See [14].) Assume that 1 — % > 0, u(t) is a smooth solution of the Cauchy problem (1.1)
and (1.2). Then there exists £ > 0 such that (|| + |x])? < cor; (2 — €)2, it follows that

t t
1 1
SO+ 5 [1vuefar + 5 [ Jue e < S o (41)
0 0

Moreover, if y and A are real vectors, then

t

t

1 1

sl +a / [Vu) |72 dt’ + e / Ju@) e dt’ = 3 uoll.. (42)
0 0

Lemma 4.2. (See [14].) Assume 1 — % > 0 and BB1 > 0. If u(t) is a smooth solution of the Cauchy

problem (1.1) and (1.2), then for some n > 0, ¢ > 0, c; > 0, it holds that

t t
1
IV + uo [+ ¢ [ aue) e+ con [ Juw)|foar
0

0
1 n
< = [1Vuoll?; + < lluol . (4.3)
2 6
— 1 _ (7D
Lemma 4.3. (See [14].) Assume A :=1 Jao;, Oand BB1 <0,
min ﬂ,—lﬂll <£, (4.4)
aA oA 2
or
- > 2 o -
(71 + 14D V5 (71 + 12D
— (Voo - ————) <= 1— . 45
|BB11 ( aan > <3 (I1Bles + 1B11) 2 Jaa (4.5)

Then (4.3) holds also for some n > 0,c >0, ¢y > 0.
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