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a b s t r a c t

We investigate the quantum entropy, its power spectrum, and the excitation inversion of
a Cooper pair box interacting with a nanomechanical resonator, the first initially prepared
in its excited state, the second prepared in a ‘‘Schrödinger-cat’’ state. The method employs
the Jaynes–Cummings model with damping, with different decay rates of the Cooper pair
box and different ranges of detuning, going from resonant to off-resonant cases, including
time dependent detunings. Concerning the entropy, it is found that the time dependent
detuning turns the entanglement more stable in comparison with previous results in the
literature. With respect to the Cooper pair box excitation inversion, while the presence of
detuning destroys the collapses and revivals, it is shown that convenient time dependent
detunings recover such effects in a nice way.

© 2011 Elsevier B.V.

1. Introduction

In the past years, there has been great interest in producing new nonclassical states of quantized electromagnetic field,
one of several interesting topics of Quantum Optics. In spite of the quantized field in 1925, the quantum optical effects
were observed only seven decades later, the first of them being the antibunching effect, as predicted by Carmichael and
Walls in 1976 [1], experimentally confirmed by the group of Kimble [2] in 1977. A second nonclassic optical effect was
observed in 1985 in Ref. [3], theoretically anticipated in Ref. [4] in 1970. A third one, oscillations in the photon statistical
distribution, was observed in 1987 in Ref. [5]. Since then, various nonclassical states of the quantized electromagnetic field
were studied, including their practical realization in laboratories in different systems—one of them being the celebrated
‘‘Schrödinger-cat’’ (SC) state, whose generation was first suggested in Ref. [6], the pioneer experimental observation being
obtained by the group of Haroche [7]. More recently, the community became aware of the experimental observation of the
decoherence of the SC state, in both domains: in optical [8] and atomic physics [9], constituting the first observation of the
passage through the frontier that separates the quantum and classical realms. After this, another interesting topic emerged
in the literature, as the quantum teleportation of states, first suggested in Ref. [10], based on the nonlocal character of
quantummechanics and contextualized by the EPR entangled states [11]. This somewhat ‘‘bizarre’’ effect was first observed
experimentally in 1997, by the group of Zeilinger [12], concerned with the teleportation of a single photon state; the effect
was later extended for atomic states and also for a huge quantity of photons [13]. Then, several publications in this line
appeared in the literature [14–17].

Besides the nonclassical effects exhibited by the light field states, many researchers became interested in the study of
new states and new effects they could exhibit, mainly concerned with their potential applications [18]. Then, the study of
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various schemes for the generation of nonclassical states of the light field became also interesting [19–21]. To this end, two
lines of study emerged: (i) when the issue is concerned with a state of a stationary field, inside a high-Q microwave cavity;
(ii) when it is concerned with traveling fields, either throughout the free space or a medium (optical fibers, beam splitters,
prisms, etc.). In both cases various proposals appeared in literature [22–25]. The extension of these investigations for atomic
systems has also been implemented. In this case the system consists of atoms, either located inside a cavity or crossing it,
including atoms trapped inside magneto-optical devices [26,27].

When focusing either the field or atomic cases the theoretical strategy starts from a Hamiltonian describing the
atom–field system, traditionally treated via the Jaynes–Cummingsmodel and usually assuming the atom–field coupling as a
constant parameter. The number ofworks in the literature using such assumption is vastly larger in comparisonwith the case
of atom–field coupling and/or the atomic frequency assumed as a time dependent parameter [28–32], including the case of
timedependent amplitude [33]. Nevertheless, this scenario is also relevant. For example, the state of twoqubits (qubits stand
for quantum bits) with a desired degree of entanglement can be generated via a time dependent atom–field coupling [34];
such coupling can modify the dynamical properties of the atom and field, with transitions that involve a large number
of photons [35]. In general, these studies are simplified by neglecting the atomic decay from an excited level. Theoretical
treatments taking into account this complication of the real world may also use an adapted Jaynes–Cummings model. In
these case, as expected, one observe decoherence of the state describing the system, since the presence of dissipation
destroys the state of a system as time flows.

Here, taking advantage of what we have learned about the atom–field interaction, wewill study an advantageous system
in practice (due to its rapid response and better controllability [36]) by considering a nanomechanical resonator (NR) that
interacts with a Cooper pair box (CPB). This nanodevice has its own interest since its macroscopic nature and peculiar
effect of low-frequency noise in the solid-state impose obstacles requiring more careful studies than a mere translation
from quantum optics. It has been explored in the study of quantum nondemolition measurements [37,38], in the study of
decoherence of nonclassical states, as Fock states and superposition or entangled states describingmesoscopic systems [39],
etc. The fast advance in the technique of fabrication in nanotechnology implied great interest in the study of the NR system
in view of its potential modern applications, as a sensor, largely used in various domains, as in biology, astronomy, quantum
computation, and more recently in quantum information [40] to implement the quantum qubit [41] and the production
of nonclassical states, e.g.: Fock states [42], ‘‘Schrödinger-cat’’ states [43], squeezed states [44], clusters states [45], etc. In
particular, when accompanied by superconducting charge qubits the NR has been used to prepare entangled states [46].
For example, Zhou et al. [44] have proposed a scheme to prepare squeezed states using a NR coupled to a CPB qubit; in this
proposal the NR–CPB coupling is under an external control while the connection between these two interacting subsystems
play an important role in quantum computation. Such a control is achieved via convenient change of system parameters,
which can set ‘‘on’’ and ‘‘off ’’ the interaction between the NR and the CPB, on demand.

One of the desired goals in this report is to verify the behavior and properties of an entangled state describing the CPB–NR
system, via the Jaynes–Cummings model, by considering the energy dissipation in the CPB during its transitions from an
excited level to a ground state. Another target is to verify if, and in which way, the time dependence of the CPB–NR coupling
modifies the dynamical properties of the state describing a subsystem.Wewill also study the time evolution of the quantum
entropy and its power spectrum, as well as the CPB excitation inversion. There are some evidences of entropy production,
including the fact that the power spectrum of stationary systems and subsystems can be used as dynamical criteria for
quantum chaos [47,48]. For the entropy power spectrum, such criteria embody those already discussed in the literature
concerned with fixed parameters. Then, it seems adequate to look at the various characteristics of the entropy to formulate
a reasonable and sufficient universal dynamical criterion for the quantum chaos. The degree of entanglement, represented
by the entropy in certain circumstances, has also shown itself being sensible to the presence of a classical chaos [49,50].

2. Model Hamiltonian for the CPB–NR system

There exist in the literature a large number of devices using the SQUID-base, where the CPB charge qubit consists of two
superconducting Josephson junctions in a loop. In the present model a CPB is coupled to a NR as shown in Fig. 1. The scheme
is inspired by the works of Jie-Qiao Liao et al. [41] and Zhou et al. [44] where we have substituted each Josephson junction
by two of them. This creates a new configuration that includes a third loop. A superconducting CPB charge qubit is adjusted
via a voltage V1 at the system input and a capacitance C1. We want the scheme attaining an efficient tunneling effect for the
Josephson energy. In Fig. 1 we observe three loops: one great loop between two small ones. This makes it easier to control
the external parameters of the system since the control mechanism includes the input voltage V1 plus three external fluxes
ΦL, Φr and Φe(t). In this way one can induce small neighboring loops in the nanodevice. The great loop contains the NR
and its effective area in the center of the apparatus changes as the NR oscillates, which creates an external flux Φe(t) that
provides the CPB–NR coupling to the system. In this work wewill assume the four Josephson junctions being identical, with
the same Josephson energy E0

J , the same being assumed for the external fluxes ΦL and Φr , i.e., with same magnitude, but
opposite sign: ΦL = −Φr = Φx. In this way, we can write the Hamiltonian describing the entire system as

Ĥ = ωâĎâ + 4Ec


N1 −

1
2


σ̂z − 4E0

J cos


πΦx

Φ0


cos


πΦe

Φ0


σ̂x, (1)
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Fig. 1. Model for the CPB–NMR coupling.

where âĎ(â) is the creation (annihilation) operator for the excitation in the NR, corresponding to the frequency ω and
mass m; E0

J and Ec are respectively the energy of each Josephson junction and the charge energy of a single electron. The
parameters C1 and C0

J stand for the input capacitance and the capacitance of each Josephson tunnel, respectively.Φ0 = h/2e
is the quantum flux and N1 = C1V1/2e is the charge number in the input with the input voltage V1. We have used the Pauli
matrices to describe our system operators, where the states |g⟩ and |e⟩ (or 0 and 1) represent the number of extra Cooper
pairs in the superconduction island. We have: σ̂z = |g⟩⟨g| − |e⟩⟨e|, σ̂x = |g⟩⟨e| − |e⟩⟨g| and EC = e2/(C1 + 4C0

J ).
The magnetic flux can be written as the sum of two terms,

Φe = Φb + Bℓx̂, (2)

where the first term Φb is the induced flux, corresponding to the equilibrium position of the NR and the second term
describes the contribution due to the vibration of the NR; B represents the magnetic field created in the loop. We have
assumed the displacement x̂ described as x̂ = x0(âĎ + â), where x0 =

√
mω/2 represents the amplitude of oscillation.

Substituting the Eq. (2) in Eq. (1) and controlling the flux Φb to adjust cos


πΦb
Φ0


= 0 we obtain

Ĥ = ωâĎâ + 4Ec


N1 −

1
2


σ̂z − 4E0

J cos


πΦx

Φ0


sin


πBℓx̂
Φ0


σ̂x. (3)

The approximation πBℓx/Φ0 ≪ 1 leads the foregoing equation to simplified form

Ĥ = ωâĎâ +
1
2
ω0σ̂z + λ0(âĎ + â)σ̂x, (4)

where λ0 stands for the CPB–NR coupling, λ0 = −4E0
J cos


πΦx
Φ0

 
πBℓx0

Φ0


whereas ω0 = 8Ec(N1 −

1
2 ) is the effective

energy standing for the transition frequency of the CPB. In the rotating wave approximation the Hamiltonian given in
Eq. (4) becomes

Ĥ = ωâĎâ +
1
2
ω0σ̂z + λ0(σ̂+â + âĎσ̂−). (5)

Next,we consider amore general scenario by substitutingω → ω(t) = ω+f (t) andλ0 → λ(t) = λ0[1+f (t)/ω] [35,51].
In addition we assume the presence of a constant decay rate γ in the CPB, from its excited level to the ground state.
σ̂± and σ̂z stand for CPB transition and excitation inversion operators, respectively. They act on the Hilbert space of
atomic states and satisfy the commutation relations


σ̂+, σ̂−


= σ̂z and


σ̂z, σ̂±


= ±σ̂±. As well known, the coupling

parameter λ(t) is proportional to
√

ω(t)/V (t), where the time dependent quantization volume V (t) takes the form V (t) =

V0/ [1 + f (t)/ω] [52,31,51]. Accordingly, we obtain the new (Non-Hermitian) Hamiltonian

Ĥ = ω(t)âĎâ +
1
2
ω0σ̂z + λ(t)(σ̂+â + âĎσ̂−) − i

γ

2
|e⟩⟨e|. (6)
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a

b

c

Fig. 2. Time evolution of the Entropy when the NR is initially prepared in an even ‘‘cat state’’, for different values of the decay rate γ : (a) γ = 0.0λ0 ,
(b) γ = 0.01λ0 , and (c) γ = 0.05λ0 , with α = 5, ω = ω0 = 2000λ0, f (t) = 0.

Non-Hermitian Hamiltonians (NHH) have been used widely in the literature. To mention some few examples: Ref. [53],
where the authors use a NHH and an algorithm to generalize the conventional theory; Ref. [54], using a NHH to get
information about entrance and exit channels; Ref. [55], using non-Hermitian techniques to study canonical transformations
in quantum mechanics; Ref. [56], solving quantum master equations in terms of NHH; Ref. [57], using a new approach for
NHH to study the spectral density of weak H-bonds involving damping; Ref. [58], studying NHH with real eigenvalues;
Ref. [59], using a canonical formulation to study dissipative mechanics exhibiting complex eigenvalues; Ref. [60], studying
NHH in non-commutative spaces, and more recently: Ref. [61], studying the optical realization of relativistic NHH;
Ref. [31], studying the evolution of entropy of atom–field interaction; Ref. [30], including damping in a JC-Model to study
entanglement between two atoms, each of them within distinct cavities.

3. Solving the CPB–NR system

Now, the state describing our time dependent system can be written as

|Ψ (t)⟩ =

∞−
n=0

(Cg,n(t)|g, n⟩ + Ce,n(t)|e, n⟩). (7)

Taking the CPB initially prepared in its excited state |e⟩ and the NR in a superposition of two coherent states, |β⟩ =

η(|α⟩+|−α⟩), and expanding each coherent state component in the Fock basis, i.e., |α⟩ = exp(−|α|
2/2)

∑
∞

n=o(α
n/

√
n!)|n⟩,

we obtain |β⟩ =
∑

∞

n=0 Fn|n⟩ where η = [2 + 2 exp(−2α2)]−1/2 is a normalization factor. Assuming the NR and CPB
decoupled at t = 0 and the initial conditions Cg,n(0) = 0 and

∑
∞

n=0

Ce,n(0)
2 = 1 we may write the Eq. (7) as

|Ψ (0)⟩ =

∞−
n=0

Fn|e, n⟩. (8)

The time dependent Schrödinger equation for the present system is

i
d|Ψ (t)⟩

dt
= Ĥ|Ψ (t)⟩, (9)
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a

b

Fig. 3. Same as in Fig. 2, now for different values of detunings (cf. f (t) = ∆ = const): (a) ∆ = 10λ0 and (b) ∆ = 20λ0 , with α = 5, ω = ω0 =

2000λ0, γ = 0.05λ0 .

with the Hamiltonian Ĥ given in Eq. (6). Substituting Eq. (6) in Eq. (9) we get the (coupled) equations of motion for the
probability amplitudes Ce,n(t) and Cg,n+1(t),

∂Ce,n(t)
∂t

= −inω(t)Ce,n(t) −
i
2
ω0Ce,n(t) − iλ(t)

√
n + 1Cg,n+1(t) −

γ

2
Ce,n(t), (10)

∂Cg,n+1(t)
∂t

= −i(n + 1)ω(t)Cg,n+1(t) +
i
2
ω0Cg,n+1(t) − iλ(t)

√
n + 1Ce,n(t). (11)

The solutions of the coefficients Ce,n(t), Cg,n+1(t) furnish the quantum dynamical properties of the system, including the
CPB–NR entanglement. For the cases f (t) = 0 and f (t) = const., the solution of the system of equations Eqs. (10) and (11)
is obtained exactly. We find, analytically,

Cg,n+1(t) = (1/ζ )[−2iλe−1/4δt e1/4ζ t − e−1/4ζ t √
n + 1Fn], (12)

Ce,n(t) = (1/2ζ ) [ie−1/4δt e1/4ζ t (iγ + 2ω − iζ − 2ω0) − e−1/4ζ t (iγ + 2ω + iζ − 2ω0)

Fn], (13)

where δ = γ + 2iω(1 + 2n) and ζ = [γ (γ + 4i(ω0 − ω)) − 4(ω2
+ ω2

0) − 16λ2(1 + n) + 8ωω0]
1/2. However, when

the coupling f (t) is time dependent the solution of this system of equations is found only numerically. As well known, in
the presence of decay rate γ in the CPB the state of the whole CPB–NR system becomes mixed. In this case its description
requires the use of the density operator ρ̂CN , which describes the entire system. To obtain the reduced density operator that
describes the CPB (NR) subsystem we must trace over variables of the NR (CPB) subsystem. For example,

ρ̂NR = TrCPB(ρ̂CN) =

−
n

−
n′


Ce,n(t)C∗

e,n′(t) + Cg,n(t)C∗

g,n′(t)

|n⟩⟨n′

|. (14)

4. Entropy of subsystems

Recently, researchers have employed several methods to study the dynamical of entanglement [30–32,62,63]. As proved
in Ref. [64] the von Neumann entropy offers a quantitative measure of disorder of a system and of the purity of a quantum
state. Such entropy, defined as SNR(C) = −Tr(ρ̂N(C) ln ρ̂N(C)), is a measure that is sensible to quantum entanglement of
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a

b

Fig. 4. Same as in Figs. 2 and 3, for time dependent detunings (cf. f (t) = c sin(ω′t)): with (a) c = 20λ0eω′
= 0.1λ0 , and (b) c = 20λ0eω′

= 0.5λ0 .

two interacting subsystems. The quantum dynamics described by the Eq. (6) furnishes the CPB–NR entanglement and
we will employ the von Neumann quantum entropy as a measure of the degree of entanglement. The entropy S of a
quantum system, when composed of two subsystems, obeys a theorem due to Araki and Lieb, which establishes that:
|SCPB − SNR| ≤ S ≤ SCPB + SNR; SCPB with SNR standing for the entropies of the NR subsystems. S stands for the total entropy
of the CPB–NR system. One immediate consequence of the above inequality is that, if one prepares the entire system in a
pure state at t = 0, then both components of the whole system have the same entropy for the subsequent time evolution.
So, when assuming our system initially in a pure and decoupled state the entropies of the CPB and NR become identical,
namely, SCPB(t) = SNR(t). Then, one only needs to calculate the quantum entropy of one subsystem to get its entanglement
evolution. We obtain, from the Eq. (14) and SNR = −Tr(ρ̂NR ln ρ̂NR),

SNR(t) = −

∧

+

NR(t) ln(∧+

NR(t)) + ∧
−

NR(t) ln(∧−

NR(t))

, (15)

where,

∧
±

NR(t) =
1
2


1 ±


(⟨R1|R1⟩ − ⟨R2|R2⟩)2 + 4 |⟨R1|R2⟩|

2


, (16)

with ⟨R1|R1⟩ =
∑

∞

n=0

Ce,n(t)
2 , ⟨R2|R2⟩ =

∑
∞

n=0

Cg,n+1(t)
2 and ⟨R1|R2⟩ = ⟨R2|R1⟩

∗
=

∑
∞

n=0 C
∗

e,n+1(t)Cg,n+1(t).
We can now look at the time evolution of the NR entropy. We will assume the NR subsystem initially in an even ‘‘SC’’

state, |β⟩ = η(|α⟩ + | − α⟩). Firstly we consider the resonant case (f (t) = 0) and we look for the time evolution of the NR
entropy with different decay rates γ in the CPB, with ω = ω0 = 2000λ0 and the NR state with α = 5, as shown in Fig. 2(a),
(b), and (c). In an ideal case the CPB decay rate vanishes. As displayed in Fig. 2(a) the maximum value of the entropy of the
NR is close to ln 2. Just after the start of the CPB–NR interaction the entropy of the NR stabilizes at this value by a small
interval and then recovers the oscillations as time goes on. The CPB subsystem is stable while standing in its ground state
|g⟩; but when lying in its excited state |e⟩ various factors as spontaneous emission among others imply its decay to the
ground state. For a small decay rate (see Fig. 2(b)) the maximum entanglement becomes significant only for large times.
However, the increase of the decay rate produces a drastic change on the entanglement (see Fig. 2(c)), with large reductions
in their swings, which leads the CPB to its ground state (zero entropy). This effect upon the entropy of the CPB also affects
the entropy of the NR (Fig. 2). Secondly, we modify the previous case by including the presence of detuning (f (t) = ∆ ≠ 0)
to verify its influence upon our interacting system. We take the decay rate as γ = 0.05λ0, with f (t) = ∆ = const and
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Fig. 5. Time evolution of the Normalized Power Spectrum when the NR is initially prepared in ‘‘cat state’’, concerning with the Entropies shown in the
plots of Fig. 2: the plot 5(i) refers to the plot 2(i), i = a, b, c .

Fig. 6. Same as in Fig. 5, concerning with the Entropies shown in the plots of Fig. 3: the plot 6(i) refers to the plot 3(i), i = a, b.

1 ≪ ω0, ω. As result the entanglement remains for long time as the value of ∆ increases, as we see comparing Fig. 3(a)
with Fig. 2(c); this event is accompanied by a diminution of themaximum entropy (see Fig. 3(a) and (b)).When the detuning
increases, the CPB transitions decreases (cf. Fig. 9).

Thirdly, we extend the detuning to the time dependent case, assuming f (t) = c sin(ω′t), where c and ω′ are parameters
of amplitude and frequencymodulation of the NRwith the conditionω′ < c ≪ ω0, ω. Comparing the Fig. 4(a) with Fig. 3(b)
we see that the sinusoidal modulation does not favor the entanglement for long time. However, the frequency modulation
increases the maximum entanglement (see Fig. 4). Comparing Fig. 4(a) with Fig. 4(b) we see that when the frequency ω′

grows the oscillations of entropy decrease.

5. Power spectrum of the entropy

To get a better understanding of the entropy we have considered its power spectrum (PS). It consists of a frequency
dependent function, being real, positive, and constructed from the following Fourier transform [52]

PS(ϖ) =
1
π

∫ τmax

0
SNR(t) exp(iϖ t)dt, (17)

where τmax = λ0tmax stands for the maximum interaction interval in the plot SNR(t) versus λ0t .
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Fig. 7. Same as in Figs. 5 and 6, concerning with the Entropies shown in the plots of Fig. 4: the plot 7(i) refers to the plot 4(i), i = a, b.

a

b

c

Fig. 8. Time evolution of the CPB Excitation Inversion with the NR initially prepared in the even ‘‘cat state’’, for various values of the decay rate:
(a) γ = 0.0λ0 (b) γ = 0.01λ0 , and (c) γ = 0.05λ0 , with α = 5, ω = ω0 = 2000λ0 , and f (t) = 0 (resonance).

The entropy PS is obtained from the above equation, as displayed in Fig. 2(a), (b) and (c). As expected, the amplitude of
oscillations of this PS is reduced in the presence of growing decay rates (see Fig. 5(a), (b) and (c)); when we add a constant
detuning (f (t) = ∆ ≠ 0) and a decay rate γ = 0.05λ0 we see in Fig. 6(a) and (b) the maximum value of the PS increasing
when ∆ also increases. In the case f (t) = c sin(ω′t) the frequency of entropy PS is smoothly attenuated, with a peak
around Ω = 0.1, as shown in Fig. 7(a). When the frequency ω′ increases the entropy PS is rapidly attenuated (cf. Fig. 7(a)
and (b)).
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a

b

Fig. 9. Same as in Fig. 8, for different values of detuning (cf. f (t) = ∆ = const): (a) ∆ = 10λ0 and (b) ∆ = 20λ0 , with α = 5, ω = ω0 = 2000λ0,

γ = 0.05λ0 .

6. Excitation inversion of the CPB

The CPB excitation inversion, ICPB(t), is an important observable of two level systems. It is defined as the difference of the
probabilities of finding the system in the excited and in the ground state. For the CPB it reads,

ICPB(t) =

∞−
n=0


|Ce,n(t)|2 − |Cg,n+1(t)|2


. (18)

The Eq. (18) allows us to find the time evolution of the CPB excitation inversion. First, we assume the resonant case
(f (t) = 0), for different values of the decay rate γ , with α = 5 and ω = ω0 = 2000λ0 as in Fig. 8. Fig. 8(a)–(c)
exhibit identical collapse and revival, but with different amplitudes: the higher the decay rate, the lower the amplitude
of oscillations of the CPB excitation inversion. However, in the presence of a fixed detuning, with f (t) = ∆ = const and
1 ≪ ω0, ω, we see that the CPB excitation inversion in Fig. 9(a) occurs only inside the interval τ = λ0t ∈ (15, 30);
differently, in Fig. 9(b) this event occurs inside the interval τ ∈ (50, 75), with amplitude smaller than that in Fig. 9(a); this
is the effect caused by a constant detuning upon the CPB excitation inversion.

For a time dependent detuning, f (t) = c sin(ω′t), the frequency of the CPB excitation inversion accompanies the
frequency ω′, as shown in Fig. 10. When we compare the Fig. 10(b) with Fig. 8(c), we see: if ω′ increases, the interval of
collapse of the excitation inversion also increases. However, looking at Fig. 10(a), (b) we see that the increasing of ω′ as in
Fig. 10(b) introduces equally spaced collapse intervals, accompanied by revivals modulated by the parameter ω′. Now, we
can compare the CPB excitation inversion obtained with constant detuning (f (t) = ∆ = const) and that obtained with
a time dependent detuning (f (t) = c sin(ω′t)): looking at Fig. 9 we see the plots of excitation inversion showing neither
collapses nor revivals, with exceptions of small regions exhibiting excitation inversion (Fig. 9(a)); in Fig. 9(b) only a single
such region appears. However, when considering the time dependent detuning (Fig. 10(b)), we see it nicely restituting those
collapses and revivals that appear in the resonant case (cf. Fig. 8(c)).

7. Conclusion

We have considered a Hamiltonianmodel for a CPB–NR interacting system to study entropy, its power spectrum and the
CPB excitation inversion. These properties characterize the entangled state that describes this coupled system for various
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Fig. 10. Same as in Figs. 8 and 9, for time dependent detunings (cf. f (t) = c sin(ω′t)): (a) c = 20λ0, ω
′

= 0.5λ0 , (b) c = 60λ0, ω
′

= 20λ0 , with
α = 5, ω = ω0 = 2000λ0, γ = 0.05λ0 .

values of the associated parameters. We have included dissipation and assumed the CPB in excited state and the NR initially
in a SC state (see generation in Ref. [65]). We have also considered the following scenarios: (i) resonant case (detuning
f = 0); (ii) off-resonant case, with a constant detuning (f = ∆ ≠ 0), and (iii) off-resonant case, with a time dependent
detuning (f (t) = c sin(ω′t)). The results were discussed in the previous section. Concerning with the entropy we see that
when the NR is initially in a ‘‘Schrödinger-cat’’ state, the entropy lasts longer than in an atom–field system with the field
initially in a coherent state (cf. Ref. [31]). Concerning with the excitation inversion, an interesting result emerges: although
the presence of a constant detuning destroys the collapse and revivals of the excitation inversion, these effects are restituted
by the action of convenient time dependent detunings—even in the presence of damping. Finally, it is worth emphasizing
that external forces acting upon the NR originate from the changes in the magnetic flux Φe (cf. Fig. 1), which provide the
control of the parameters ω(t) and λ(t).
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