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Abstract

Neutrino oscillations provide evidence for the mode entanglement of neutrino mass eigenstates in a given 
flavour eigenstate. Given this mode entanglement, it is pertinent to consider the relation between the oscil-
lation probabilities and other quantum correlations. In this work, we show that all the well-known quantum 
correlations, such as the Bell’s inequality, are directly related to the neutrino oscillation probabilities. The 
results of the neutrino oscillation experiments, which measure the neutrino survival probability to be less 
than unity, imply Bell’s inequality violation.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The foundations of quantum mechanics are usually studied in optical or electronic systems. In 
such systems, the interplay between the various measures of quantum correlations is well known. 
Inspired by the recent technical advances in high energy physics experiments, in particular the 
meson factories and the long baseline neutrino experiments, attention has also been directed 
towards subatomic physics [1–10].
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The study of quantum correlations in neutrinos, has been mostly focussed on entanglement 
[3–6]. Recently, a temporal analogue of Bell’s inequality, the Leggett–Garg inequality, has been 
studied in the context of neutrino oscillations [10]. Here, along with entanglement we also study 
the other quantum correlations such as Bell’s inequality violation, teleportation fidelity and ge-
ometric discord in the context of two flavour neutrino oscillations as well as study the interplay 
between them. In particular, we show that all these quantities are directly related to the neutrino 
oscillation probabilities.

Neutrino oscillations are experimentally well established [11–17]. Such oscillations are pos-
sible if both of the following conditions are satisfied:

• The neutrino flavour state is a linear superposition of non-degenerate mass eigenstates.
• The time evolution of a flavour state is a coherent superposition of the time evolution of the 

corresponding mass eigenstates.

The coherent time evolution implies that there is mode entanglement between the mass eigen-
states which make up a flavour state. Such mode entangled states have been the subject of intense 
discussions over the last two decades [18–23], resulting in the general consensus of subspace en-
tanglement as a generalized feature of inter particle entanglement [23]. It has been the subject of 
many theoretical and experimental proposals [21] as well as successful experimental realizations 
[22] in atom-photon systems. Here we use the concept of mode entanglement to relate flavour 
oscillations to bipartite entanglement of single particle states.

The quest for understanding quantum correlations could be thought to have begun with the 
efforts of Einstein–Podolsky–Rosen (EPR) [24]. A quantitative understanding of EPR led to the 
development of Bell’s inequality [25], with refinements leading to the Bell-CHSH (Clauser–
Horn–Shimony–Holt) inequalities [26]. Violation of Bell’s inequality quantifies the non-locality 
inherent in the system. A weaker, though very popular and widely studied facet of quantum 
correlations, is entanglement [27]. This has been applied to understand the process of teleporta-
tion [28]. A still weaker measure is quantum discord [29,30] and was developed as the difference 
between the quantum generalizations of two classically equivalent formulations of mutual infor-
mation. States which are separable and hence have no entanglement could still have non-zero 
discord. Hence, our present understanding of quantum correlations is that it is a complex en-
tity with many facets. There is now an abundance of measures of quantum correlations such as 
quantum work deficit [31], measurement induced disturbance [32] and dissonance [33].

In this paper we study a number of quantum correlations in the context of two-flavour neutrino 
oscillations. Among them are mode non-locality, concurrence, discord and teleportation fidelity. 
We find that all these quantum correlations are simple functions of the neutrino oscillation prob-
abilities. A non-zero oscillation probability immediately leads to a violation of Bell’s inequality 
and to a teleportation fidelity value of greater than 2/3.

We first provide an introduction to the quantum mechanics of two flavour neutrino oscillations. 
Here we see that mode entanglement comes in a natural setting. We then discuss and compute 
different quantum correlations and relate them to the neutrino oscillation probabilities. We finish 
with our conclusions.

2. Quantum mechanics of two flavour neutrino oscillations

It is well known that there are three flavour states of neutrinos, νe, νμ and ντ [34,35]. In the 
oscillation formalism, it is assumed that they mix via a 3 ×3 unitary matrix to form the three mass 
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eigenstates ν1, ν2 and ν3. Neutrino oscillations occur only if the three corresponding masses, 
m1, m2 and m3, are non-degenerate. Of the three mass-squared differences �kj = m2

k − m2
j

(where j, k = 1, 2, 3 with k > j ), only two are independent. Oscillation data tells us that �21 ≈
0.03 × �32, hence �31 ≈ �32. One of the three mixing angles parametrizing the mixing matrix, 
θ13, is measured to be quite small (about 0.14 radians) [36–39].

In considering neutrino oscillations, in general, one should use the full three flavour oscillation 
formulae. A number of studies do this, fitting all the available neutrino oscillation data to the 
three flavour formulae [40–42]. In the following three important experimentally relevant cases, 
the three flavour formula reduces to an effective two flavour formula:

1. Long baseline reactor experiments: Reactors emit electron anti-neutrinos with energies of a 
few MeV. In long baseline reactor neutrino experiments, the baseline is expected to be greater 
than 50 km. For example, in KamLAND experiment [12,13] the baseline is approximately 
180 km. These experiments measure the anti-neutrino survival probability P(ν̄e → ν̄e). In 
the limit of neglecting θ13, this probability reduces to the effective two flavour formula [1 −
sin2 2θ12 sin2(�21L/4E)].

2. Short baseline reactor experiments: These experiments have baselines of about a km [36–39]. 
Given this short baseline, they are not capable to observing the oscillations induced by the 
smaller mass-square difference �21. Setting this quantity equal to zero in the expression 
for P(ν̄e → ν̄e), an effective two flavour formula [1 − sin2 2θ13 sin2(�31L/4E)] is obtained 
once again.

3. Long baseline accelerator experiments: Accelerator neutrino beams consist of muon neutri-
nos (or anti-neutrinos) with energies ranging from hundreds of MeV [17] to a few GeV [15]. 
They have baselines of hundreds of km. In the expression of the muon neutrino survival 
probability P(νμ → νμ) for these experiments, both the small parameters, �21 and θ13, can 
be set to zero in the leading order. In this approximation, once again an effective two flavour 
formula, [1 − sin2 2θ23 sin2(�32L/4E)], is obtained. Then the problem reduces to that of 
two flavour mixing of νμ and ντ to form two mass eigenstates ν2 and ν3. The corresponding 
oscillations are described by one mixing angle θ23 and one mass-squared difference �32.

In the case of two flavour mixing, the relation between the flavour and the mass eigenstates is 
described by a 2 × 2 rotation matrix, U(θ),(

να

νβ

)
=

(
cos θ sin θ

− sin θ cos θ

)(
νj

νk

)
, (1)

where α, β = e, μ, τ and j, k = 1, 2, 3. Therefore, each flavour state is given by a superposition 
of mass eigenstates,

|να〉 =
∑
j

Uαj

∣∣νj

〉
. (2)

The time evolution of the mass eigenstates 
∣∣νj

〉
is given by∣∣νj (t)

〉 = e−iEj t
∣∣νj

〉
, (3)

where 
∣∣νj

〉
are the mass states at time t = 0. Thus, we can write

|να(t)〉 =
∑

e−iEj tUαj

∣∣νj

〉
. (4)
j



68 A.K. Alok et al. / Nuclear Physics B 909 (2016) 65–72
The evolving flavour neutrino state |να〉 can also be projected on to the flavour basis in the 
form

|να(t)〉 = Ũαα(t) |να〉 + Ũαβ(t)
∣∣νβ

〉
, (5)

where |να〉 is the flavour state at time t = 0 and |Ũαα(t)|2 + |Ũαβ(t)|2 = 1. We introduce occu-
pation number states as [3,4]

|να〉 ≡ |1〉α ⊗ |0〉β ≡ |10〉 ,
∣∣νβ

〉 ≡ |0〉α ⊗ |1〉β ≡ |01〉 . (6)

Eq. (5) can therefore be rewritten as

|να(t)〉 = Ũαα(t) |1〉α ⊗ |0〉β + Ũαβ(t) |0〉α ⊗ |1〉β , (7)

where,

Ũαα(t) = cos2 θe−iEj t + sin2 θe−iEkt ,

Ũαβ(t) = sin θ cos θ(e−iEkt − e−iEj t ) . (8)

Now the state in Eq. (7) has the form of a mode entangled single particle state [18–22]. The 
corresponding density matrix is given by

ρα(t) =

⎛
⎜⎜⎝

0 0 0 0
0 |Ũαα(t)|2 Ũαα(t)Ũ∗

αβ(t) 0
0 Ũαβ(t)Ũ∗

αα(t) |Ũαβ(t)|2 0
0 0 0 0

⎞
⎟⎟⎠ , (9)

where

|Ũαα(t)|2 = c4 + s4 + 2s2c2 cos
(�t

2E

)
= Psur , (10)

|Ũαβ(t)|2 = 4s2c2 sin2
(�t

4E

)
= Posc , (11)

Ũαα(t)Ũ∗
αβ(t) = s c

(
s2 − c2 + c2ei �t

2E − s2e−i �t
2E

)
, (12)

Ũαβ(t)Ũ∗
αα(t) = s c

(
s2 − c2 + c2e−i �t

2E − s2ei �t
2E

)
, (13)

with c ≡ cos θ and s ≡ sin θ . In the above equations, θ is a generic two flavour mixing angle 
and � is the corresponding mass-square difference. Since the neutrino masses are very small 
(less than 1 eV), the neutrinos are assumed to be ultra relativistic. Hence the time of travel t is 
equal to the distance of travel L and the difference in energies of the mass eigenstates (Ek −Ej)

can be set equal to �/2E. The quantities in eqs. (10) and (11), |Ũαα(t)|2 and |Ũαβ(t)|2, are the 
two flavour survival and oscillation probabilities, respectively. Note that Psur < 1, immediately 
implies Posc > 0.

3. Quantum correlations in two flavour neutrino oscillations

In this section, we discuss and compute various quantum correlations inherent in the state 
given in Eq. (7). In all our subsequent calculations, the states considered are represented by 4 ×4
density matrices.

Bell’s inequality is used to study the non-locality of a given system. Its physical content is that 
a system that can be described by a local realistic theory will satisfy this inequality. Quantum 
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mechanics provides many examples where this inequality gets violated [43]. However, here we 
do not propose to derive a Bell’s inequality from local realism. Instead we make use of a very 
interesting result obtained in [44] which facilitates quantitative statements about Bell inequality 
violations just by making use of the parameters of the density operator describing the system.

The density matrix ρ, in general, can be expanded in the form

ρ = 1

4
[I ⊗ I + (r.σ ) ⊗ I + I ⊗ (s.σ ) +

3∑
n,m=1

Tmn(σm ⊗ σn)] . (14)

The elements of the correlation matrix T are given by Tmn = T r [ρ(σm ⊗ σn)]. Let ui (i =
1, 2, 3) be the eigenvalues of the matrix T †T . Then the Bell-CHSH inequality can be written as 
M(ρ) ≤ 1, where M(ρ) = max(ui + uj ) (i 	= j) [44]. For the state (7), M(ρ) is given by

M(ρ) = 1 +
[
3 + cos 4θ + 2 cos

(
�t

2E

)
sin2 2θ

]
sin2 2θ sin2

(
�t

4E

)
,

= 1 + 4PsurPosc. (15)

Thus we see that M(ρ) is directly related to the neutrino oscillation probabilities and a measure-
ment of Psur < 1 leads to a violation of Bell-CHSH inequality. We also note that the maximal 
violation occurs when Psur = 1/2 = Posc.

Non-locality is the strongest aspect of quantum correlations. A weaker, though popular and 
extensively studied feature, is entanglement. For the case of entangled two-level systems it is 
synonymous with concurrence. For a state with density matrix ρ, the concurrence is [27]

C = max(λ1 − λ2 − λ3 − λ4,0), (16)

where λi are the square roots of the eigenvalues of ρρ̃ in decreasing order, where ρ̃ = (σy ⊗
σy)ρ

∗(σy ⊗ σy) and is obtained by applying the spin flip operation on ρ. Here, concurrence can 
be shown to be

C = 2

√
sin4 θ + cos4 θ + 2 cos2 θ sin2 θ cos

(
�t

2E

)
sin 2θ sin

(
�t

4E

)
,

= 2
√

PsurPosc (17)

Obviously, entanglement is non-zero if the oscillation probability is non-zero.
A still weaker measure of quantum correlations is quantum discord which points out that 

classicality and separability are not synonymous. To obtain an analytical formula for quantum 
discord is a very difficult task as it involves an optimization over local measurements, requiring 
numerical methods. To overcome this difficulty, another measure of quantum correlation called 
geometric discord was introduced in [45] which quantifies the amount of non-classical correla-
tion, of an arbitrary quantum composite system, in terms of its minimal distance from the set of 
classical states. For ρ, geometric discord can be shown to be

DG(ρ) = 1

3
[‖�y‖2 + ‖T ‖2 − λmax] , (18)

where T is the correlation matrix defined above, �y is the vector whose components are ym =
Tr(ρ(σm ⊗ I)), and λmax is the maximum eigenvalue of the matrix (�y �y† + T T †) [45]. It is not 
difficult to show that DG(ρ), here, is
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DG(ρ) = 2

3
sin2 2θ sin2

(
�t

4E

)[
3 + cos 4θ + 2 cos

(
�t

2E

)
sin2 2θ

]
,

= 8

3
PsurPosc. (19)

DG(ρ) 	= 0 for Posc 	= 0, taking it away from the classically allowed value of geometric dis-
cord [46].

Apart from the above foundational measures of various aspects of quantum correlations, 
a need was felt to have a measure that defines the practical use of quantum correlations. This 
was supplied by teleportation. Since neutrinos interact only through weak interactions, the effect 
of decoherence is minimal, when compared to other particles such as electrons and photons that 
are widely used in quantum information processing. Hence it has the potential to impact practical 
quantum information processing.

The classical fidelity of teleportation in the absence of entanglement is 2/3. Whenever the 
maximum teleportation fidelity, Fmax > 2/3, quantum teleportation is possible. Fmax, is easily 
computed in terms of the eigenvalues {ui} of T †T mentioned above and is given by Fmax =
1
2

(
1 + 1

3N(ρ)
)

where N(ρ) = (√
u1 + √

u2 + √
u3

)
[47]. This expression allows for a useful 

interplay between teleportation fidelity and M(ρ). This is so because N(ρ) ≥ M(ρ). Hence 
M(ρ) > 1 automatically implies Fmax > 2/3. For the case of two flavour neutrino oscillations, 
Fmax is given by

Fmax = 2

3
+ 1

3

√
3 + cos 4θ + 2 sin2 2θ cos

(
�t

2E

)
sin 2θ sin

(
�t

4E

)
,

= 2

3
(1 + PsurPosc) . (20)

For non-zero Posc, Fmax > 2/3, where 2/3 is the classical value of teleportation fidelity. Thus 
the usual relation between Bell’s inequality violation and teleportation fidelity [47], as seen in 
electronic and photonic systems, is obeyed here. This is in contrast to the unstable oscillating 
neutral mesons [7].

From the above analysis, it is obvious that all the quantum correlations are directly related to 
the neutrino oscillation probability. A measurement of the neutrino survival probability which is 
less than unity directly leads to the conclusion that all the quantum correlations take classically 
forbidden values.

4. Conclusions

In this work we have computed four facets of quantum correlations for the two flavour neutrino 
oscillations. We find that all these correlations are simple functions of the product of neutrino sur-
vival and oscillation probabilities. They acquire classically forbidden values when the oscillation 
probability is non-zero. In that case, the Bell’s inequality is always violated and teleportation 
fidelity is always greater than 2/3. Since the three types of neutrino experiments discussed in 
section 2, long and short baseline reactor and long baseline accelerator, have all measured the 
neutrino survival probabilities to be less than unity, we can conclude that they have also demon-
strated the non-trivial quantum correlations in each case.
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