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ABSTRACT 

Structured matrices 8(r) = [I, + ey’ + ye’ - Tee’] arise in nonstandard lin- 

ear models, where e’ = [l, . . . , 11, y’ = [ri, . . . , ‘y,,], and 7 = (-yi + ... +7,)/n. Their 
properties are studied, including expressions for eigenvalues, conditions for positive 

definiteness, and conditioning of B(r) as y varies. It is shown that if y majorizes 
yO, then the condition numbers are ordered as c,(Z(y)) > c,(Z(ra)) for every 
condition number {c+(.); C#J E @) generated by the unitarily invariant matrix norms. 

Applications are noted in linear inference and in outlier detection. 0 Elsevier 
Science Inc., 1996 

1. INTRODUCTION 

Let Y E (w” be Gaussian with mean p and dispersion matrix 2, i.e., 
.2(Y) = N,&, 2) with P(Y) as the law of distribution of Y. The following 
issues arise regarding validity of the normal-theory analysis of variance in 
linear statistical inference. With B, = I, - n-lee’ in standard notation, the 
typical analysis of variance partitions Y’B,Y into orthogonal components 
under conditions assuring the chi-squared (x2) character of P(Y’B,Y). 
Standard model assumptions, not necessarily realized in practice, are that 
z = (T21n, and it remains to consider the validity of the analysis under 

dependence. That Z = cr 2 I,, is sufficient but not necessary for validity is 
seen on noting that ._!T(Y’B,,Y) is a scaled x2 variate, even under equicorre- 
lation with 2, = Z.( p) = cr2[(1 - p)I, + pee’], where p is restricted to 
-(n - 1)-r < p < 1. 
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Here we consider the collection B(n) = {Z(r); y E FJ of all n X n 
structured matrices of the type Z(r) = I,, + ey’ + ye’ - yee’ such that 
Z(y) is positive definite, where e’ = Jl, . . . , 11, y’ = Jri, . . . ,3/,,1. and r = 

(71 + *** +7,)/n. This class is seen to exhaust the Gaussian dispersion 
models preserving validity in the analysis of variance, in the sense that 

LZ’(Y’B,Y) has its requisite form. 
Structured dispersion matrices have been considered elsewhere in the 

statistical literature. Baldessari (1966) studied a class of matrices of the form 
Z( A, a) = AI, + ea’ + ae’ arising in certain analysis-of-variance problems. 
Huynh and Feldt (1970) and Rouanet and L&pine (1970) characterized the 
class of all within-subject k X k dispersion matrices preserving validity of the 
usual F-tests regarding k repeated measurements on each of n experimental 
subjects. These matrices have the structure Z:(A) = [ Ai + Aj + aijhl with 

aij as Kronecker’s symbol. It is clear that the structures z(A, (Y), Z(A), and 

I;(y) are all equivalent, and therefore that B(n) comprises the class of all 
such matrices in Sz. More recently, Srivastava (1980), Young et al. (1989) 
and Baksalary and Puntanen (1990) h ave shown that a normal-theory test for 
a single shifted outlier, due to Grubbs (1950), remains exact in level and 
power under dispersion matrices belonging to B(n). Matrices of the type 
D + ey’ + ye' arise in the study of Euclidean distance matrices (Gower, 
1982) and their applications in linear inference (Farebrother, 1985). An 
outline of the paper follows. 

Preliminary developments occupy Section 2. Section 3 characterizes Z:(n) 
in terms of the x2 character of P(Y’B,,Y) through properties of generalized 
matrix inverses. Section 4 undertakes the spectral analysis of Z(r), including 
expressions for its eigenvalues and conditions for positive definiteness. The 
conditioning of XC(r) as y varies is studied in Section 5 for condition 
numbers {c+,(*); 4 E @J g enerated by the unitarily invariant matrix norms. 
Section 6 gives some applications and concluding remarks. 

2. PRELIMINARIES 

To fvc notation, Iw”, Iw: , S,, and Sz designate Euclidean n-space, its 
positive orthant, the n X n real symmetric matrices, and their positive 
definite varieties. The set C(n) = {x E R" : x1 > +.* > x, > 0) is a stan- 
dard simplex in rW:, with x’ = [x1,. . . , x,] as the transpose of x E Iw”. 
Special arrays include the n X n identity I,,, the unit vector e’ = [l, . . . , 11 in 
[w”, and the diagonal matrix Diag(a,, . . . , a,). Special distributions on rW!+ 
include the chi-squared distribution x’(v, A) having Y degrees of freedom 
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and noncentrality A, and O(n) designates the group of real orthogonal n X n 
matrices. 

Let a = [ aI, . . . , a, j’ and b = [b,, . . . , b, j’ be two vectors in Iw” such 
that {oi > ... > a,) and {b, >, ... > b,}. Then b is said to be mujorized by 
a if (1) al + ... +a, > b, + ... +b, for T= l,...,n - 1, and (2) a, 
+ . . . +a, = b, + . . . +b,. The ordering is designated by a k b. A standard 
reference is Marshall and Olkin (1979). 

A function 4(o) on [w” is called a symmetric gauge if it satisfies the 
following conditions: 

c,. +i,. . . ,UJ = +(EIUil’. . ., E,u~,) for each 1~~ = k 1; 1 < i < n) 

and any permutation {ii,. . . , i,} of (1,. . . , n}; 
C,. 4(u) > 0 when u # 0; 

C,. +(cu) = ICKY for complex c; and 

C,. +(u + v) 6 4(u) + (f4v). 

Let @ be the class of all symmetric gauges on [w”. A function +(.I on S,: is 
said to be uniturily invariant if $(A) = @(PAP’) for each A E Si and 
P E O(n), so that I)(A) depends on A only through its ordered eigenvalues 

1oi 2 ... 2 ff, > O}. If lj(*> is also a norm on (S,‘, 11. II>, then the class of all 
unitarily invariant matrix norms is generated as {II* I(,+; 4 E @I with IlAll~ = 

44oi,. . . > a,) as shown in von Neumann (1937). 

3. CHARACTERIZING z(n) 

We next characterize those Gaussian models for which L?(Y’B,,Y) = 
X2(n - 1, A). Throughout we consider only nonsingular distributions on [w” 
having dispersion matrices of full rank n. A principal result is the following 
based on properties of generalized matrix inverses. 

THEOREM 1. Suppose that 2’(Y) = N,(p, Z). Then a necessary and 
suflcient condition for LZ(Y’B,,Y) = x2(n - 1, A) is that x E Z(n), in 
which cuse h = dZ(y)p for some y E r. 

Proof. First invoke the necessity and sufficiency of the condition B,Z B, 
= B, in order that L?‘(Y’B,Y) = X2(n - 1, A); see Johnson and Kotz (1970), 
for example. Next generate all full-rank g-inverses of B,, starting with I,,, 
using results from Rao and Mitra (1971), to infer that I: E E(n). Further 
details are given in Jensen (1989). n 
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In summary, Theorem 1 characterizes {N,&., I;); 8 E B(n)} as the class 
of all Gaussian models for which the analysis of variance effects a valid 
decomposition of Y’B,Y as a x2(n - 1, h) random variate. Further proper- 
ties of these models are developed next. 

4. SPECTRAL PROPERTIES OF x(r) 

We seek expressions for the eigenvalues of Z(r) and conditions for its 
positive definiteness, all in terms of y. To these ends write Z(r) = I, + 
A(y) with A(y) = ey’ + ye’ - Tee’, and recall that the eigenvalues of 
z(r) are given in terms ofA by {ch,(Z(r)) = 1 + ch,(A(y)); 1 < i < n}. 
Further let ri = yi + **a +‘y, = nr and 7s = (rr - r)2 + ... +(-y,, - r)2. 
We now consider two cases, first supposing that y = ce for some c f 0. For 
this case A(ce) = tee’ has unit rank and Z( y ) takes the familiar form 
Z(ce) = I, + tee’ having eigenvalues 1.0, with multiplicity n - 1, and 
1 + nc, so that X(ce) is positive definite if and only if c > -n-l. Results for 
the case y # ce are given in the following. 

THEOREM 2. Suppose that Z(y) = I, + A(y) with A(Y) = ey’ + ye’ 
- Tee’ and y z ce, and let B(n) = {Z(y); y E I?) be the class of all such 

matrices for which Z(y) is positive definite. Then 

(i) A(y) has rank r[A(y)] = 2. 
(ii) A(y) is an indefinite matrix, its positive and negative eigenvalues 

given by cxl = [TV + (7; + 4nT,)1’2]/2 and CY,, = [TV - (T: f 4~~)~‘~1/2, 
respectively. 

(iii) The ordered eigenvalues It1 > ... > 5,) of I;(Y) are given by 
{& = 1 + (Yi, t2 = ... = &_ i = 1, 5, = 1 + on]. 

(iv) Z(r) E E(n), or equivalently, y E r, if and only if TV > nr2 - 1. 

Proof. (i): Rewrite A(y) = e(r - ve)’ + (y - qe)e’ = eW + 8e’ with 
17=?/2 and 8= y - Te. This clearly has rank 2 unless 8 = de with 
d # 0, which is excluded by hypothesis. 

To see conclusions (ii), recall that the leading terms of the characteristic 
polynomial for A(y) are P,(A) = cr” - clon-l + c~IY’-~, where ci = 
trA(y) = ri and c2 is the sum of all 2 X 2 principal minors. Further terms 
vanish, since A(y) has rank 2. A typical principal 2 X 2 submatrix, namely, 

A(i,j) = 
2% - r %+7-T 

Yi + Yj - 7 2Yj - r 1 (4.1) 
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gives the minor !A(i, j)] = -(ri - yj)‘, so that cs = - Ci < j(ri - yj)2. From 
a standard formula it follows that c2 = -nCr= i(yi - r)2 = -nr2. Substitut- 
ing into P,(A) gives P,,(A) = CX”-~(U~ - TV (Y - no,), the roots of which give 
conclusions (ii). Conclusion (iii) follows immediately, and conclusion (iv) from 
the requirement that 1 + CY, = 1 + [TV - (Q-," + 4nr2)‘/2]/2 > 0 in order 
that Z:(y) should be positive definite. n 

For later reference note that conclusion (iv) characterizes r as r = {r E 
R” : 7 > Cy= l(yi - r)2 - n ‘}. We return to this subsequently in construct- 
ing mixtures of distributions. 

5. CONDITIONING OF Z(r) 

The conditioning of a linear system Ax = b, and the propagation of errors 
in its solution, are gauged by the condition number c,(A) = g(A)g(A-‘1, 
where g(e) ordinarily is a norm. The system is well conditioned at A = I,,, 
larger values of c,(A) reflecting more ill-conditioned systems. For further 
details see Horn and Johnson (1985). In a Gaussian model iV,(w, Z), the 
condition number c,(Z) also may be taken to gauge shapes of elliptical 
probability contours in comparison with the spherical contours occurring at 
2 = I,. If g(a) 1s unitarily invariant, then (c~(*); 4 E @} is the class of 
condition numbers generated by the unitarily invariant matrix norms as 
studied in Marshall and Olkin (1965), where c,(A) = l~ll+l~A-lll+. 

We next investigate the manner in which the conditioning of X(r) E B(n) 
depends on y E r. A basic result is the following. 

THEOREM 3. Let Z(y) and Z(yO) belong to Z(n). Zf Y majorizes yo, 

i.e., y * yO, then the condition numbers are ordered as c~(X(y)) b 
c,(I;( yJ) for every condition number in the class {c,(*); 4 E @I generated 
by the unitarily invariant matrix norms on S,:. 

Proof. Let g = [ ei,. . . , t&Y and go = [ toI,. . . , 50,Y be the ordered 
eigenvalues of Z(y) and Z(y,), respectively. Then y * y. implies that 
g x to on applying Theorem 2, since 72 = C;= i(-y, - Y)2 is order-presew 
ing under majorization. But since (1 * I],+ is unitarily invariant, we have that 

c@(y)) = +(ei,. . . ,5&#45p>. . . , 5; I). Lemma 3.3 of Marshall and Olkin 
(1965) shows that if b k a, then (1) +(a,, . . , , a,) < +(b,, . . . , b,) and (2) 
$(a;‘, . . ., a,‘) < +(b,‘, . . . , b; I). On combining these and identifying a 



194 D. R. JENSEN 

with &, and b with 5, we conclude that c,+,(%r>) > c+(Z(ra)) as claimed, 
to complete our proof. n 

Nowconsidermodels I;(y,)and X(~~)in ZJ(n)with ~1 = J~r1,...~ ?‘l,J 

and yz = Jyzr,..,, ya,J’, such that neither yi * y2 nor y2 k yl. To make 
further progress observe that the simplex (C(n), 2) from Section 2 is a 
lattice with greatest lower bound and least upper bound given respectively by 
the vectors y, = 7’1 A Y2 and YM = y1 V y2. Here the elements of y1 A 
y2 E R” are found by working backwards from the scalar quantities {Y~I A 

Y213 (y11 + Y12) A (Y2l + Y2.2)7 . . * > (Y11 + *** + Yl,n-1) A (721 

+ . . . + ~2, n _ 1)), with yi A yj = min( yi, 3). Similar developments apply for 

the vector y1 v y2 with yi V yj = ma(yi, Yj>* Theorem 3 applies d+=tly 
to give the bounds 

for each condition number in the class (c~(*); 4 E @J. With apparent 
modifications we have proved the following. 

THEOREM 4. Let E,(n) = (Z(r); y E IYy,, yy)) be bwnhd in the 
seme that y, s y s yM for each y E r(y,, TM)* Then bmds on con&- 
tion numbers for the ensemble B,(n) are given by 

for each condition number in the class (c+,(*); C#J E Q} generated by the 
unitarily invariant matrix norms on S,+. 

6. CONCLUSIONS 

The one-way analysis of variance partitions Y'B,Y so that Y’ = [Yi, . . . , YL ] 
and {Y,( = [Yi,, . . . , Yin,]; 1 < i < k). Standard assumptions are that Yi repre- 
sents an iid sample from N,( pi, (+ 2> independently for 1 < i < k, so that 

Z(Y) = N,(p, 0~1,) with n = nI + *a* +nk. Theorem 1 assures validity of 
the analysis even when Z’(Y) E { N,,((*, I;); Z E E(n)). This holds despite 
highly ill-conditioned models in the class { N,(p, 2); Z E a(n)> as studied in 
Section 5. A similar validation applies in every normal-theory analysis of 
variance partitioning the sum of squared deviations from a grand mean. 
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Implications of the present study go considerably farther. For fured y E I 
suppose that the conditional distribution of Y is given by _!Z(Y 1~) = 
iV,(p, X(r)>, and consider testing linear contrasts of the type H : A'p = 0 
against general alternatives K : A'p. # 0. It follows that normal-theory tests 
for H are independent of y in level and power. We now mix over y so as to 
preserve the definiteness of Z(y), to obtain the typical mixture 

f(y; P>G) = /-dy; P, X(Y)) WY). (6.1) 

Here g(y; p, Z(r)) design t a es the Gaussian density corresponding to 
N,(I.L, X(y)), and G(*) is any cumulative distribution function supported on 
the set F as characterized in Theorem 2 and the comments following. We 
conclude that normal-theory tests for H remain exact in level and power for 
all such mixtures. Examples include testing main effects and interactions in 
factorial experiments. Similar conclusions apply to Grubbs’s (1950) test for 
outliers, as well as to all other tests based on the Studentized residuals. 

It may be noted that mixtures of the type (6.1) belong to the class of 
symmetric star unimodal distributions as studied in Dharmadhikari and 
Joag-Dev (1988). It is remarkable that some normal-theory tests remain exact 
in level and power even for joint error distributions having star-shaped 
contours. Further details and extensions of these properties will be reported 
elsewhere. 

In Section 4 we found explicit expressions for the eigenvalues of Z(y), 
and conditions for positive definiteness, all in terms of y. These findings in 
turn support a detailed assessment of the conditioning of Z(r) as y varies, 
as reported in Section 5. 
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