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the theorem cannot be proven by elementary means plus compactness. Translinite 
methods are actually necessary. The actual cover given by the proof considered is 
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existence imply a stronger system, fI$A,. We refine this known proof of Kiinig’s 
theorem to show that in fact its consequences are equivalent to ZZ$A,. 0 1992 

Academic Press, Inc. 

* Research partially supported by Japan TS Research Fund. 
+ Research partially supportyed by Grant 87-00040/l from the U.S.-Israel Binational 

Science Foundation. 
* Research partially supported by NSF Grant DMS-8601048 and Grant 84-000067 from the 

U.S.-Israel Binational Fund. The hospitality of the Mathematics Departments of Ben-Gurion 
and Hebrew Universities is also gratefully acknowledged. 

257 
00958956/92 $3.00 

Copyright 0 1992 by Academic Press, Inc. 
All rights of reproduction in any form reserved 



258 AHARONI, MAGIDOR, AND SHORE 

1. INTRODUCTION 

Lovasz and Plummer [13] cite what they call the Konig Max-Min 
theorem (the matching and covering number are equal in (finite) bipartite 
graphs) as the most important and basic theorem in matching theory. (A 
graph G is bipartite if its set of vertices can be divided into two disjoint sets 
M and W such that every edge in the graph joins (that is, consists of) a 
vertex in A4 and a vertex in W. A matching Fin G is a collection of disjoint 
edges of G. The matching number of a graph G is the maximum cardinality 
of a matching in G. A cover of a graph G is a set C of vertices of G such 
that every edge contains a vertex in C. The covering number of a graph G 
is the minimal cardinality of a cover of G.) This theorem was proved for 
all finite bipartite graphs in Kiinig [12]. Erdos conjectured that a strong 
form of this theorem holds for all bipartite graphs regardless of cardinality. 
Note that to give the theorem more substantial content for infinite graphs, 
we assert not just the equality of the cardinalities of the matching and 
covering numbers but rather the existence of a (necessarily maximal) 
matching from which we may choose a cover. We call a cover of G a K&zig 
cover if it consists of a selection of one vertex from each edge of a matching 
in G. As, for example, in Brualdi [3] and Aharoni [2] we call this version 
the K&rig duality theorem: 

THEOREM 1.1 (Konig’s duality theorem). In every bipartite graph G 
there is a matching F and a selection of one vertex from each edge in F which 
produces a cover C of G, i.e., every bipartite graph has a Kiinig cover. 

The proof of the original theorem for finite graphs is quite ingenious but 
still fairly short and certainly completely elementary (in the technical sense 
which we shall make precise later that refers to the methods needed to 
establish the result). Now most theorems of this sort in finite graph theory 
which generalize to infinite graphs have fairly simple proofs in the general 
case. Simple here can be understood in a number of different ways which 
we shall also make precise later. First consider the case of graphs on the 
natural numbers and the degree of difficulty of constructing the desired 
matching and cover in the case of Kiinig’s theorem or the required decom- 
position in Dilworth’s theorem, the homogeneous set in Ramsey’s theorem 
or the coloring in various chormatic number problems. (We shall use the 
word “solution” to stand ambiguously for such a desired matching, decom- 
position, coloring, etc.) 

Generally speaking, a combinatorial or graph theoretic proof requiring 
only a direct analysis or construction can be extended to produce a recur- 
sive solution, i.e., one effectively computable from the inputs. An example 
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of such a theorem which is nonetheless certainly nontrivial is the 
Dushnik-Miller theorem that an ordered set can be embedded in a product 
of n chains if there are n linear orderings on the set whose intersection is 
the given order. In this example the n chains required can be chosen to be 
recursive if the n linear orderings on the set in the hypothesis are recursive. 
Similarly, Tverberg’s proof of the infinite version of Brook’s theorem on 
coloring graphs with certain properties with at most k colors supplies a 
greedy algorithm that establishes Schmerl’s recursive version of the 
theorem for strongly recursive graphs (ones in which the neighbors 
of a vertex can be computed effectively). (See Schmerl [ 183 and 
Tverberg [26].) 

The other common, relatively simple proof technique used to lift results 
from the finite to the infinite is compactness of Konig’s lemma. This 
method is more powerful than a simple direct elementary construction and 
typically signals the need for more complicated algorithms. Almost 
invariably, a proof that requires some version of compactness of Konig’s 
lemma corresponds to a construction procedure that produces the desired 
solution recursively in 0’, the degree of unsolvability of the halting 
problem. At times a more careful construction will produce a recursive 
solution to the recursive problem but not always. Thus, for example, the 
decomposition required in Dilworth’s theorem (every ordered set with 
width at most n is the union of at most n chains) is proved to exist by an 
application of K&rig’s lemma and can be easily constructed (for recursive 
graphs) recursively in 0’. As is shown in Schmerl [17], however, there 
is in general no recursive solution. (For more on these matters see 
Kierstead [lo] and Kierstead et al. [ 111 and the references therein.) 

The homogeneous sets required in Ramsey’s theorem also require a com- 
pactness or Konig’s lemma type argument. In fact, the situation here is a 
bit more complicated than that for Dilworth’s theorem. In the latter 
theorem we can manage with binary trees in the application of Kiinig’s 
lemma, while the former requires the lemma for all finitely branching trees. 
This division (which will be explained in more detail as Systems 2.2 and 
2.3) corresponds to a recursion of complexity theoretic one: One can 
always find a decomposition of a recursive graph as required in Dilworth’s 
theorem which is strictly recursive in 0’. On the other hand, there are 
recursive colorings of the triples of natural numbers which have 
homogeneous sets only of degree 0’ [S]. 

The situation for Konig’s duality theorem seems quite different from that 
for the other combinatorial results mentioned so far. After a series of 
partial results by various authors including the case of countable graphs 
by Podewski and Steffens [15], the full theorem was finally proven in 
Aharoni [2]. The proofs, however, even in the countable case, are very 
difficult and highly non-elementary. They involve uses of Zorn’s lemma, 
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even for graphs on well-ordered sets such as the natural numbers, and 
arbitrarily long translinite inductions (of all countable lengths again just 
for the case of graphs on the natural numbers). The constructions, 
moreover, give no somple or natural bounds on the complexity of the 
desired solution. 

We shall analyze the complexity of this result both in terms of how hard 
it is to construct the desired covers and what methods are needed to prove 
the theorem. Since we are hoping to reach readers with a variety of back- 
grounds and interests in both combinatorics and logic, we shall try to 
supply the background material in both areas. In addition, we shall 
separate the combinatorial and complexity (or recursion theoretic) material 
from the more logically (or proof theoretically) oriented material so as to 
make the former independent of the latter. 

Our first goal in this paper is to characterize in a formally precise way 
the complexity of constructing, for recursive graphs, the covers that the 
theorem asserts exist. The complexity of these covers will be shown to be 
very high. As a first approximation to their complexity we shall see that it 
exceeds not only that of the halting problem but also of all finite iterations 
of the halting problem. Equivalently, finding such covers is harder than 
answering all lirst-order questions about arithmetic. Actually the com- 
plexity of the problem far exceeds that of first-order arithmetic. We can 
iterate the halting problem (or equivalently, starting with the recursive sets, 
the operations of projection, complementation, and recursive union) into 
the transfinite along any recursive well ordering and still be below the 
complexity of constructing such covers. 

The recursion theoretic hierarchies used to measure such complexity will 
be described and explained in the first four pages of Section 2. We shall first 
review the definition of the standard halting problem familiar from 
undecidability results. It corresponds to a single application of the (Turing) 
jump operator. We shall then explain the transfinite iterations of this jump 
operator which correspond to the hyperarithmetic hierarchy that we use to 
measure degree theoretic complexity. (This hierarchy is essentially an effec- 
tive analog of the Bore1 hierarchy for sets of natural numbers.) Section 4 
(up to Theorem 4.13) will describe the constructions of various recursive 
graphs on N and show that their covers must be of very high complexity 
in a way that will quite precisely characterize the difficulty of constructing 
the covers guaranteed to exist by K&rig’s duality theorem for countable 
graphs. To indicate the inherent complexity of the theorem in the uncoun- 
table case, we shall describe a recursive graph on the reals which has no 
projective solution. These parts of the paper can be read independently of 
the rest of the paper (the rest of Section 4, Section 3, and the bulk of 
Section 2). These other sections will be devoted to a second measure of 
complexity: the strength of the axioms needed to prove the existence of the 
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desired solution to a given combinatorial problem in general (Section 2) 
and for Konig’s duality theorem and related results in particular (Section 3 
and the rest of Section 4). 

The general program of calibrating the strength of mathematical 
theorems of the axiomatic systems needed to establish them (and, more 
interestingly, determining the systems to which they are actually equiva- 
lent) is now called reverse mathematics. Although many people have made 
important contributions to this area, it owes its existence and fruitfulness 
primarily to Harvey Friedman and Stephen Simpson. In Section 2 we give 
a brief description of some of the main axiomatic systems of induction and 
comprehension used to measure this type of complexity. We also briefly 
survey the relations between these systems and some of the basic theorems 
of algebra and analysis. For a guide to the details as well as a more 
comprehensive view, we recommend the relevant articles in Harrington 
et al. [4] and Simpson [21] and the references therein. 

Section 3 will be devoted to proving K&rig’s duality theorem for coun- 
table graphs. It begins with a standard proof which illustrates the use of 
higher order axioms in the various known proofs of the theorem. Indeed 
this standard proof falls entirely outside the scope of all the systems dis- 
cussed in Section 2. We then combine some recursion theoretic techniques 
(basis theorems) with a finer analysis of this proof to produce a proof of 
the theorem for graphs on N in one of the standard systems described in 
Section 2 and so a general bound on the proof theoretic complexity 
inherent in solutions to this problem. 

Finally, in the concluding parts of Section 4 we apply our complexity 
theoretic results for solutions to K&rig’s theorem to characterize precisely 
the proof theoretic strength of various results implicit in the known proofs 
of the theorem and to give a nearly optimal lower bound for the strength 
of the theorem itself in terms of these axiom systems. In particular, we shall 
prove that elementary means supplemented by the compactness theorem or 
Konig’s lemma do not suflice to prove the duality theorem or any of a 
number of related results in matching theory. The reader interested 
primarily in the question of how hard it is to construct the covers can 
ignore these parts of the paper and the proof theoretic applications. We do 
feel, however, that they have some very interesting things to say about the 
theorem and associated results. 

We now preview our results for those readers who are familiar with the 
standard recursion hierarchies and the common proof theoretic systems for 
second-order arithmetic. The constructions of Section 4 will show that 
there is a recursive bipartite graph such that any Kiinig cover for it must 
be above all the hyperarithmetic sets in Turing degree. This result is essen- 
tially the best possible. The desired cover is defined by an arithmetic condi- 
tion and so the standard basis theorems tell us that there is always one 

582b/54/2-7 



262 AHARONI, MAGIDOR, AND SHORE 

recursive in Kleene’s 0 (of strictly lower hyperdegree, etc.). (An analogous 
construction for the reals produces a recursive graph on W for which any 
solution must be more complicated then all the projective sets.) In proof 
theoretic terms, the recursion theoretic result immediately shows that 
Konig’s theorem implies ATR, and so is strictly stronger than compact- 
ness. 

On the other hand, the proof presented in Section 3 shows (with some 
additional analysis) that the theorem is provable in ZZj-CA,. Now, as 
stated, the theorem is a fit sentence and so, on general grounds, cannot 
imply 17:-CA,. We shall see, however, that the proof supplied in Section 3 
actually proves a somewhat stronger prescribing a type of maximality 
property of the solution. The stronger version of the theorem implicit in the 
proof will be seen to require solutions of degree at least that of 0 for some 
recursive graphs. It will therefore be precisely equivalent to the theory 
Z7:-CA,. Thus the only remaining question is whether the original version 
of the theorem is provable in ATR,. This question seems non-trivial and 
of combinatorial interest. In particular, Lemma 3.2 asserts the existence of 
a maximal matching of a certain sort. This lemma alone guarantees the 
existence of 0 and so is equivalent to 17:~CA,. As some such maximal 
matching is used in all the known proofs of Konig’s duality theorem any 
proof in ATR, would seem to require a new approach. The various related 
maximal matching results are also connected with attempts to generalize to 
infinite families Hall’s theorem characterizing when a finite family of 
non-empty sets has an injective choice function. In Section 4 we describe 
one from Podewski and Steffens [lS] (the existence of maximal represen- 
table subfamilies) which is sufficient for their proof of K&rig’s duality 
theorem for countable graphs and show that it too implies fl:-CA, 
(Theorem 4.25). It would be interesting to see which of the known maximal 
matching results are, in fact , equivalent to ZZi-CA,. 

The situation in the uncountable case is harder to analyze as there are 
no systems of third-order arithmetic corresponding to the hierarchy of 
second-order systems used in the countable case. The first point to notice 
is that the full theorem for all graphs easily implies the axiom of choice 
(Proposition 3.6). The known proofs do not use simply a well ordering of 
the graph being analyzed but also of higher level objects as they apply 
Zorn’s lemma to families of subsets of the graph. That a well ordering of 
the vertices and edges is not sufficient is seen both from the analysis of 
recursive graphs on N (which are automatically well ordered) and the one 
constructed on 9. The point made by the construction for 9 is that even 
assuming a definable well ordering of B? such as exists in L brings us no 
closer to a definable solution. This need for a choice principle at one level 
higher than the graph being analyzed is circumvented in the special case of 
N by the use of a basis theorem. Perhaps the point here is that Z7:-CA, 
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(indeed even ATR,) implies such as a choice principle (Ci-AC) which we, 
in fact, use in the proof of the theorem in I;I:-CA,. 

2. RECURSION THEORETIC HIERARCHIES 
AND PROOF THEORETIC SYSTEMS 

In this section we try to give brief descriptions and explanations of both 
the recursion and proof theoretic measures of complexity that we use to 
calibrate problems and something of a guide to the literature. Both views 
are intimately connected with syntactic and definability measures in lirst- 
and second-order arithmetic and so we have to deal with these concepts as 
well. We begin with the computational approach. 

Our starting point is the notion of a recursive function or set (we often 
identify sets with their characteristic functions). We say that a partial func- 
tion cp: N + N (that is one whose domain may be any subset of fV) is a par- 
tial recursive function if it is theoretically computable by a Turing machine 
or, equivalently, by your favorite general purpose computer. (By “theoreti- 
cally” we just mean that we permit calculations that may require arbitrarily 
large, although always finite, time and memory.) If cp is total, we say that 
it is a recursive function. We adopt the view expressed by Church’s thesis 
which identifies these functions with the intuitively effectively calculable 
ones. (For more details and further information and references on the 
recursion theory we need we refer the reader to Rogers [16].) 

It is easy to believe that we can recursively enumerate the possible 
programs for such a machine and so have an effective list (Pi of the partial 
recursive functions. (Not all programs will compute total functions.) We 
say that e is an index for the partial recursive function (Pi. Such an index 
should be thought of simply as a code for the finite set of instructions that 
make up the program for calculating the corresponding function. That we 
have listed the partial recursive functions rather than the total ones is cru- 
cial. There is no obvious way of deciding if a given program halts on any 
or all inputs. This is the famous halting problem which supplies the basic 
example of a non-recursive set: K = { (x, y ) 1 cp,( y) is convergent}. The 
proof that K is non-recursive is the typical diagonal argument: If K were 
calculable, the function Ed would also be calculable where cp is given by 
p(n) = q,(n) + 1 if n E K and 0 otherwise. If this function cp were calculable, 
it would be one of the ones on our list, say (Pi. Whether we assume that 
e E K or not, we quickly obtain a contradiction. Thus cp, and so K, is not 
recursive. 

We can now lay out a sequence beginning with K of progressively more 
and more complicated sets of “relativizing” the halting problem and then 
iterating this procedure. By relatiuization (to A) we mean a process which 
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adds to our basic machine a black box or oracle (A). So equipped, our 
machines can generate questions of the form “is z in A” and in a single step 
receive (from the oracle for A) the correct answer. Thus we convert our list 
((PC ) e E N ) of all partial recursive functions (Pi to one (cp,” 1 e E N ) of all 

functions partial recursive in A. The ones recursive in A (and so intuitively 
the ones calculable from A) are simply the total functions on this list. If 
B= cpf for some e, we say that B is Turing reducible to (or simply recursive 
in) A and write B Q T A. The Turing degrees, or simply the degrees, are just 
the equivalence classes a, b (with the induced ordering which is also written 
b Gr.a) of sets under this ordering. We can now relativize the halting 
problem to an arbitrary set A by considering the set of convergent com- 
putations from machines with oracle A. This defines an operation on sets, 
called the Turing jump, which takes a set A to A’= {(x, y) 1 q!(y) is 
convergent >. The unsolvability of the halting problem (in relativized form) 
says then that, for every A, A’ is not recursive in A. (The proof is exactly 
as for K, except that we replace everything by its relativized version: “recur- 
sive in A” for “recursive,” cp,” for (Pi, etc. This procedure of relativizing 
proofs is almost always routine and we shall use it frequently.) As A is 
clearly recursive in A’, we have an operation that, by iteration, gives us an 
increasing sequence of more and more complicated sets. Beginning with the 
empty set 121, we have the sequence of jumps 0, @‘, @“, a(‘), QfC4), . . . . 
(We write A(“) for the result of applying the jump operation n times to A.) 

Our next step is to continue the iteration of the jump operator into the 
translinite along recursively given well orderings. It is clear that if we have 
a set A at level LY of such an ordering we can form one at level 0: + 1 by 
simply applying the jump to get A’. The question is what to do at limit 
levels. Our answer is to take recursive unions. To be precise, if we have a 
sequence of sets (Ai 1 iE Z) for a recursive index set Z, we let the recursioe 
union, @ (AiliEZ}, of the sequence be the set {(i,x)lxEAi~ iEZ}. 
((i, x) is simply the ordered pair with first element i and second element 
x. It can also be viewed as a recursive function giving a code for the pair 
from the two inputs i and x. Similarly, we use (xi, . . . . x,) to denote the 
appropriate ordered n-tuple or its recursive code.) When the index set Z is 
all of N or otherwise clear from the context, we write (Ai) and @ Ai for 
(A,(ieZ) and @ {Ai(i~Z), respectively. 

Recursive unions are closely connected to a notion that is basic to this 
area: uniformity. Roughly speaking, a procedure is uniform if there is a 
recursive operation that takes indices for the input of the procedure to 
indices for the output. (Remember that this means simply that there is an 
effective way of converting programs that calculate the input objects such 
as sets, graphs, or orderings into programs that compute the corresponding 
output objects.) Thus, for example, a sequence (A,) of recursive sets is 
uniformly recursive if there is a recursive function f such that f(n) is an 
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index for A,, i.e., ‘prcn, is the characteristic function of A,. (Note that this 
is equivalent to the predicate x E A, being a recursive predicate of x and n.) 
Similarly, we say that @ Ai is a unijiorm upper bound (in Turing degree) for 
the A i, that is, all the Ai are uniformly computable from it: to see if x E Ai 
just ask if (i, x) E @ A,. The point of the uniformity here is that the index 
for Ai as a set recursive in @ A, is clearly given by a recursive function of 
i. In other words, the sequence (Ai) is uniformly recursive in @ Ai. 

If we apply this procedure of taking recursive unions to the sequence of 
jumps (@(‘)) we obtain atw)= {(n, x) (XE @“‘). We can, by using 
recursive unions at limit levels in this way, iterate the jump along any 
recursive well ordering. Again, to be precise, a well ordering (of fV) is just 
a certain type of binary relation on N and so we view it as a set of pairs 
of natural numbers. The ordering is recursive if the corresponding set of 
pairs is recursive. For technical convenience we also require that in a recur- 
sive well ordering the least element of the ordering is 0, the successor func- 
tion, s, is recursive as are the domain D of the ordering and the set L of 
numbers at limit levels of the ordering. We let 0 be the set of indices of all 
such recursive well orderings. Given such a well ordering < e we can iterate 
the jump along it in the obvious way: J(e, 0)= 0, J(e, ~(x))=J(e, x)’ for 
every x in the domain D of s and J(e,j)= @ {J(e, x)1x<, y} for ye L. 
The sets constructed in this way are usually referred to as H-sets with the 
intention being that, if e E 0, then H, = @ {J(e, x) ] x is in the domain of 
<,}. This hierarchy is called the hyperarithmetic hierarchy. The sets in it 
are our standards of comparison for complexity beyond the sets definable 
in (first-order) arithmetic. la’@’ is simply H, for e an index of the standard 
ordering of N. It is of the same degree as the truth set of arithmetic, that 
is, the set of all true sentences of arithmetic. 

As with the jump itself, relativization gives us a whole hierarchy of 
operators. Here the hierarchy itself depends on the relativization. We can 
define the H-sets relative to X for any well ordering recursive in X. We let 
Ox = {e 1 e is a recursive index relative to X of a well ordering ). H: is then 
defined as were the unrelativized H,, except that we begin, as one would 
expect, with H,X = X. (These operators also define a reducibility ordering A 
is hyperarithmetic in B, A <<h B, iff 3e E oB(A <r Hf).) The set cOX itself is 
actually (Turing) above all the Hx-sets. Combinatorially, its complexity is 
precisely that of deciding if any given (recursive in X) partial ordering 
is well founded and, if not, of constructing an infinite descending chain in 
the ordering. It is with this set that we actually come to the end of our 
recursion theoretic hierarchies and complexity measures. Before going on 
to the proof theoretic systems, however, we offer two other views of this 
hierarchy. The first is phrased in terms of iterations of complementation, 
projection, and effective union in analogy with the Bore1 hierarchy. The 
second is defined in terms of quantification in arithmetic. 
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Combinatorially, this whole hierarchy can be viewed as an effective 
analog of the Bore1 sets for sets of (finite sequences of) natural numbers. 
The recursive sets are given at the bottom in analogy with the open 
sets. The jump operator corresponds to projection, i.e., if some set P of 
n-tuples has gotten in at level tl of the hierarchy then its projection 
w  2, **., x,): 3x,((x,, x2, . ..> x, ) E P)) is put in at level a + 1. We also, as 
for the Bore1 sets, put in its complement, all n-tuples not in P. To help see 
that this corresponds to taking the jump note that we can characterize the 
jump operator as follows: (n, m ) E A’ iff there are s, x, and y such that 
(x3 Y > E 4w.s~ D.r c A and D,, t 2. Here Dz is the finite set with index z 
in some canonical recursive coding of the finite sets and (x, y) E R,,,, is 
the following recursive relation: the calculation of q,“(m) converges in at 
most s many steps during which the membership questions asked of the 
oracle which get positive and negative answers constitute the sets D, and 
D,, respectively. Thus if we have the recursive predicates and ones for A 
and A at level a we should obtain A’ (and A’) at level a + 1 by projection 
(and then complementation). (The technical details involve some addi- 
tional arguments that we omit.) At limit levels we, of course, take effective 
unions. 

Thus to establish some property for all the H-sets it intuitively s&ices to 
prove that the collection of sets with this property contains all recursive 
sets and is closed under complementation, projection (or the Turing jump), 
and recursive inlinitary union or disjunction. Actually, these recursive 
unions are tied to the notions of uniformity in the constructions of our 
hierarchy. Formally, everything is labeled with indices and we take unions 
over sequences given by recursive lists of indices. In fact, however, there is 
a standard procedure called effective transfinite induction which guarantees 
that, if these closure properties can be proven uniformly in the indices, then 
one can conclude that every H-set has the desired property. This type of 
argument is an application of the recursion theorem. We need to know 
only that there is such general procedure for the applications in this paper. 
The reader who wishes to see the details of how it is defined and applied 
is referred to Rogers [ 16, Chap. XI]. 

We turn now to arithmetic and a more syntactic view of the hyper- 
artihmetic hierarchy. It is not necessary to follow this presentation to 
understand the complexity theoretic results in Section 4. The reader so 
wishing can therefore go directly to Section 4. We shall, however, use the 
notations introduced here to describe the proof-theoretic hierarchies that 
we need later. 

In trying to understand the definitional complexity of the H-sets one has 
natural problems corresponding to each of the first few levels of this 
hierarchy. Thus 4” is the degree of {el cp, is total} and 4”’ is the degree of 
{e 1 qc has colinite domain}. The unaided imagination soon runs out in this 
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game, however. Perhaps the best uniform way to describe the complexity 
of the iterations of the jump is in terms of the syntactical complexity of 
their definitions (in terms of the number of quantifiers used) and of the 
questions about arithmetic that they can enswer. 

We begin with a (first-order) language for arithmetic that has constant 
symbols for 0 and 1, binary function symbols for + and ., a binary 
predicate for <, and quantification over N. For technical convenience we 
also introduce abbreviations for bounded quantifiers. We use 3x < y and 
Vx < y to mean “there is an x less than y such that” and “for all x less than 
y,” respectively. We define a hierarchy of formulas beginning with the ones 
with only bounded quantifiers which are called both L’i and Z7g. We then 
continue inductively: if cp is Cf (L7,“) then Vxq (3x(p) is nE+, (Ez+ i). A set 
A is said to be L’R (Z7g) if it is definable by a .L’z (Z7jl) formula. It is d jl if 
it is both 2: and I7:. Simple manipulations show that every arithmetical 
formula (i.e., one of this language for arithmetic) is equivalent to one which 
is L’t or l7: for some n. There is an interesting and important fact (due to 
Kleene and Post) connecting these definability notions with complexity as 
measured by the Turing jump: A set A is dz+ i if and only if it is recursive 
in @“’ (which is itself L’z but not Z7:). Thus there is a precise corre- 
spondence between the iterations of the Turing jump and the levels of 
definability of sets in arithmetic. 

To understand the higher levels of the hyperarithmetic hierarchy and its 
ultimate scope, we must move beyond first-order arithmetic to second- 
order arithmetic, i.e., to quantification over sets and functions rather than 
just over numbers. We add to our language variables X, Y, Z ranging over 
subsets of N and a predicate E for membership. Once again we define a 
hierarchy of formulas beginning this time with Eh = Z7; = the collection. of 
all L’E and Z7: formulas for n E N. A formula is Ci+ 1 (Z7!,+ 1) if it is of the 
form 3Xq (VXp), where the quantification ranges over subsets X of N and 
cp is Z7: (2:). The conventions for sets of numbers being CA, ZZA, Af, 
are as in the first-order case. The important and basic result of Kleene 
connecting this hierarchy with the H-sets is that the Ai sets are precisely 
the hyperarithmetic ones, i.e., those sets recursive in some H-set H,. 
Kleene’s 0, the set of e which are indices for recursive well orderings, is a 
ZZ: (but not xi) set. Indeed, it is complete at this level, i.e., every l7: set 
(and so every hyperarithmetic set) is recursive in it. (To say that an 
ordering has no infinite descending chains is clearly Z7:. That 0 is not 2’: 
follows its completeness and a typical diagonal argument.) 

We turn now to proof theory, in particular, to axiom systems in the 
language introduced above for second-order arithmetic which are suited to 
the development of much of ordinary mathematics (finite and countable 
combinatorics, algebra, and analysis). For philosophical considerations, 
further technical details, specific references for the various results cited 
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below and other systems we refer the reader to the expository papers 
Simpson [19-221 from which most of what follows has been extracted. 
(For a comprehensive treatment of all these matters we recommend 
Simpson [23].) 

All our systems contain the basic axioms for +, ., and < , saying that N 
is an ordered semi-ring. In addition, they all include the induction axiom 
which says that one can do inductions over any set (that one knows to 
exist): 

(Induction) 0 E X A Vn(n E X + n + 1 E X) + V’n(n E X). 

We call the system consisting of these axioms PO. The crucial informa- 
tion missing from PO is anything that tells us that there are any sets X of 
natural numbers. (The induction axiom with its free variable X can be use- 
fully applied only after we know that some set at least exists.) All the 
systems we consider will be defined by adding various types of set existence 
axioms to P,. They will, in addition, all be subsystems of full second-order 
arithmetic (usually denoted by Z, or Z7;-CA,) which contains, in addition 
to P,, the scheme of full comprehension: every formula defines a set or, 
more formally, 

(nk-CA,) XVn (n E Xct p(n)) for every formula cp of second-order 
arithmetic in which X is not free. 

System 2.1 (RCA,). RCAO, for recursive comprehension axiom, is a 
system just strong enough to prove the existence of the recursive sets but 
not of 0’ nor indeed of any nonrecursive set. In addition to P, its axioms 
include the schemes of A: comprehension and Cy induction: 

(A’$CA,) Vn(cp(n) c-f 1+4(n)) + 3X Vn(n E X+-+ q(n)) for all L’y formulas 
rp and ny formulas II/ in which X is not free. 

(Cy-I) (q(O) A Vn(fp(n) + cp(n + 1)) + Vncp(n)) for all Cy formulas cp. 

RCA, serves as our base theory. It captures basic arithmetic and simple 
combinatorial arguments including, for example, the development of 
primitive recursive arithmetic and the least number operator. It is also 
strong enough to establish the results of elementary combinatorics and 
algebra (finite and countable) including, for example, the existence of 
algebraic closures for countable fields. As one can prove the fundamental 
theorem of arithmetic in this system, one can code sequences. With such a 
coding scheme one can develop the basic theory of the reals from both an 
algebraic and analytic point of view. Thus, for example, one can prove that 
polynomials and the common transcendental functions like sin, cos, eX, 
etc. are continuous and that the intermediate value theorem holds for 
continuous functions. 

Generally speaking, the consequences of RCA, correspond to the 
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positive results of recursive algebra and analysis. Similarly, recursive 
counterexamples usually indicate theorems independent of RCA,, such as 
the existence of a non-recursive set, the uniqueness of algebraic closures, 
and the maximum value theorem. 

System 2.2 (WKL,). WKL,, for weak Konig’s lemma, consists of 
RCA, plus a version of Konig’s lemma for binary branching trees: 

(WKL,) Every infinite binary branching tree has an infinite path. 

WKL, is equivalent to the compactness of the Cantor set 2” or of the 
unit interval. It allows one to carry out most applications of compactness 
or K&rig’s lemma in its classical role of deducing countable combinatorial 
facts from their finite counterparts. One can also do much more in WKL, 
with continuous functions and ideal theory in countable rings than one can 
in RCA,. We list a few examples of mathematical theorems which (over 
RCA,) are equivalent to WKL,: 

(1) The Heine-Bore1 theorem. 

(2) Every continuous function on [0, l] is Riemann integrable, 
uniformly continuous, and has a maximum value. 

(3) Every countable commutative ring has a prime ideal. 

(4) Every countable field has a unique algebraic closure. 

In recursion theoretic terms, WKL, corresponds to problems to which 
the low basis theorem of Jockusch and Soare [9] provides solutions that 
are strictly recursive in @‘, in fact, ones with jump 0’. In terms of the 
types of codings typically used to prove undecidability results, the theorems 
equivalent to WKL, correspond to coding a set separating a pair of 
recursively inseparable sets. None of these techniques s&ice to prove the 
existence of @’ itself. That is a task beyond the scope of WKL, but 
precisely suited to our next system. 

System 2.3 (ACA,). ACA,, for arithmetic comprehension axioms, 
consists of P, plus the comprehension scheme for arithmetic formulas: 

(ACA,) 3X Vn(n E Xtt q(n)) for every arithmetic formula cp in which 
X is not free. 

This system clearly includes RCA, and is easily seen to imply WKL,. It 
is, however, considerably stronger than WKL,. Indeed, the standard proof 
of full Konig’s lemma. (every infinite, finitely branching subtree of fV lgi has 
an infinite path) works in ACA,. In fact, ACA, is equivalent (over RCA,) 
to this strong version of Konig’s lemma. It also allows one to prove various 
stronger combinatorial results than WKL, does. In addition one can 
develop in ACA, reasonable theories of sequential convergence and some 
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maximality results in algebra. We list a few sample theorems equivalent to 
ACA, : 

(1) Ramsey’s theorem for colorings of N rkl for any k > 2. 

(2) The Bolzano-Wierstrass theorem or Ascoli’s lemma. 

(3) Every countable commutative ring has a maximal ideal. 

(4) Every countable vector space over a countable field has a basis. 

(5) Every countable field has a transcendence basis. 

In recursion theoretic terms ACA, proves the existence of @’ and by 
relativization it proves and, in fact, is equivalent to closure under the jump 
operator. Thus it corresponds to proofs of undecidability which proceed by 
coding the halting problem. It is not, however, strong enough to continue 
the iteration of the jump into the transfinite nor even to prove the existence 
of 0’“‘. For the existence of the H-sets we must turn to the next system. 

System 2.4 (ATR,). ATR,, for arithmetical translinite recursion, 
consists of P, plus the assertion that arithmetic comprehension can be 
iterated along any countable well ordering: 

(ATR,) If X is a set coding a well ordering -K X with domain D and 
if Y is a code for a set indexed by x E D of arithmetic formulas (pX(z, Z) 
with one free set variable and one free number variable, then there is a 
sequence (K, 1 x E D ) of sets such that if y is the immediate successor of x 
in cX, then Vn(n E K, c, (~~(n, K,)) and if x is a limit point in c X then K, 
is 0 {~,ly~,x}. 

ATR, allows one to develop a good theory of countable ordinals, Bore1 
and analytic sets, and to do many transfinite inductions. The recursion 
theoretic version of the theory has not been disguised at all here. The 
appropriate equivalent clearly is closure under (relativized) H-set construc- 
tion: 

(ATR,) VXVe(e E OX + Hf exists). 

It is worth pointing out that, in both versions of ATR,, when we refer 
to a set coding a well ordering or a member of 0, we mean it formally (in 
the sense of the theory or any particular model). Thus, for example, the 
class HYP of hyperarithmetic sets do not form a model of ATR,. The 
problem is that there are orderings that are not well founded but have no 
hyperarithmetic descending chain. Such orderings would have jump 
hierarchies attached to them if HYP were truly a model of ATR,. As such 
pseudo-hierarchies do not exist in HYP, it is not a model of ATR, 
(Simpson [23, V. Proposition 2.61). 

An axiom looking perhaps more like the ones used to define the other 
systems that is equivalent to ATR, is z: separation: 
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G:-SW 1Wcpob) A cpl(n)) -+ 3x Vn(cp,(n) -+tzEX A cpl(rl) + 
n 4 X) for all .Z’: formulas ‘p,, and cp i in which X is not free. 

Z’i separation is the analog for the 2: and hyperarithmetic sets of Lusin’s 
theorem that disjoint analytic sets can be separated by a Bore1 set. Another 
important set existence principle implied by ATR, is a choice principle for 
Zi collections called Ci-AC. 

(Ci-AC) Vn 3Xq(n, X) -+ 3YVncp(n, (Y),) for every C: formula cp, 
where (Y),= (xl (n, x) E Y}. 

As for the earlier systems, we list a few mathematical theorems which are 
known to be equivalent to ATR,: 

(1) Ramsey’s theorem for open subsets of [w]“. 

(2) Every closed set of reals either contains a perfect set of is coun- 
table. 

(3) Any two countable well orderings are comparable. 

(4) Ulm’s theorem characterizing countable reduced abelian p-groups 
in terms of invariants. 

While ACA, gave us the arithmetic sets, ATR, allows us to develop the 
hyperarithmetic sets. On this basis it is easy to see that ATRo is strictly 
stronger than ACA, and so it is not provable from compactness or the full 
Kiinig’s lemma: N with all the arithmetic sets is clearly a model of ACA, 
but not of ATR,. Even ATRo does not take us all the way to 0. As it does 
not prove the existence of 0, we should note that in the recursion theoretic 
version of the axioms for ATR, that the phrase e E ax is to be understood 
as an abbreviation for “e is a recursive index relative to X for a well 
ordering.” To prove the existence of 8, we must move on to our fifth and 
last system. 

System 2.5 (Z7:-CA,). f7:-CA,, for ni comprehension axiom, is the 
system P, plus comprehension for ZZ: formulas: 

(J7:-CA,) 3X tm(n E Xo q(n)) for n: formula cp in which X is not 
free. 

Again the recursion theoretic equivalent is readily apparent. It is simply 
the assertion, suitably relativized, that 0 exists: 

(Z7:-CA,) VX(@’ exists). 

Thus 17:-CA, is equivalent to closure under hyperjump. Two other 
important set existence principles implied by 17:-CA, are embodied in the 
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Kleene and Gandy basis theorems which bound the complexity of a witness 
to a L’: formula, assuming only that one exists at all: 

(Kleene basis) Xv(X) --) X((p(X) A X<, 8) for every C: formula cp. 

(Gandy basis) Xq(X) -+ 3X((p(X) A Xc, 0) for every Zi formula cp. 

In Z7:-CA, one can do just a bit more in most respects than in ATR,. 
We list a few theorems known to be equivalent to Hi-CA,: 

(1) The Cantor-Bendixson theorem that every closed subset of 9 is 
the union of a countable set and a perfect set. 

(2) Every countable abelian group has a maximal divisible subgroup 
and is the direct sum of a divisible group and a reduced group. 

(3) Ramsey’s theorem for F, n G6 subsets of Co]“. 

In this paper (Section 4) we shall also establish a couple of new 
equivalents for Z7:-CA, drawn from combinatorial matching theory. There 
are very few results of “ordinary mathematics” which cannot be done in 
17i-CAo. One exception is discussed in Smith [24]. Some recent results 
connecting marriage theorems with weaker systems can be found in 
Hirst [S, 63. 

3. K~NIG’S DUALITY THEOREM FOR COUNTABLE GRAPHS 

In this section we shall present a proof (based on that of Aharoni [ 1,2]) 
of K&rig’s theorem for countable graphs. An extension and analysis of the 
proof for graphs on N shows that for such graphs the theorem is provable 
in Z7:-CA,. We begin by recalling some basic definitions. They also serve 
to specify some of our notation. 

DEFINITION 3.1. (i) A graph G consists of a set V of elements called 
vertices and a set E of edges where each edge is an (unordered) pair of 
vertices. 

(ii) The graph G is bipartite if its set of vertices can be divided into 
two disjoint sets M and W such that every edge in the graph joins (that is, 
consists of) a vertex in it4 and a vertex in W. The sets M and W are called 
the sides of G. 

(iii) A matching F in the graph G is a collection of disjoint edges of 
G. A matching F in G is said to be a matching from X into Y if, for every 
vertex x EX, there is a vertex y& Y such that (x, u) E F. A matching in a 
bipartite graph G clearly defines a one-one function between a subset of A4 
and a subset of W. 
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(iv) A cover of the graph G is a set C of vertices of G such that every 
edge in G contains (or is covered by) a vertex in C. 

(v) A K&zig cover C of G is a cover which consists of a selection of 
one vertex from each edge of a matching in G. 

(vi) The neighbors of a vertex x in a graph G are those vertices y 
such that (x, y) is an edge of G. We denote the set of neighbors of x by 
N(x). If G is bipartite and x E M, say, then clearly N(x) s W. 

(vii) In a bipartite graph G we define the demand D(X) of a set of 
vertices XE W by D(X) = { mEMIN(m)EX}, the set of vertices in M all 
of whose neighbors are in X. If it is necessary to indicate the graph G in 
which we are forming the demand of X, we shall write it as D&X). We 
subscript the other notations similarly when necessary. 

We now consider the proof of Theorem 1.1 for countable graphs. Let G 
be a fixed countable bipartite graphs. We must show that it has a Konig 
cover. Note that any vertices in G that are not in any edges of G are irrele- 
vant to this result. Any Konig cover of the graph G’ gotten by omitting all 
such edges from G is also one for G as any matching Fin G’ is a matching 
in G and any cover of G’ selected from F is also a cover of G. We can there- 
fore assume that any graph for which we want to find a Konig cover has 
no such isolated points. (This assumption is not strictly necessary, but 
it simplifies the picture at certain points.) We begin our analysis with a 
consideration of the family 9 = { XE W( there is a matching in G of X 
into D(X)}. 

LEMMA 3.2. 9 = {X E W 1 there is a matching in G of X into D(X)} has 
a maximum element, i.e., one containing all the others. 

Proof. (Axiom of choice). Let (X, 1 c( < /I) be a sequence listing all the 
elements of 9. For each 0: < fi there is a matching H, of X, into D(X,). 
Let F, be the restriction of this matching to X, - lJ (X,1 y < M>. It is 
clear that F=U {F,Icr<fl} is a matching of X=lJ {Xaltl<p} into 
U {D(X,)lcr<fi)~D(X). Th’ is matching F is clearly the desired maximum 
element of 9. 1 

From now on X will be the maximum element of 9 and F will be a fixed 
matching of X into D(X). We are now half way to our desired solution. 
Our desired matching will extend F by adding on a matching H of 
M-D(X) into W - X. The desired cover will then consist of X and the set 
Y=M-D(X). 

LEMMA 3.3. With the notation as above, XU Y is a cover of G. 

ProoJ Consider any edge (m, w) in G (with rnE M and WE W). If 
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m E Y, then the edge is covered at m. If, on the other hand, m E D(X) then, 
by definition of D, w E X and so (m, w) is covered at w  by X as required. m 

It thus suffices to prove that there is a matching of M - D(X) into W - X 
to complete the proof of Konig’s theorem. We consider the bipartite graph 
G’ with sides M’ = M- D(X) and W’ = W-X obtained by deleting the 
vertices in X and D(X) (and so any edges containing them) from G. 
Note first that for ZE W’ and m E Do,(Z), N,(m) c Zu X. Thus 
D,(Xu Z) 2 D&Z) u D(X). If there were now a matching H of some non- 
empty ZE W’ into Do,(Z) in G’, we could combine the given matching F 
(in G of X into Do(X)) with H to get a matching in G of XuZ into 
D,(Xu Z). As the existence of such a matching extending F contradicts the 
maximality of X in 9, there is no non-empty Zs IV’ such that there is a 
matching of Z into Do,(Z) in G’. Thus to obtain the matching of M - D(X) 
into W-X needed to finish the proof of the theorem, it suffices to prove 
the following lemma. 

LEMMA 3.4. If G’ is a bipartite graph in which 

there is no non-empty X’S W’ for which there is a matching of 
X’ strictly into D(X’) in G’, (*) 

then there is a matching in G’ of M’ into w’. 

We build the matching required in Lemma 3.4 inductively, using the 
following lemma: 

LEMMA 3.5. If a bipartite graph G’ has the property (*) specified above 
and m E M’, then there is a w E N(m) such that G” = G’ - (m, w}, i.e., G’ 
with vertices m and w and all edges containing either of them removed, also 
has property ( * ). 

Proof We first claim that if G” does not satisfy (*) for any particular 
w  E N(M), then there is an XL E w’ containing w  such that there is a 
matching in G’ - (m} of Xh into D(XL). This claim suffices to prove our 
current lemma 3.5 as we can simply take X’= lJ (XL1 (m, w) E G’} and 
piece together (as in the proof of Lemma 3.2) a matching H of X’ into 
0(X’) in G’- {m}. As m E D&X’) by the definition of X’ but it is not in 
the range of H, H is a matching in G’ of X’ strictly into D(X’), contrary 
to our assumption that G’ satisfies (*). All that remains then is to verify the 
claim. 

Proof of the Claim and so of Lemma 3.5. Suppose G” does not satisfy 
(*) and so there is a non-empty X’ E W’- {w} and a matching in G” of 
X’ strictly into Do”(X’). Let H be such a matching and c E 0,.(X’) be out- 
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side the range of H. We say that a finite sequence (m,, w,), . . . . (mk, wk) of 
edges in G” is an H-alternating path if m, = c, wzi = wzi + 1, mzi + 1 = mzi+ *, 
(mzi+ 1, w*i+ 1) is in H for every i and m2i+l #m2j+l if i#j. Let Z be the 
set of all vertices in M,- which are in an edge of an H-alternating path and 
let 2 be the set of all vertices in W,. matched with vertices in Z by H. Now 
by the definition of an H-alternating path, Z&D&Z). Thus we have a 
matching F’ in G” of Z into Is D,.(Z) which omits c from its range. As 
G’ satisfies (*), F’ cannot be such a matching in G’ and so there must 
be an XE Z which has w  as a neighbor. We can now define the required 
matching of XL into D( XL) in G’ - {m } by sending w  to x and then reversing 
the alternating path connecting x to c to reassign each member of IV’ in 
the path to the element of M’ that is next to it in the alternating path. 1 

Proof of Lemma 3.4 from Lemma 3.5. It is now clear that we can induc- 
tively define the matching in G’ of M’ into W’ required by Lemma 3.4 by 
simply successively applying Lemma 3.5 to each m E M’ to get a corre- 
sponding WE W’ in the graph consisting of the as yet unremoved vertices 
and edges. This then concludes the proof of KSnig’s theorem for countable 
graphs. 1 

Before continuing on to analyze the complexity of the above proof for 
countable graphs and the covers it asserts to exist, we want to note that the 
axiom of choice is necessary for any proof of the full K&rig duality 
theorem (i.e., for all graphs) as it easily implies this axiom: 

PROPOSITION 3.6. Kiinig’s duality theorem 1.1 implies the axiom of 
choice. 

Proof: Let Ai be any family of non-empty sets. Let G be the bipartite 
graph one of whose sides consists of the sets Ai and whose other side 
consists of all ordered pairs (i, a) with a E Aj. The edges of G are simply 
all pairs (Ai, (i, a)) with aE Ai. It is clear that from the matching F 
guaranteed by Theorem 1.1 one can easily construct a choice function for 
the family Ai. 1 

Returning now to the case of a countable graph G, we note that the mere 
existence of a solution for G, i.e., the required matching F and Kiinig cover 
C, gives us a bound on the complexity of at least one such solution. We 
assume for convenience that the vertices of G are contained in N. The 
property of being a solution is clearly arithmetic in G. Thus the standard 
basis theorems described in Section 2 apply to tell us that there is a solution 
recursive in the hyperjump of G and indeed ones of strictly smaller hyper- 
degree than that of G. Of course, if G is recursive, we simply obtain the 
existence of solutions recursive in, or of strictly smaller hyperdegree than, 
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Kleene’s 0. We shall see in the next section that this bound is essentially 
the best possible on Kiinig covers as there are recursive graphs for which 
any Kiinig cover must be (Turing) above all the hyperarithmetic sets. 

We now wish to analyze the proof theoretic complexity of the Konig 
duality theorem. Our first step is to refine the above proof by applying the 
basis theorems, again under the assumption that the vertices of G are 
contained in N, to see that the theorem is provable in Z7:-CA,. It is clear 
that the proofs of Lemmas 3.3 and of the claim within Lemma 3.5 are quite 
elementary. Problems first arise with the use of some form of the axiom of 
choice in both the proof of the existence of the maximum member X of 9 
in Lemma 3.2 and in the argument for Lemma 3.5 from the claim within it 
that also pieces together a matching. The second troublesome spot is in the 
induction needed to deduce Lemma3.4 from Lemma 3.5. We first consider 
Lemma 3.2. Rather than explicitly relativizing everything to G, we simply 
assume that G is a recursive graph on N and prove the existence of solu- 
tion in the lightface, i.e., unrelativized, case. (As usual, the proofs for an 
arbitrary G are simply gotten by replacing “recursive” by “recursive in G” 
and in a similar vein adding G on as an additional primitive predicate in 
our language of arithmetic.) 

Proof of Lemma 3.2 in l7:-CA,. We begin with the observation that 9 
is obviously a C: class of sets as is, for each WE W, the class 
9$= {XEYIIWE}. The set T= {~/9~#@} is then Z: and so exists 
by 17!-CA,. The collection gw, of sets and matchings given by 
Yw = { (X, H) ( X E F%, and H is a matching of X into D(X)} is an 
arithmetic class which is non-empty for each w  E T. Applying now either 
the Kleene basis theorem (which is a consequence of Z7:-CA,) or Zi-AC 
(which follows from the basis theorem) relative to T, we obtain the 
existence of a sequence ((X,., H,.) / w  E T) such that, for each w  E T, 
w EX, and H, is a matching of X into D(X). Given this sequence we 
can now directly define a matching F from X= u {X,. 1 w  E T} into 
lJ {D(X,) 1 w  E T} E D(X) to consist of the edges (w, m) such that 
(w,m)~ff,. I 

The argument deducing Lemma 3.5 from the claim within it is a similar 
exercise in using Et-AC to piece together the required matching of X into 
D(X) in G- {ml. 

Finally, we consider the inductive proof of Lemma 3.4 from Lemma 3.5. 
The crucial point here is that the property (*) that we need to propagate 
is itself Z7j and that the instances of (*) that we need can be listed in 
advance. More precisely, for each finite set D of vertices in G we let G, be 
the graph obtained by deleting from G all vertices in D and all edges with 
vertices in D. The set 9 = (D: G, satisfies (*)) is Il: and so exists by 
17:-CA,. We now begin with the bipartite subgraph Go of G given by 
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restricting G,, to the sides IV, = W- X and M, = M - D(X). Let (mi) be 
a sequence listing all the elements of MO. Using 9 we may now, by induc- 
tion, successively choose WOE W, and subgraphs Gi such that (m,, wi) is an 
edge of Gi and such that Gi+ , = Gi - {m,, wi} still has property (*). 1 

It is worth noting at this point that, if we are concerned only with finite 
graphs, the entire proof is elementary. Ail the orderings, piecing together of 
matchings, and inductions become purely linitary operations and so doable 
in weak systems. For a more direct linitistic proof of the theorem for finite 
graphs see for example Lovasz and Plummer [13]. In the other direction, 
the proof for uncountable graphs is considerably more complicated than 
the one given here. For those results see Aharoni [Z] or Holz, Podewski, 
and Steffens [7]. 

Before proceeding to the proof that strong theories are necessary to 
prove the duality theorem, we should remark that we have actually proven 
(in ni-CA,) a somewhat stronger version of Konig’s theorem than that 
given in Theorem 1.1. The extra information is supplied in Lemma 3.3, 
where we precisely specify the elements of W that are in the cover we con- 
struct. While the version given in Theorem 1.1 proves ATR,, this extended 
version turns out to prove the existence of 0 and therefore to be equivalent 
to 17:-CA, (Theorem 4.18). 

THEOREM 3.7 (Extended Kiinig duality theorem). In any countable 
bipartite graph G with sides M and W, there is a matching F and a selection 
C of one vertex from each edge in F which is cover of G such that for any 
w  E W, w  E C if and only if there is an XC W containing w  and a matching 
in G of X into D(X). 

In fact, we shall see (Theorem 4.20) that Lemma 3.2 itself guarantees the 
existence of 0 and so it is equivelent to ni-CA,. The situation is similar 
for various other results asserting the existence of maximal of different sorts 
(Theorem 4.22). 

4. SIMPLE GRAPHS WITH ONLY COMPLEX K~NIG COVERS 

Our first task in this section is to determine the complexity of Kiinig 
covers for recursive graphs. We show that for every H-set H, there is 
(and indeed we can effectively find) a recursive graph G, such that H, is 
recursive in any Kijnig cover of G,. The uniformity of the construction will 
then allow us to combine these graphs into a single recursive graph G such 
that for every e E 0, H, is recursive in every KGnig cover of G. On the other 
hand, general considerations show that there is no recursive graph such 
that all of its Kijnig covers compute 0. There are, however, recursive 
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graphs such that any cover of G that satislies the extra properties specified 
in what we have called the extended K&rig duality theorem (3.7) does, in 
fact, compute Co We also make some brief comments on the complexity of 
covers for graphs on the reals: there are recursive (and so clopen) graphs 
on R with no projective covers. Finally, we apply (the relativizations of) 
these results to show (in RCA,) that Konig’s duality theorem implies ATR, 
and that the extended version is equivalent to Z7:-CAo. We also show that 
some related results in matching theory used in various proofs of the basic 
duality theorem also imply ZZ:-CA,. 

Essentially all the graphs we actually consider will be recursive rooted 
o-branching trees of height at most w. 

DEFINITION 4.1. A rooted tree is a set T (whose elements are called 
nodes) partially ordered by < T with a unique least element called its root 
in which the predecessors of any element are well ordered by < T. A tree 
T is recusive if it nodes from a recursive set of natural numbers and the 
ordering < T is a recursive relation. 

DEFINITION 4.2. Let T be rooted tree. 

(i) The levels of T are defined by induction. The 0th level of T 
consists precisely of the root of T. The (k + 1)th level of T consist of the 
immediate successors (in < T) of the nodes on the kth level of T. 

(ii) We say the height of T is at most w if every node is at level n 
for some n E 0. 

(iii) If each node of T has at most o immediate successors, T is 
w-branching. 

From now on a tree will be a rooted w-branching recursive tree of height 
at most o all of whose nodes are natural numbers. Such a tree T can be 
viewed as a bipartite graph by letting W consist of the nodes at the even 
levels of T, M the ones at odd levels, and E the set of pairs (x, y) such that 
x is an immediate successor of y in T. The resulting graph G is also recur- 
sive (i.e., A4, W, and E are all recursive sets) if we adopt (as we now do) 
the convention that each node on one of our trees is a larger number than 
any of the nodes below it in the tree ordering. (In this case we can recur- 
sively determine if x is an immediate successor of y in T and the level of 
any node of T. These are the only facts needed to determine M, W, and E 
recursively.) We abuse notation slightly by identifying trees with the corre- 
sponding bipartite graphs. We also adopt the convention that all sequences 
(T,) of trees that we consider are uniformly recursive. (Recall that the 
uniformity of the sequence just means that there is a recursive function f 
such that, for each n, f(n) is a recursive index for T,, i.e., for the charac- 
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teristic functions of the corresponding set and ordering. This requirement 
is equivalent to the predicates “i E T,,” and “i,, cr, j” being recursive 
predicates of i, i, and n.) 

Our notion of coding by trees is given by the following definitions: 

DEFINITION 4.3. A tree T with root node r codes a fact cp if, for every 
KGnig cover C of T, r E Co cp. A sequence ( T,,) of trees with root nodes 
rn codes a predicate P(x,, . . . . x,) if, for every sequence of natural numbers 
al,..., m, a T,q,.....,n> codes P(a,, . . . . a,,,). We say the sequence ( T,, ) codes a 
set A if it codes the predicate “,,A.” 

The next lemma shows that it is sufficient to code the H-sets by sequen- 
ces of trees. 

LEMMA 4.4. Given any sequence ( T,, ) of trees coding a set A, we can 
untformly construct a single tree T such that A is untformly recursive in any 
Kiinig cover of T. (The untformity claimed here means that, given an index 
for the sequence of indices of the T,, , we can recursively find an index for T 
and for a reduction procedure, that is, a Turing machine, M such that, when 
equipped with an oracle for any Konig cover of T, M computes A.) 

In this lemma and in all our other constructions the uniformities asserted 
to exist in the statements of the results will be obvious from the construc- 
tions. All the manipulations of graphs that we employ will clearly be 
uniform in the sense that given an index for the inputs we can effectively 
compute indices for the outputs. (For those unfamiliar with such 
arguments, just think of the inputs as programs to compute the given 
graphs and the output as programs to compute the graphs asserted to exist. 
The manipulations needed to convert the former into the latter will all be 
simple programming procedures.) Thus we shall never explicitly mention 
these uniformities in the proofs. We begin by isolating from the proof of 
Lemma 4.4, a basic fact that will be used several more times. 

LEMMA 4.5. Suppose a tree T appears as a subtree of a tree S in such 
away that there is only one edge e in S which contains a vertex of T but is 
not in T. Moreover, assume that this edge e connects the root r of T to the 
root s of S. (In terms of the tree picture this means that r is on level one of 
S and T is the subtree of S consisting of r and all nodes above r.) If F is a 
matching in S and C a corresponding K&zig cover of S selected from F such 
that either e $ F or r 4 C, then F 1 T, F restricted to T, is a matching in T 
and, C restricted to T is a Kiinig cover of T selected from F r T. 

Proof: The restriction of F to T is obviously a matching in T. To see 
that C 1 T is a cover of G consider any edge (x, y) in T. It is also an edge 
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of S and so one of its vertices, say x, is in C. If r 6 C, then of course r # x. 
In this case, x must be selected by C from an edge in F with both vertices 
in T. Thus it is selected from F r T as well. If r = x but e 4 F, the crucial 
point to notice is that, since e is the only edge of S containing a vertex in 
T which is not itself an edge of T, the vertex r( =x) chosen by C from F 
must again have been chosen from an edge with both vertices in T (and so 
in F r T). 1 

Proof of Lemma 4.4. For each n, form three isomorphic copies T,,j 
(j= 1, 2, 3) of T,. Without loss of generality, these trees can be constructed 
such that they are pairwise disjoint and there is some number r which is 
not a node in any of them. We form a new tree T with root r by attaching 
to r all the T,,j, i.e., their root nodes, rn,i, are the immediate successors of 
r in T after which T looks just like the T,,i. Let C be any Konig cover of 
T with associated matching F. At most one of the edges connecting r to one 
of the rn,j can be in F. Thus, with at most one exception, the restrictions 
of C to the T,, j give Kiinig covers by Lemma 4.5. As each T,,, j codes n E A, 
we know that n E A iff at least two of the r,,j (j = 1,2, 3) are in C. 1 

Our goal is thus to show that, for every Ed 0, there is a recusive 
sequence ( T,, ) of trees which codes H,. In view of the way that the H sets 
are defined and the remarks on effective transfinite induction in Section 2, 
it suffices to prove the following three lemmas: 

LEMMA 4.6. There is a muform procedure for coding any recursive set R 
by a recursive sequence of trees. 

LEMMA 4.7. Given a recursive sequence ( T, ) of trees coding A, we can 
uniformly find a sequence (S, ) of trees coding A’, the Turing jump of A. 

LEMMA 4.8. Given simultaneously recursive sequences (T,, ;) such that, 
for each n, the sequence ( T,,il ie w) codes the set A,, we can untformly 
produce a sequence ( Tk) of trees that codes A = @ A, = { (n, i) I i E A,,}, 
the effective union of the A,. 

The last of these three lemmas, 4.8, is obvious: simply take the sequence 
(T,, i> ). The first of the three, 4.6, is almost as easy. The second, 4.7, 
requires two somewhat more complicated constructions. 

Proof of Lemma 4.6. If n E R, let T,, consist of root node (n) with 
immediate successors (n, 0) and (n, 1). If n $ R, then in addition let 
(n, i, j) for j= 0, 1 be the immediate successors in T, of (n, i) for i = 0, 1. 
It is clear that if n E R, the only Konig cover of T,, is { (n ) }. (There are 
only two edges in the graph. As both of them contain (n), only one can 
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be in the required matching. The only way to choose a cover then is to pick 
(n).) If, on the other hand, n 6 R, the only Konig cover of T,, is 
{<n, O>, (n, 1)). (Th e argument is similar to the one in the previous case. 
Not both (n, i, 0) and (n, i, 1) can be in the cover (for fixed i = 0 or 1) 
by the disjointness requirement on the edges in the matching. Thus for 
both n = 0 and 1, (n, i) must be in the cover by the definition of a cover. 
As each of the edges containing (n ) contains one of the (n, i), (n ) 
cannot be in the cover as the edges in the matching are disjoint and we can 
choose only one vertex from each edge.) i 

As explained in Section 2, to get closure under the jump operator it 
suffices to prove closure under complementation and projection. Thus to 
establish Lemma 4.7 it suffices to prove that the set of predicates coded by 
recursive sequences of trees is closed under these operations. 

LEMMA 4.9. The predicates coded by recursive sequences of trees are 
closed under complementation. 

LEMMA 4.10. The predicates coded by sequences of trees are closed under 
projections (or as one might say, recursive disjunctions), i.e., if there is a 
sequence coding the predicate P(i, n), then there is one coding the predicate 
P(i) = 3nP(i, n). 

Proof of Lemma 4.9. It clearly suffices to show that, if T codes a fact 
cp, we can uniformly produce a T coding lcp. We define T as the tree 
obtained by attaching two (disjoint) copies T1 and T2 of T to a new node 
which is then the root of 7. (In terms of the graph, we take two disjoint 
copies of T add on one new vertex, r, and two edges, e, and e,, joining r 
to each copy (ri and rJ of the original root node of T.) Consider now any 
matching F and corresponding Kdnig cover C of T. C must contain one 
vertex from each of the edges e, and e,. If it contains r, the matching F 
from which r is selected must contain exactly one of e, and e2. Suppose for 
the sake of definiteness that it contains e,. In this case F and C restricted 
to T2 also constitute a maching and its corresponding Konig cover by 
Lemma 4.5. As C contains r and F contains e,, this cover cannot contain 
rl. Thus we have a Konig cover of T not containing its root node, ie., lcp 
holds as required. On the other hand, if r 4 C, then both rl and r2 must 
belong to C but, again, at most one of e, and e, belong to F. Suppose e, 
does not belong to F. In this case, again by Lemma4.5, the restriction of 
C and F to T2 produces a matching and corresponding KGnig cover. We 
then have a KGnig cover of T containing its root node and so cp holds as 
required. 1 

Proof of Lemma 4.10. We are given a sequence ( TCi.,> > of trees coding 
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the predicate P(i, n) and wish to define a sequence ( Sj) of trees coding the 
predicate 3nP(i, n). For notational convenience we fix i and drop it from 
our subscripts. Our new tree S consists of a root node r to which we have 
attached, for each n, two copies F”‘,,r and T,,* of T,, (the tree coding the 
complement of what T, codes as constructed in the proof of Lemma 4.9). 
Consider now any matching F in S and corresponding K&rig cover C of 
S. If r E C, exactly one of the root nodes r,, j of these copies of T,,, is such 
that (r,,j, r) E F. Suppose it is rn. 1, the root of T,, 1 ; r,,, I cannot be in C but, 
by Lemma 4.5, C restricted to T,,, constitutes a K&rig cover selected from 
the matching F restricted to the same subtree. Thus, by our choice of Tn,, , , 
P(i, n) holds as required. On the other hand, if r 4 C, then every node rm, j 
must be in C, but at most one edge containing r, say (rp,2, r), can be in F. 
Thus, for every m, the restrictions of F and C to T,,, give a matching and 
Kiinig cover containing rm,l. Our chose of T,,,, 1 then guarantees that 
P(i, m) fails for every m as required. 1 

We have thus proven that Konig covers for recursive graphs necessarily 
have computational complexities that exhaust the hyperarithmetic sets: 

THEOREM 4.11. For every e E 0 there is a recursive graph G, such that H, 
is recursive in any Kiinig cover of G,. 

Indeed the uniformities necessarily present in our constructions, com- 
bined with an application of the recursion theorem in the form of effective 
translinite induction, show a bit more. 

THEOREM 4.12. There is a recursive graph G such that every hyper- 
arithmetic set is recursive in every Kiinig cover of G. 

ProoJ The uniformities present in all of the lemmas of this section 
show that for each e we can uniformly construct a sequence (T,,,) of trees 
such that, if eE 0, the sequence codes H,. Lemma 4.4 then produces a 
single graph TgCe, such that H, is recursive in any K&rig cover of TgCC,. On 
the other hand, if e is any number, not necessarily in 8, the procedure 
inherent in these uniformities produces some index g(e). Even if this is an 
index for a partial function we can uniformly interpret it as coding a bipar- 
tite (though possible finite or even empty) graph TgCe, in some systematic 
way. Thus, if we now take a disjoint union over all e, of the graphs TpCe, 
for each e, we obtain one large recursive bipartite graph G. As any Kiinig 
cover of G restricts to one of each of the TgC,,, any K&rig cover of G is 
Turing above every H-set. 1 

The next obvious question is whether one can find a recursive graph G 
such that 0 is recursive in any Konig cover of G. The answer to this ques- 
tion is no, on quite general grounds. The Kleene basis theorem says that 



THESTRENGTHOFKijNIG'STHEOREM 283 

one can always find a K&rig cover for a recursive graph G which is recur- 
sive in 0; but the Gandy basis theorem says that one can find a cover of 
strictly smaller hyperdegree and so, in particular, not above 0 in Turing 
degree. (These basis theorems are described in System 2.5.) The known 
methods of directly constructing Konig covers, however, all require going 
all the way to Co, even for recursive graphs. To be precise we recall that, for 
example, the proof we presented in Section 3 established a stronger result 
than K&rig’s theorem by constructing covers with a certain maximality 
property expressed in Theorem 3.7, the extended Konig duality theorem. 
We now prove that such constructions necessarily capture all of 0. 

THEOREM 4.13. There is a recursive graph G such that 0 is recursive in 
any Kiinig cover for G that satisfies the conditions of Theorem 3.7. 

Prooj To calculate 0 or any l7: set it suffices to be able to decide if a 
given recursive tree (or even linear ordering) has an infinite descending 
path. Given a recursive tree T with root Y we can uniformly construct a 
recursive tree T’ with root r in which we have inserted a single node x’ 
immediately after each node x # r of T and immediately before its 
immediate successors in T (if any). Thus in T’ every node x # r of T has 
exactly one immediate successor x’ and the immediate successors of x’ in 
T’ are just the immediate successors of x in T. Let G’ be the bipartite graph 
corresponding to T’ and let w’ be the side of this graph containing r. 

CLAIM. There is an infinite path in T’, and hence in T, if and only lf there 
is an XG W’ containing r and a matching F in G’ of X into D(X). 

Proof of Claim. Suppose first that there are such X and F. We build the 
desired infinite path in T’ by induction two levels at a time. We begin with 
r E X. As F is a matching of X into D(X), there is an immediate successor 
x1 of r (in both T and T’) in D(X) to which r must be matched by F. By 
our constructing of T’, x, has exactly one immediate successor xl in T’. 
The definition of D(X) then guarantees that xi E X. Now xi cannot be 
matched with x, by the disjointness of the matching F. Thus it must be 
matched with one of its immediate successors x2 in T’ (which must be one 
of the immediate successors of x1 in T); x2 E D(X) and so its immediate 
successor xi in T’ is in X. The construction now continues in this way by 
induction. 

Finally, suppose that there is an infinite path in T’. It must necessarily 
be of the form r, x,, xi, x2, xi, . . . with r, x1, x2, . . . forming an infinite path 
in T. Let X= {r, xi, x;, . ..}. The set {x,, x2, . ..} is clearly contained in 
D(X) and so the matching {(r, x,), (xi, x2), (xi, xx), . ..) is the required 
matching of X into D(X). 
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Returning now to the proof of Theorem 4.13, we see that T has an 
infinite path iff r is a member of every Kiinig cover of G’ satisfying the con- 
ditions of Theorem 3.7. We can now form, for every partial recursive tree 
T, with root node re, the corresponding graph (tree) TL. If we let T be a 
recursive disjoint union of the TL, then 0 is recursive in any Konig cover 
C of T satisfying the conditions of Theorem 3.7: T, has an infinite path iff 
r,E c. m 

If we turn now briefly to graphs on the reals &? and consider trees with 
nodes in 9, branchings corresponding to the elements of 9 and sequences 
of such trees indexed by &?, all the arguments of this section (except 
Lemma 4.7, since we have not defined the jump of a set of reals) carry over 
straightforwardly. The crucial point is that in Lemma 4.10 we in fact prove 
that the coded predicates are closed under quantification over 9 as well as 
under ordinary disjunctions. We thus have proved that the sets of reals 
coded by recursive graphs on 9? contain far more than the projective sets: 

THEOREM 4.14. The sets of reals coded by recursive graphs on 9 are 
closed under complementation, recursive disjunction and quantification 
over 93. 

COROLLARY 4.15. There are recursive graphs on W with no projective 
Kiinig covers. 

To conclude we shall apply our complexity theoretic results to measure 
the proof theoretic strength of K&rig’s duality theorem. 

THEOREM 4.16. K&zig’s duality theorem for graphs on N implies (over 
RCAO) ATRO and so, in particular, it is not provable in ACA, nor equiv- 
alently in RCA, plus compactness or the full K&rig’s lemma. 

Proof. ATR, is just the existence of all Hx-sets for each set X. This is 
basically just the relativization of Theorem 4.12. To be precise we first note 
that the relativization of Lemma 4.7 and the closure of sets in RCA, under 
“recursive in” implies that the Turing jump is always defined and so we 
have ACA,. For any given X we can form the graph GX recursive in X as 
in a relativized version of Theorem 4.13. We can now for any e E Lox argue 
by an induction on ce which is arithmetic in GX that H: is recursive in 
GX. Thus Hex exists for every e E Ox and we have proven ATRo from Konig’s 
duality theorem. By the remarks at the end of System 2.4, the duality 
theorem is then strictly stronger than all of the other systems mentioned 
above. 1 

We now are faced with a gap in the proof theoretic strength of the 
theorem similar to the one between the hyperarithmetic sets and 0. We 
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have deduced ATR, from the Konig duality theorem and have proved the 
theorem in Z7:-CA,. The obvious question is, can we close the gap by 
proving Z7:-CA, from the theorem or by establishing it in ATR,. As the 
theorem is clearly a true Z7: sentence, the former is not possible on general 
grounds: 

PROPOSITION 4.17 (Folklore). Z7:-CA, is not provable (even in AT&) 
from any true II: sentence P. 

Proof By definition every true Z7: sentence P is true in every P-model 
of ATR,. (A /?-model M of second-order arithmetic is one in which the 
natural numbers are standard and which is absolute for all 2: sentences 9 
with parameters in M, i.e., cp is true iff M /= cp.) As there are B-models of 
ATR, which are not ones of I;I:-CA,, 17:-CA, cannot be a consequence of 
P in ATR,. Indeed the minimum /&model of 17:-CA, consists of the sets 
recursive in @“‘, the n th hyperjump of 0, for some n E o. On the other 
hand, the intersection of all the fl-models of ATR, consists of just the 
hyperarithmetic sets. Thus there is a B-model of ATR, which is not one of 
#-CA,. (Each of these facts can be found, for instance, in Simpson [20 or 
23, Chaps. VII, VIII].) 1 

On the other hand, the consequence of the known proofs of the Konig 
duality theorem for countable graphs that we have called the extended 
Kiinig duality theorem (3.7) does prove J7:-CA,. 

As Lo is a complete ni set, the relativization of Theorem 4.13 clearly 
gives Z7:-CA,. Combining this with the provability of Theorem 3.7 in 
Z7:-CA, established in Section 3 gives a precise calibration of its strength 
in the sense of reverse mathematics. 

THEOREM 4.18. The extended K&zig duality theorem (3.7) is equivalent to 
l7;-CA,. 

The proof of Theorem 4.13 actually shows that Lemma 3.2 (which asserts 
the existence, in any bipartite graph G, of a maximum XE W with a 
matching into D(X)) implies the existence of 0 and so is itself equivalent 
to n;-CA,. 

THEOREM 4.19. There is a recursive graph G such that Co is recursive in 
the maximum element X of .F = (XC WJ there is a matching in G of X into 
D(X)). 

Proof Consider the G constructed in the proof of Theorem 4.13. That 
proof shows that T, has an infinite path if and only if r, belongs to the 
maximum X in 8. 1 
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COROLLARY 4.20. Lemma 3.2 is equivalent to ZZ:-CA,. 

Various results similar to Lemma 3.2 occur in all the known proofs of 
Kiinig’s duality theorem and so we see that a proof of it in ATR, (if one 
exists) requires some entirely new approach. Some of these results are of 
independent interest in matching theory and the investigation of conditions 
for the existence of injective choice functions for given families. They often 
arise in attempts to extend Hall’s theorem characterizing the finite families 
with injective choice functions to infinite families. These results are 
intimately connected with Kiinig’s theorem, Menger’s theorem, and other 
important results in finite and inlinite combinatorics. Indeed, the solution 
by Podewski and Steffens [ 153 to K&rig’s theorem in the countable case 
came as a corollary to such a result for countable families via an applica- 
tion of Brualdi [3]. We shall describe just one result on choice functions 
from their paper which they combine with Brualdi’s work to give a proof 
of Konig’s theorem. With some effort we can see that their construction 
also gives a cover with enough of the maximality property of the extended 
Konig duality theorem (3.7) to carry out our proof of ZZ:-CA,. As the 
construction in Brualdi [3] is elementary, the result of Podewski and 
Steffens [15] also implies ZZ:-CA,. 

DEFINITION 4.21. (i) A family F is a function from an index set Z to a 
collection of non-empty sets (F(i) 1 i E I>. 

(ii) A subfamily F’ of a family F is the restriction of F to some 
subset I’ of I. 

(iii) A choice function f for the family F is a function on Z such that 
f(i) E F(i) for every i E I. 

(iv) A subfamily F’ of a family F is maximal representable if there is 
an injective choice function for F’ but not for any subfamily properly 
containing it. 

The crucial result of Podewski and Steffens [ 151 which they combine 
with Brualdi [3] to prove K&rig’s theorem is the following: 

LEMMA 4.22. Every countable family has a maximal representable 
subfamily. 

This lemma easily gives the fact that Brualdi lacked: 

LEMMA 4.23. In every countable bipartite graph G there is a maximal 
PC_ W such that there is a matching F from P into M (or in the terminology 
of the cited papers, such that there is a matching F which meets W in P). 

Proof This is just a matter of translating the various definitions. We 
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can just take P to be a maximal representable subfamily of the family F 
defined on IV by F(w) = N(w). 1 

Now Brualdi [3] proves by the well-known alternating paths proof of 
the finite version of K&rig’s that, if P and F are as in Lemma 4.23, then 
there is a covering of G consisting of one vertex from each edge in F, i.e., 
a Kiinig cover of G. A careful analysis of this construction shows that, in 
fact, there is one containing every Yc W with a matching into D(Y). Thus 
if G is a graph constructed from a recursive tree T as in our proof of 
Theorem 4.13 and T has an infinite path, then its root is in the cover con- 
structed by Brualdi. On the other hand, we can also show that if T has no 
infinite path, then its root is not in this cover. Thus we can again prove the 
existence of 0. The only non-elementary part of the proof is Lemma 4.22 
which therefore itself proves 17:~CA,. We shall now fill in the details of 
these claims. 

Let P and F be as in Lemma 4.23 and let Q be F[P], the image of P 
under F. Brualdi defines partitions of P and Q as follows: 

PI= {x~Pl(x, y)EEforsomey#Q) 

Q2=(y~QI(x, y)EEforsomex$P} 

Ql=FCP,I, Pz=FL-Q,l, Pj=P-(P,uP,), Q,=Q-(Q,uQ,). 

He then continues to define subsets of P, and Q3: 

Pi= (xEP,I(x, y)EEforsomeyEQi) 

Q:= (y~Q,](x, y)EEforsomexEPz) 

and for i> 1, he sets 

P’ ;+I= xEP3--U {P{Ij<i}I(x,y)EEforsomeyEF[P~] 
> 

Q yl= XEQ~-U {Q$Ij<i}I(x,y)~Eforsomey~F[Q~] 

These sequences may or may not be infinite. In any case Brualdi 
defines Cl=P,uu {Pi(i>,l}, C,=Qzuu {Q\Ii>,l} and C,=P,- 
lJ (Pi u F[Qi] ) ia 1 }. His result, in these terms, is that C = Ci u Cz u C3 
is a cover of G. For our purposes it suffices to prove two facts about this 
cover: 
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LEMMA 4.24. For the graph G defined as in Theorem 4.13 from a tree T 
with root r and no infinite branches, if r E P, then r $ C, u C3, i.e., F(r) E C,. 

Proof: We keep all the notational conventions from both Theorem 4.13 
and the description of Brualdi’s result above. Suppose that rE P. If 
x, = F(r) E Q2, we are done. If x, = F(r) $ Q2, then, by definition of Q2 and 
G, xi E P. If x2 = F(x;) E Qz, then x1 E Qi as required. If not, xi = F(xJ E P. 
If xj = F(x;) E Qz, then x, E Q: as required. If not, xi = F(x3) E P. As T 
(and so T’) has no infinite branches, we must eventually reach a stage at 
which x,+ 1 = F(xL) E Q2 and so we obtain x, E QT as required. 

LEMMA 4.25. For any countable bipartite graph G and any Y s W with a 
matching into D( Y), YE Cl u C3, i.e., Y s P and F[ Y] n C2 = 0. 

Proof. We first fix a matching H of Y into D(Y). We next show that 
Y s P. If not let y0 E Y - P. Consider z1 = H( y,) E D(X). If it is not in Q, 
we immediately have a contradiction to the maximality of P. (We could 
simply add ( y,, H( y,)) to the matching and also y, to P.) Define now the 
sequences yn = F(z,) E Y (as z, E D( Y)) and z,+ 1 = H( y,) ED(Y) (by our 
choice of H). If these sequences terminate, they do so because some z,, , 
is not in Q. In this case we may show that P is not maximal by replacing 
the edges (yl, z,), . . . . (Y,, z,) in f’by (yo, zl), . . . . (Y,, z,+~). On the other 
hand, if the sequences do not terminate, we can contradict the maximality 
of P by replacing all the edges ( yn, z,) for n 3 1 by ( y,, z, + , ) for n > 0. 

For our final argument by contradiction, suppose that y, E Y (and so it 
is in P as well) but z0 = F(y,) E Q;l for the least possible m. (We set 
Q2 = Qi so as to be able to treat all the cases simultaneously.) By definition 
of Q;t, there are sequences Z-~E Q7-j andy-iEPsuchthat (Y,~~,z-JEE 
and F(Y-~)=z-~ for O<i<m. In particular, as z-,EQ:=Q~, there 
is a y-,,-,$P such that (Y-,+~,z-~)EE. As we chose m to be least, 
none of the ypj (i>O) are in Y and so none of the zpi are in D(Y). Now 
let yi and zj be defined for j > 0 as in the proof that y, E P. Once again 
we can contradict the maximality of P by replacing the edges 
(y-,,,, Z-J, . . . . (yo, z,,), (yl, zl), . . . [, (y,, z,) if the above sequence is 
finite1 by (~-~-~,~-~),...,(y,,z,),(~,,z,),...t,(~,,z,+,fl. I 

We now see that the existence of maximal representable subfamilies is 
another example of a combinatorial principle that implies ff :-CA,. 

THEOREM 4.26. Lemma 4.22 proves I7:-CA,. 

Proof: As in the proof of Theorem 4.13, we let G be the disjoint union 
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of the graphs G, corresponding to the partial recursive trees T,. Let C be 
the cover of G given by Brualdi’s construction starting with any maximal 
P as guaranteed by Lemma 4.23. If T, has an infinite path, then, by the 
argument in the proof of Theorem 4.13, there is a Y containing rp and a 
matching of Y into D(Y). So by Lemma 4.25, re E C. On the other hand, if 
T has no infinite branches, then, by Lemma 4.24, re # C. Thus T, has an 
infinite path if and only if re E C. As before this means that Co is recursive 
in C and so Lemma 4.22 proves n:-CA,. 1 
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