Jackson theorem in $L_{p}, 0<p<1$, for functions on the sphere

F. Dai*, Z. Ditzian
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

Received 28 March 2009; accepted 30 June 2009
Available online 4 July 2009
Communicated by Yuan Xu

Abstract

The best approximation of functions in $L p\left(S^{d-1}\right), 0<p<1$ by spherical harmonic polynomials is shown to be bounded by a modulus of smoothness recently introduced by the second author. (C) 2009 Elsevier Inc. All rights reserved.

Keywords: Spherical harmonic polynomials; Modulus of smoothness

1. Introduction

The space H_{k} of spherical harmonic polynomials of degree k on the unit sphere

$$
S^{d-1} \equiv\left\{\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}:|x|^{2}=x_{1}^{2}+\cdots+x_{d}^{2}=1\right\}
$$

$(d \geq 3)$ is the collection of restrictions to S^{d-1} of the homogeneous harmonic polynomials of degree k. The dimension of H_{k} is $\binom{d+k-1}{k}-\binom{d+k-3}{k-2}$ (see [9, p. 140]). The space H_{k} can also be described by

$$
\begin{equation*}
H_{k}=\{\varphi: \widetilde{\Delta} \varphi=-k((k+d-2) \varphi)\} \tag{1.1}
\end{equation*}
$$

where $\widetilde{\Delta}$ is the Laplace-Beltrami operator given by

$$
\begin{equation*}
\widetilde{\Delta} f(x)=\Delta f\left(\frac{x}{|x|}\right) \quad \text { for } x \in S^{d-1}, \Delta=\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{d}^{2}} \tag{1.2}
\end{equation*}
$$

[^0]0021-9045/\$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2009.06.003

The moduli of smoothness usually used for functions on the sphere ($d \geq 3$) involves averages and hence are not defined for $f \in L_{p}\left(S^{d-1}\right)$ when $0<p<1$. We use here the modulus of smoothness introduced in [4] and given by

$$
\begin{equation*}
\omega(f, t)_{p}=\sup \left\{\left\|\Delta_{\rho} f\right\|_{L_{p}\left(S^{d-1}\right)}: \rho \in S O(d), \rho x \cdot x \geq \cos t \text { for all } x \in S^{d-1}\right\} \tag{1.3}
\end{equation*}
$$

where $S O(d)$ is the class of orthogonal matrices whose determinant equals 1 and where

$$
\begin{equation*}
\Delta_{\rho} f(x)=f(\rho x)-f(x) \tag{1.4}
\end{equation*}
$$

We will prove for $0<p<1$ the Jackson-type inequality

$$
\begin{equation*}
E_{n}(f)_{p} \leq C \omega\left(f, \frac{1}{n}\right)_{p} \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{n}(f)_{p} \equiv \inf \left\{\|f-\varphi\|_{L_{p}\left(S^{d-1}\right)}: \varphi \in \operatorname{span}\left(\bigcup_{k=0}^{n-1} H_{k}\right)\right\} \tag{1.6}
\end{equation*}
$$

In [4] higher moduli of smoothness, $\omega^{r}(f, t)_{p}$ were defined, and we conjecture that the more general Jackson-type inequality

$$
\begin{equation*}
E_{n}(f)_{p} \leq C \omega^{r}(f, t)_{p} \tag{*}
\end{equation*}
$$

is valid for $d \geq 3$ with $\omega^{r}(f, t)_{p}$ given in [4]. The Jackson-type inequality ($*$) was proved for $L_{p}\left(S^{d-1}\right), 1 \leq p \leq \infty$ in [5] and for many other Banach spaces of functions in [3].

For the proof we will construct the operators $O_{n, \rho} f(x)$ from $f \in L_{p}\left(S^{d-1}\right)$ to span $\left(\bigcup_{k=0}^{2 n} H_{k}\right)$ which will not necessarily exist for all $\rho \in S O(d)$; for each $f \in L_{p}\left(S^{d-1}\right)$, however, $O_{n, \rho} f(x)$ will exist for almost all ρ with respect to the Haar measure of $S O(d)$ and will have a specific bound on a set of positive measure of $S O(d)$. It will be shown that $O_{n, \rho} f(x)$ has de la Vallée Poussin-type properties.

This type of proof for a Jackson-type result was applied by Runovskii (see $[7,8]$) to approximation by trigonometric polynomials on $T=[0,2 \pi)$ and on the torus T^{d}. Of course, the situation here is much more involved as we have to replace a simple formula on T or on T^{d} by using k th degree geometric design or Marcinkiewicz-type cubature formulae. Moreover, as elements of $S O(d)$ do not commute, we could not repeat our process and obtain ($*$) from (1.5).

In Section 2 we will construct the operators $O_{n, \rho} f$. Some preliminary results will be given in Section 3 and the Jackson-type result (1.5) will be proved in Section 4. In Section 5 the open conjecture $(*)$ is presented with a prize for its proof.

2. Definition of the operators $O_{n, \rho} f(x)$

In this section we define the class of operators $O_{n, \rho} f(x)$ which for some ρ (almost all ρ) maps f into the space of spherical harmonic polynomials of degree $2 n$. We first define the kernels $W_{n}(x \cdot y)$ by

$$
\begin{equation*}
W_{n}(x \cdot y)=\sum_{m=0}^{\infty} \eta\left(\frac{m}{n}\right)\left\{\sum_{j=1}^{d_{m}} Y_{m, j}(x) Y_{m, j}(y)\right\} \tag{2.1}
\end{equation*}
$$

where $Y_{m, j}$ is any basis of orthonormal elements of H_{m} and $\eta(u) \in C^{\infty}[0, \infty), \eta(u)=1$ for $0<u \leq 1$ and $\eta(u)=0$ for $u \geq 2$. We recall that the zonal function $Z_{x}^{(m)}(y)$ satisfies (see [9, 143-149])

$$
Z_{x}^{(m)}(y)=\sum_{j=1}^{d_{m}} Y_{m, j}(x) Y_{m, j}(y)=c_{m, d} P_{m}^{\lambda}(x \cdot y), \quad \lambda=\frac{d-2}{2},
$$

where $\left\{P_{m}^{\lambda}(t)\right\}_{m=0}^{\infty}$, the ultraspherical polynomials, are the orthogonal system of polynomials on $[-1,1]$ with respect to the weight $\left(1-t^{2}\right)^{\frac{d-3}{2}}$. Therefore, (2.1) can be rewritten as

$$
W_{n}(x \cdot y)=\sum_{m=0}^{\infty} \eta\left(\frac{m}{n}\right) Z_{x}^{(m)}(y)=\sum_{m=0}^{\infty} \eta\left(\frac{m}{n}\right) c_{m, d} P_{m}^{\lambda}(x \cdot y), \quad \lambda=\frac{d-2}{2} .
$$

It was shown in [1, Lemma 3.3] that

$$
\begin{equation*}
\left|W_{n}(\cos \theta)\right| \leq J(\ell) n^{d-1}(1+n \theta)^{-\ell} \tag{2.2}
\end{equation*}
$$

for any integer ℓ. Clearly, we have

$$
\int_{S^{d-1}}\left|W_{n}(x \cdot y)\right|^{p} \mathrm{~d} y=C_{d} \int_{0}^{\pi}\left|W_{n}(\cos \theta)\right|^{p}(\sin \theta)^{d-2} \mathrm{~d} \theta .
$$

Therefore, for sufficiently large ℓ (and any ℓ satisfying $d<\ell p$ will do) the inequality (2.2) combined with straightforward computation implies

$$
\begin{equation*}
\int_{S^{d-1}}\left|W_{n}(x \cdot y)\right|^{p} \mathrm{~d} y \leq A(p, d) n^{(p-1)(d-1)}, \quad 0<p \leq 1 \tag{2.3}
\end{equation*}
$$

We set $\left|S^{d-1}\right| \equiv \int_{S^{d-1}} \mathrm{~d} y$.
For homogeneous spherical polynomials of degree $2 k$ there is a set $G_{k}, G_{k}=\left\{x_{k, i}: x_{k, i} \in\right.$ $\left.S^{d-1}\right\}$ which satisfies the cubature formula

$$
\begin{equation*}
\frac{1}{\left|S^{d-1}\right|} \int_{S^{d-1}} \varphi(y) \mathrm{d} y=\sum_{s=1}^{N_{k}} \lambda_{s} \varphi\left(x_{k, s}\right) \quad \text { for all } \varphi \in \operatorname{span}\left(\bigcup_{\ell=0}^{2 k} H_{\ell}\right) \tag{2.4}
\end{equation*}
$$

with $0 \leq \lambda_{s}$ and hence $\sum_{s=1}^{N_{k}} \lambda_{s}=1$. It is also known (see for instance [6, Proposition 2, p. 204]) that

$$
\begin{equation*}
\binom{d+k-1}{k} \leq N_{k} \leq\binom{ d+2 k-1}{2 k}, \quad N_{k} \equiv\left|G_{k}\right| \tag{2.5}
\end{equation*}
$$

Therefore, $N_{k} \approx k^{d-1}$; that is, $A(d)^{-1} k^{d-1} \leq N_{k} \leq A(d) k^{d-1}$. The set G_{k} is sometimes called spherical geometric design (when $\lambda_{s}=N_{k}^{-1}$). We note that in many works in functional analysis the gap between the lower and upper estimates of $N_{k} \equiv N_{k}(d)$ seems bigger, but the reason is that in those works the dimension d is allowed to tend to infinity and k is fixed, while in our work k grows and d remains fixed (but arbitrary). A less abstract proof of the existence of G_{k} satisfying (2.4) and $N_{k} \approx k^{d-1}$ can be found in [2] where conditions on the relative location of $x_{k, i}$ and on the size of λ_{i} are given.

We observe that $\rho G_{k}=\left\{\rho x_{k, i}: x_{k, i} \in G_{k}\right\}$ also satisfies the cubature formula (2.4) as $\varphi(\rho x) \in \operatorname{span}\left\{\bigcup_{\ell=0}^{2 k} H_{\ell}\right\}$ if $\varphi(x) \in \operatorname{span}\left(\bigcup_{\ell=0}^{2 k} H_{\ell}\right)$, and also $\int_{S^{d-1}} \varphi(\rho x) \mathrm{d} x=\int_{S^{d-1}} \varphi(x) \mathrm{d} x$.

We define $O_{n, \rho} f$ by

$$
\begin{equation*}
O_{n, \rho} f(x)=\left|S^{d-1}\right| \sum_{x_{k, i} \in G_{k}} \lambda_{i} f\left(\rho x_{k, i}\right) W_{n}\left(x \cdot \rho x_{k, i}\right) \tag{2.6}
\end{equation*}
$$

for some k satisfying $\frac{3}{2} n \leq k<2 n$. Clearly, given a specific ρ (2.6) is not always defined for all $f \in L_{p}\left(S^{d-1}\right)$ even when $1 \leq p \leq \infty$. In the next section we will show that for every $f \in L_{p}\left(S^{d-1}\right)$, with $0<p \leq 1, O_{n, \rho} f(x)$ is defined and bounded in $L_{p}\left(S^{d-1}\right)$ for almost all ρ i.e. a.e. with respect to the Haar measure of $S O(d)$. Obviously, $O_{n, \rho} f(x)$ (when defined) maps f into the space span $\left\{\bigcup_{\ell=0}^{2 n} H_{\ell}\right\}$. We will further show that for $f \in \operatorname{span}\left\{\bigcup_{\ell=0}^{n} H_{\ell}\right\}, O_{n, \rho} f(x)=$ $f(x)$ for all ρ.

3. Properties of $O_{n, \rho} f(x)$

We first prove an estimate of $O_{n, \rho} f(x)$. In this paper the Haar measure on $S O(d)$ is normalized by $\int_{S O(d)} \mathrm{d} \rho=1$.

Theorem 3.1. For $0<p \leq 1$

$$
\begin{equation*}
\left\{\int_{S O(d)} \int_{S^{d-1}}\left|O_{n, \rho} f(x)\right|^{p} \mathrm{~d} x \mathrm{~d} \rho\right\}^{1 / p} \leq C_{p}(d)\|f\|_{L_{p}\left(S^{d-1}\right)} \tag{3.1}
\end{equation*}
$$

Proof. For $0<p \leq 1$ we write, using (2.3),

$$
\begin{aligned}
\int_{S O(d)} \int_{S^{d-1}}\left|O_{n, \rho} f(x)\right|^{p} \mathrm{~d} x \mathrm{~d} \rho & \leq \int_{S O(d)} \int_{S^{d-1}} \sum_{x_{k, i} \in G_{k}} \lambda_{i}^{p}\left|f\left(\rho x_{k, i}\right)\right|^{p}\left|W_{n}\left(x \cdot \rho x_{k, i}\right)\right|^{p} \mathrm{~d} x \mathrm{~d} \rho \\
& \leq A(p, d) \int_{S O(d)} n^{(p-1)(d-1)} \sum_{x_{k, i} \in G_{k}} \lambda_{i}^{p}\left|f\left(\rho x_{k, i}\right)\right|^{p} \mathrm{~d} \rho \\
& =A(p, d)\|f\|_{L_{p}\left(S^{d-1}\right)}^{p} n^{(p-1)(d-1)} \sum_{x_{k, i} \in G_{k}} \lambda_{i}^{p} .
\end{aligned}
$$

Using the Hölder inequality and recalling $\frac{3}{2} n \leq k \leq 2 n$, we have

$$
\sum_{i=1}^{\left|G_{k}\right|} \lambda_{i}^{p} \leq\left(\sum_{i=1}^{\left|G_{k}\right|} \lambda_{i}\right)^{p}\left(\sum_{i=1}^{\left|G_{k}\right|} 1\right)^{1-p}=\left|G_{k}\right|^{1-p} \approx\left(n^{d-1}\right)^{1-p}
$$

which completes the proof of (3.1) for $0<p \leq 1$.
Therefore, for any $f \in L_{p}\left(S^{d-1}\right)$ and any n there exists ρ (depending on f and n) such that

$$
\begin{equation*}
\left\|O_{n, \rho} f\right\|_{L_{p}\left(S^{d-1}\right)} \leq C_{p}(d)\|f\|_{L_{p}\left(S^{d-1}\right)} \tag{3.2}
\end{equation*}
$$

Furthermore, for any $A>1$ and $0<p \leq 1$

$$
\begin{equation*}
m\left(\rho:\left\|O_{n, \rho} f\right\|_{L_{p}\left(S^{d-1}\right)}^{p}<A C_{p}(d)^{p}\|f\|_{L_{p}\left(S^{d-1}\right)}^{p}\right) \geq 1-\frac{1}{A} \tag{3.3}
\end{equation*}
$$

Clearly, when $f \in C\left(S^{d-1}\right), O_{n, \rho} f(x)$ is defined for all ρ. We now show that $O_{n, \rho}$ is the identity on $\varphi \in \operatorname{span}\left(\bigcup_{\ell=0}^{n} H_{\ell}\right)$.

Theorem 3.2. For $\varphi \in \operatorname{span}\left(\bigcup_{\ell=0}^{n} H_{\ell}\right)$

$$
\begin{equation*}
O_{n, \rho} \varphi(x)=\varphi(x) \tag{3.4}
\end{equation*}
$$

Proof. As $O_{n, \rho} \varphi(x) \in \operatorname{span}\left(\bigcup_{\ell=0}^{2 n} H_{\ell}\right)$ for any $\varphi \in C\left(S^{d-1}\right)$, we have only to show for $Y_{\ell, j}$ with $0 \leq \ell \leq n$ that for $m \leq 2 n$

$$
\int_{S^{d-1}}\left(O_{n, \rho} Y_{\ell, j}(x)\right) Y_{m, j_{1}}(x) \mathrm{d} x= \begin{cases}1 & \ell=m, j=j_{1} \\ 0 & \text { otherwise } .\end{cases}
$$

In the above we assume that for each $H_{r}\left\{Y_{r, i}\right\}$ is a fixed orthonormal basis.
We note that $Y_{\ell, j_{1}}(x) Y_{m, j_{2}}(x) \in \operatorname{span}\left(\begin{array}{l}{ }_{r=0}^{\ell+m} \\ \underset{r=0}{U}\end{array} H_{r}\right)$ following the fact that it is a homogeneous polynomial of degree $m+\ell$ and using [9, Th. 2.1, p. 139].

When $\ell \neq m(m \leq 2 n)$ or $\ell=m$ and $j \neq j_{1}$

$$
\begin{aligned}
\int_{S^{d-1}}\left(O_{n, \rho} Y_{\ell, j}(x)\right) Y_{m, j_{1}}(x) \mathrm{d} x & =\left|S^{d-1}\right| \eta\left(\frac{m}{n}\right) \sum_{i=1}^{\left|G_{k}\right|} \lambda_{i} Y_{\ell, j}\left(\rho x_{k, i}\right) Y_{m, j_{1}}\left(\rho x_{k, i}\right) \\
& =\eta\left(\frac{m}{n}\right) \int_{S^{d-1}} Y_{\ell, j}(y) Y_{m, j_{1}}(y) \mathrm{d} y=0
\end{aligned}
$$

When $\ell=m$ and $j=j_{1}$, then $\eta\left(\frac{m}{n}\right)=1$ and

$$
\begin{aligned}
\int_{S^{d-1}}\left(O_{n, \rho} Y_{\ell, j}(x)\right) Y_{\ell, j}(x) \mathrm{d} x & =\left|S^{d-1}\right| \sum_{i=1}^{k} \lambda_{i} Y_{\ell, j}\left(\rho x_{k, i}\right) Y_{\ell, j}\left(\rho x_{k, i}\right) \\
& =\int_{S^{d-1}} Y_{\ell, j}(y) Y_{\ell, j}(y) \mathrm{d} y=1
\end{aligned}
$$

If $f \in L_{p}\left(S^{d-1}\right)$ and for some pair $\left(n^{*}, \rho^{*}\right), O_{n^{*}, \rho^{*}} f$ is defined and belongs to $L_{p}\left(S^{d-1}\right)$, then for $\varphi \in C\left(S^{d-1}\right) O_{n^{*}, \rho^{*}}(f+\varphi)$ is defined, and as $O_{n, \rho} \varphi(x)$ is continuous in ρ and hence $O_{n, \rho} \varphi(\cdot) \in L_{p}\left(S^{d-1}\right)$ (for any n and ρ), $O_{n^{*}, \rho^{*}}(f+\varphi) \in L_{p}\left(S^{d-1}\right)$. In particular, the above holds if $\varphi \in \operatorname{span}\left({ }_{\ell=0}^{n-1} H_{\ell}\right)$.

The spherical harmonic polynomial $\varphi_{n} \in \operatorname{span}\left(\underset{\ell=0}{n-1} H_{\ell}\right)$ is the best approximant from span $\left(\bigcup_{\ell=0}^{n-1} H_{\ell}\right)$ to f in $L_{p}\left(S^{d-1}\right)$ if

$$
\begin{equation*}
\left\|f-\varphi_{n}\right\|_{L_{p}\left(S^{d-1}\right)}=E_{n}(f)_{L_{p}\left(S^{d-1}\right)} \equiv \inf \left\{\|f-\varphi\|_{L_{p}\left(S^{d-1}\right)}: \varphi \in \operatorname{span}\left(\bigcup_{k=0}^{n-1} H_{k}\right)\right\} . \tag{3.5}
\end{equation*}
$$

From the above we can derive:

Corollary 3.3. For $f \in L_{p}\left(S^{d-1}\right)$ and φ_{n} given by (3.5)

$$
\begin{align*}
& m\left(\rho:\left\|O_{n, \rho}\left(f-\varphi_{n}\right)(\cdot)\right\|_{L_{p}\left(S^{d-1}\right)}^{p} \leq A C_{p}(d)^{p}\left\|f-\varphi_{n}\right\|_{L_{p}\left(S^{d-1}\right)}^{p}\right) \\
& \quad \equiv m(E(f, n, p, A)) \geq 1-\frac{1}{A}, \tag{3.6}
\end{align*}
$$

and for $\rho \in E(f, n, p, A)$

$$
\begin{equation*}
\left\|O_{n, \rho} f\right\|_{L_{p}\left(S^{d-1}\right)}^{p} \leq\left(A C_{p}(d)^{p}+2\right)\|f\|_{L_{p}\left(S^{d-1}\right)}^{p} \tag{3.7}
\end{equation*}
$$

Proof. As $f-\varphi_{n} \in L_{p}\left(S^{d-1}\right)$, (3.6) is a corollary of (3.2). Furthermore, using Theorem 3.2,

$$
O_{n, \rho} f(x)=O_{n, \rho}\left(f-\varphi_{n}\right)(x)+O_{n, \rho} \varphi_{n}(x)=O_{n, \rho}\left(f-\varphi_{n}\right)(x)+\varphi_{n}(x),
$$

and hence for $\rho \in E(f, n, p, A)$

$$
\begin{aligned}
\left\|O_{n, \rho} f(\cdot)\right\|_{L_{p}\left(S^{d-1}\right)}^{p} & \leq A C_{p}(d)^{p}\left\|f-\varphi_{n}\right\|_{L_{p}\left(S^{d-1}\right)}^{p}+\left\|\varphi_{n}\right\|_{L_{p}\left(S^{d-1}\right)}^{p} \\
& \leq A C_{p}(d)^{p}\|f\|_{L_{p}\left(S^{d-1}\right)}^{p}+2\|f\|_{L_{p}\left(S^{d-1}\right)}^{p}
\end{aligned}
$$

4. Jackson-type result for $r=1$

In this section we establish the Jackson-type inequality for $d \geq 3,0<p<1$ and $r=1$.
Theorem 4.1. For $f \in L_{p}\left(S^{d-1}\right)$ with $d \geq 3$ we have

$$
\begin{equation*}
E_{n}(f)_{p} \leq C \omega\left(f, \frac{1}{n}\right)_{p}, \quad p>0 \tag{4.1}
\end{equation*}
$$

where $E_{n}(f)_{p}$ and $\omega(f, t)_{p}$ are given by (1.6) and (1.3) respectively.
Proof. As a result stronger than (4.1) is given for $1 \leq p \leq \infty$ in [5], we have to prove our theorem only for $0<p<1$. We note that $E_{2 n}(f)_{p} \leq\left\|f-O_{n, \rho} f\right\|_{p}$, and as $\omega\left(f, \frac{1}{n}\right)_{p} \leq$ $2^{1 / p} \omega\left(f, \frac{1}{2 n}\right)_{p}$ (using the consideration in [4, 192-193]), it is sufficient to prove that for some ρ and for any $n \geq 1$ the inequality $\left\|f-O_{n, \rho} f\right\|_{p} \leq C \omega\left(f, \frac{1}{n}\right)_{p}$ to obtain (4.1) for $n>1$. Therefore, it is enough to show that

$$
\begin{equation*}
\int_{S O(d)} \int_{S^{d-1}}\left|f(x)-O_{n, \rho} f(x)\right|^{p} \mathrm{~d} x \mathrm{~d} \rho \leq C \omega\left(f, \frac{1}{n}\right)_{p}^{p} \tag{4.2}
\end{equation*}
$$

for some positive C to establish (4.1) for $n>1$.
We now write

$$
\begin{aligned}
& \int_{S O(d)} \int_{S^{d-1}}\left|f(x)-O_{n, \rho} f(x)\right|^{p} \mathrm{~d} x \mathrm{~d} \rho \\
& \quad \leq\left|S^{d-1}\right|^{p} \int_{S O(d)} \int_{S^{d-1}} \sum_{i=1}^{\left|G_{k}\right|} \lambda_{i}^{p}\left|f(x)-f\left(\rho x_{k, i}\right)\right|^{p}\left|W_{n}\left(x \cdot \rho x_{k, i}\right)\right|^{p} \mathrm{~d} x \mathrm{~d} \rho \\
& \quad=\left|S^{d-1}\right|^{p} \sum_{i=1}^{\left|G_{k}\right|} \lambda_{i}^{p} \int_{S O(d)} \int_{S^{d-1}}\left|f(x)-f\left(\rho x_{k, i}\right)\right|^{p}\left|W_{n}\left(x \cdot \rho x_{k, i}\right)\right|^{p} \mathrm{~d} x \mathrm{~d} \rho
\end{aligned}
$$

Clearly,

$$
\begin{aligned}
& \int_{S O(d)} \int_{S^{d-1}}\left|f(x)-f\left(\rho x_{k, i}\right)\right|^{p}\left|W_{n}\left(x \cdot \rho x_{k, i}\right)\right|^{p} \mathrm{~d} x \mathrm{~d} \rho \\
& \quad=\frac{1}{\left|S^{d-1}\right|} \int_{S^{d-1}} \int_{S^{d-1}}|f(x)-f(y)|^{p}\left|W_{n}(x \cdot y)\right|^{p} \mathrm{~d} x \mathrm{~d} y .
\end{aligned}
$$

Therefore, following the arguments in the proof of Theorem 3.1, we need only show that

$$
\begin{align*}
I & =\int_{S^{d-1}} \int_{S^{d-1}}|f(x)-f(y)|^{p}\left|W_{n}(x \cdot y)\right|^{p} \mathrm{~d} x \mathrm{~d} y \\
& \leq C_{1} n^{(p-1)(d-1)} \omega\left(f, \frac{1}{n}\right)_{p}^{p} \tag{4.3}
\end{align*}
$$

We split the double integral of (4.3) into two parts, I_{1} and $I_{2}\left(I=I_{1}+I_{2}\right)$, dealing with the regions $x \cdot y \geq \frac{1}{\sqrt{2}}$ and $x \cdot y<\frac{1}{\sqrt{2}}$ respectively, and show that both yield the estimate required for I.

For I_{2} we have $\left|W_{n}(x \cdot y)\right| \leq J(\ell) \frac{n^{d-1}}{\left(1+\frac{n \pi}{4}\right)^{\ell}} \approx n^{d-1-\ell}$, and hence

$$
\begin{aligned}
I_{2} & \leq C_{2} n^{(d-1-\ell) p} \int_{S^{d-1}} \int_{S^{d-1}}|f(x)-f(y)|^{p} \mathrm{~d} x \mathrm{~d} y \\
& =C_{2}\left|S^{d-1}\right| n^{(d-1-\ell) p} \int_{S O(d)} \int_{S^{d-1}}|f(x)-f(Q x)|^{p} \mathrm{~d} x \mathrm{~d} Q \\
& \leq C_{2}\left|S^{d-1}\right| n^{(d-1-\ell) p} \omega(f, \pi)_{p}^{p} \\
& \leq C_{3} n^{(d-1-\ell) p} n \omega\left(f, \frac{1}{n}\right)_{p}^{p}
\end{aligned}
$$

which for ℓ sufficiently large, will yield the appropriate estimate. To evaluate I_{1} we write

$$
I_{1}=\int_{S^{d-1}} \int_{0}^{\pi / 4} \int_{x \cdot y=\cos \theta}|f(x)-f(y)|^{p}\left|W_{n}(\cos \theta)\right|^{p} \mathrm{~d} \gamma(x) \mathrm{d} \theta \mathrm{~d} y
$$

where $\mathrm{d} \gamma$ is the Lebesgue measure on the set $\{x: x \cdot y=\cos \theta\}$. For $g \in L_{1}\left(S^{d-1}\right)$ we define

$$
S_{\theta}(g(\cdot), y) \equiv \frac{1}{m_{\theta}} \int_{x \cdot y=\cos \theta} g(x) \mathrm{d} \gamma(x), \quad S_{\theta}(1, y)=1
$$

and as $|f(x)-f(y)|^{p}$ belongs to $L_{1}\left(S^{d-1}\right)$ for almost all y,

$$
\begin{align*}
I_{1} & =\int_{S^{d-1}} \int_{0}^{\pi / 4} m_{\theta} S_{\theta}\left(|f(\cdot)-f(y)|^{p}, y\right)\left|W_{n}(\cos \theta)\right|^{p} \mathrm{~d} \theta \mathrm{~d} y \\
& \leq C \int_{S^{d-1}} \int_{0}^{\pi / 4} S_{\theta}\left(|f(\cdot)-f(y)|^{p}, y\right) \theta^{d-2} \frac{n^{(d-1) p}}{(1+n \theta)^{\ell p}} \mathrm{~d} \theta \mathrm{~d} y . \tag{4.4}
\end{align*}
$$

At this point the proofs for even and odd dimensions d diverge.

For even d we use the transformation $\tau_{\theta}=Q^{-1} M_{\theta} Q$ where

$$
M_{\theta}=\left(\begin{array}{ccccc}
\cos \theta & \sin \theta & & & \bigcirc \\
-\sin \theta & \cos \theta & & & \\
& & \ddots & & \\
\bigcirc & & & \cos \theta & \sin \theta \\
& & & -\sin \theta & \cos \theta
\end{array}\right)
$$

and recall (see [3, 174-175]) that

$$
S_{\theta}\left(|f(\cdot)-f(y)|^{p}, y\right)=\int_{S O(d)}\left|f\left(Q^{-1} M_{\theta} Q y\right)-f(y)\right|^{p} \mathrm{~d} Q
$$

We may now use the Fubini theorem on (4.4) and write

$$
\begin{aligned}
I_{1} & \leq C \int_{0}^{\pi / 4}\left\{\int_{S O(d)} \int_{S^{d-1}}\left|f\left(Q^{-1} M_{\theta} Q y\right)-f(y)\right|^{p} \mathrm{~d} y \mathrm{~d} Q\right\} \frac{\theta^{d-2} n^{(d-1) p}}{(1+n \theta)^{\ell p}} \mathrm{~d} \theta \\
& \leq C \int_{0}^{\pi / 4} \omega(f, \theta)_{p}^{p} \frac{\theta^{d-2} n^{(d-1) p}}{(1+n \theta)^{\ell p}} \mathrm{~d} \theta
\end{aligned}
$$

Following [4, Th.2.3], we have for $0<p<1$

$$
\omega(f, \theta)_{p}^{p} \leq(1+n \theta) \omega\left(f, \frac{1}{n}\right)_{p}^{p}
$$

and hence for ℓ large enough

$$
I_{1} \leq C_{1} n^{(d-1)(p-1)} \omega\left(f, \frac{1}{n}\right)_{p}^{p}
$$

For odd d we use the transformation $\tau_{\theta}^{*}=Q^{-1} M_{\theta}^{*} Q$ where

$$
M_{\theta}^{*}=\left(\begin{array}{ccccc}
\cos \theta & \sin \theta & & \bigcirc & \\
-\sin \theta & \cos \theta & & & \\
& & \ddots & & \\
& & & \cos \theta & \sin \theta \\
& -\sin \theta & \cos \theta & \\
& & & & \\
\hline & & & 1
\end{array}\right)
$$

and define (see [3, (4.3)])

$$
A_{\theta}\left(|f(\cdot)-f(y)|^{p}, y\right) \equiv \int_{S O(d)}\left|f\left(Q^{-1} M_{\theta}^{*} Q y\right)-f(y)\right|^{p} \mathrm{~d} Q
$$

As $Q^{-1} M_{\theta}^{*} Q y \cdot y=M_{\theta}^{*} Q y \cdot Q y=M_{\theta}^{*} z \cdot z \geq \cos \theta$, we have

$$
\begin{align*}
\int_{S^{d-1}} A_{\theta}\left(|f(\cdot)-f(y)|^{p}, y\right) \mathrm{d} y & =\int_{S O(d)} \int_{S^{d-1}}\left|f\left(Q^{-1} M_{\theta}^{*} Q y\right)-f(y)\right|^{p} \mathrm{~d} y \mathrm{~d} Q \\
& \leq \omega(f, \theta)_{p}^{p} \tag{4.5}
\end{align*}
$$

Using [3, Lemma 4.2], we have

$$
\begin{align*}
& \frac{1}{t} \int_{t / \sqrt{2}}^{t} S_{\theta}\left(|f(\cdot)-f(y)|^{p}, y\right) \theta^{d-2}(1+n \theta)^{-\ell p} \mathrm{~d} \theta \\
& \quad \leq C(\ell, p) t^{d-2}(1+n t)^{-\ell p} A_{t}\left(|f(\cdot)-f(y)|^{p}, y\right) \tag{4.6}
\end{align*}
$$

with $C(\ell, p)$ independent of t, n, y and f. We now use (4.5) and (4.6) to estimate I_{1} (for odd d). Recalling $\frac{\pi}{4}<1$, we write

$$
\begin{aligned}
I_{1} \leq & C_{1} n^{p(d-1)} \sum_{j=0}^{\infty} 2^{-j(d-1) / 2}\left(1+n 2^{-j / 2}\right)^{-\ell p} \\
& \times \int_{S^{d-1}} 2^{j / 2} \int_{2^{-(j+1) / 2}}^{2^{-j / 2}} S_{\theta}\left(|f(\cdot)-f(y)|^{p}, y\right) \mathrm{d} \theta \mathrm{~d} y \\
\leq & C n^{p(d-1)} \sum_{j=0}^{\infty} 2^{-j(d-1) / 2}\left(1+n 2^{-j / 2}\right)^{-\ell p} \int_{S^{d-1}} A_{2^{-j / 2}}\left(|f(\cdot)-f(y)|^{p}, y\right) \mathrm{d} y \\
= & C_{2} n^{p(d-1)} \sum_{j=0}^{\infty} 2^{-j(d-1) / 2}\left(1+n 2^{-j / 2}\right)^{-\ell p} \omega\left(f, 2^{-j / 2}\right)_{p}^{p} \\
\equiv & \left\{\sum_{j=0}^{j_{0}-1}+\sum_{j=j_{0}}^{\infty} \cdots\right\} \equiv J_{1}+J_{2} .
\end{aligned}
$$

Selecting j_{0} so that $2^{-j_{0} / 2} \leq \frac{1}{n}<2^{-\left(j_{0}-1\right) / 2}$, we estimate J_{2} by

$$
\begin{aligned}
J_{2} & \leq C_{2} n^{p(d-1)} \omega\left(f, 2^{-j_{0} / 2}\right)_{p}^{p} \sum_{j=j_{0}}^{\infty} 2^{-j(d-1) / 2} \\
& \leq C_{3} n^{(p-1)(d-1)} \omega\left(f, \frac{1}{n}\right)_{p}^{p}
\end{aligned}
$$

To estimate J_{1} we use [4, Theorem 2.3,(2.4)] and write

$$
\begin{aligned}
J_{1} & \leq C_{4} n^{p(d-1)} \sum_{j=0}^{j_{0}-1} 2^{-j(d-1) / 2}\left(1+2^{\left(j_{0}-j-1\right) / 2}\right)^{-\ell p}\left(1+2^{\left(j_{0}-j\right) / 2}\right) \omega\left(f, 2^{-j_{0} / 2}\right)_{p}^{p} \\
& \leq C_{5} n^{p(d-1)} 2^{-j_{0}(d-1) / 2} \omega\left(f, \frac{1}{n}\right)_{p}^{p} \sum_{j=0}^{j_{0}-1} 2^{-\left(j-j_{0}\right)(d-\ell p) / 2} \\
& \leq C_{6} n^{(p-1)(d-1)} \omega\left(f, \frac{1}{n}\right)_{p}^{p}
\end{aligned}
$$

provided that ℓ is large enough.
We proved (4.1) for $n \geq n_{0}$ for some fixed n_{0}. To prove (4.1) for $n<n_{0}$ it is sufficient to show that there exists a constant c such that $\|f-c\|_{p} \leq C_{1} \omega(f, 1)_{p}$, since then

$$
E_{n}(f)_{p} \leq E_{1}(f)_{p} \leq\|f-c\|_{p} \leq C_{1} \omega(f, 1)_{p}
$$

and using $[4,(2.4)]$,

$$
\omega(f, 1)_{p} \leq C\left(n_{0}, p\right) \omega\left(f, \frac{1}{n}\right)_{p} \quad \text { for } \quad 1 \leq n<n_{0}
$$

We now observe that there exists y_{0} satisfying

$$
\begin{aligned}
\int_{S^{d-1}}\left|f\left(y_{0}\right)-f(x)\right|^{p} \mathrm{~d} x & \leq \frac{1}{\left|S^{d-1}\right|} \int_{S^{d-1}} \int_{S^{d-1}}|f(y)-f(x)|^{p} \mathrm{~d} x \mathrm{~d} y \\
& =\int_{S O(d)} \int_{S^{d-1}}|f(\rho x)-f(x)|^{p} \mathrm{~d} x \mathrm{~d} y \\
& \leq \omega(f, \pi)_{p}^{p} \leq C_{2} \omega(f, 1)_{p}^{p}
\end{aligned}
$$

and choose $f\left(y_{0}\right)=c$ to complete the proof.

5. Conclusion

In the effort to prove for $E_{n}(f)_{L_{p}\left(S^{d-1}\right)}$ of (1.6) (and (3.5)) and $\omega^{r}(f, t)_{L_{p}\left(S^{d-1}\right)}$ of [4] that

$$
\begin{equation*}
E_{n}(f)_{L_{p}\left(S^{d-1}\right)} \leq C \omega^{r}\left(f, \frac{1}{n}\right)_{L_{p}\left(S^{d-1}\right)} \tag{*}
\end{equation*}
$$

for all $f \in L_{p}\left(S^{d-1}\right)$, all $d \geq 3$, all integers r and $0<p<1$, this paper has made a small contribution (i.e. $(*)$ for $r=1$). A prize of $100 \$$ CAD will be given by the second author to the person (or group) who is the first to prove $(*)$ for all $d \geq 3$, all integers r and $p>0$.

Partial results of the above conjecture will receive a nod of approval and a virtual pat on the back.

References

[1] G. Brown, F. Dai, Approximation of smooth functions on compact two point homogeneous space, J. Funct. Anal. 220 (2005) 401-423.
[2] F. Dai, Multivariate polynomial inequalities with respect to doubling weights and A_{∞} weights, J. Funct. Anal. 235 (1) (2006) 137-170.
[3] F. Dai, Z. Ditzian, Jackson inequality for Banach spaces on the sphere, Acta Math. Hungar. 118 (1-2) (2008) 171-195.
[4] Z. Ditzian, A modulus of smoothness on the unit sphere, J. Anal. Math. 79 (1999) 189-200.
[5] Z. Ditzian, Jackson inequality on the sphere, Acta Math. Hungar. 102 (2004) 1-35.
[6] H. König, Cubature formulas on spheres in multivariate approximation, in: W. Hausmann, K. Jetter, M. Reimer (Eds.), Proceedings of the 3rd International Conference on Multivariate Approximation Theory, Witten-Bommerholz, Germany, Sept 27-Oct. 2, 1998, in: Mathematical Research, vol. 107, Wiley-VCH, 1998, pp. 201-211.
[7] K.V. Runovskii, On families of linear polynomial operators on L_{p} spaces, $0<p<1$, Russian Acad. Sci. Sb. Math. 78 (1) (1994) 163-173. Translated from the Russian original Mat. Sbornik, 184(2) (1993).
[8] K.V. Runovskii, On approximation by families of linear polynomial operators in L_{p} spaces, $0<p<1$, Russian Acad. Sci. Sb. Math., vol. 82 (1995) 441-459. Translated from the Russian original Mat. Sbornik, 185(8) (1994).
[9] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971.

[^0]: * Corresponding author.

 E-mail address: dfeng @ math.ualberta.ca (F. Dai).

