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Abstract

The best approximation of functions in L p(Sd _1), 0 < p < 1 by spherical harmonic polynomials is
shown to be bounded by a modulus of smoothness recently introduced by the second author.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

The space Hj of spherical harmonic polynomials of degree k on the unit sphere
S == (g, x) ERV P =af xS = 1)
(d > 3) is the collection of restrictions to S?~! of the homogeneous harmonic polynomials of
degree k. The dimension of Hj is (‘”lljfl) — (dﬁf) (see [9, p. 140]). The space Hj can also
be described by
Hy =g : Ap = —k((k+d = 2)¢)) (L.D)
where A is the Laplace—Beltrami operator given by

~ x . 32 9?
Af(x)=Af<—> forxeSd_,A=—2+-~-+—2. (1.2)
|x] ax; ax;
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The moduli of smoothness usually used for functions on the sphere (d > 3) involves averages
and hence are not defined for f € L p(Sd’l) when 0 < p < 1. We use here the modulus of
smoothness introduced in [4] and given by

o(f,0)p = sup{llAp f i, (sa-1y : o € SO(), px - x = cost forall x € ! (1.3)
where SO(d) is the class of orthogonal matrices whose determinant equals 1 and where

Apf(x) = fpx) = f(x). (1.4)
We will prove for 0 < p < 1 the Jackson-type inequality

1
En(f)pSCw(f, ;) (1.5

p

where

n—1
Ei(f)p = inf{”f — ¢l (si-1) 1 ¢ € span <U Hk> } (1.6)

k=0

In [4] higher moduli of smoothness, @ (f, t), were defined, and we conjecture that the more
general Jackson-type inequality

E,(f)p =Co'(fi1))p (%)

is valid for d > 3 with o"(f, 1), given in [4]. The Jackson-type inequality (x) was proved for
L,(S% 1), 1 < p < ooin[5] and for many other Banach spaces of functions in [3].

2n
For the proof we will construct the operators Oy , f (x) from f € L, (5471 to span <kU0 Hk)

which will not necessarily exist for all p € SO(d); foreach f € Lp(Sd’l), however, O, , f (x)
will exist for almost all p with respect to the Haar measure of SO (d) and will have a specific
bound on a set of positive measure of SO(d). It will be shown that O, , f (x) has de la Vallée
Poussin-type properties.

This type of proof for a Jackson-type result was applied by Runovskii (see [7,8]) to
approximation by trigonometric polynomials on T = [0, 27) and on the torus 7¢. Of course,
the situation here is much more involved as we have to replace a simple formula on 7" or on 7¢
by using kth degree geometric design or Marcinkiewicz-type cubature formulae. Moreover, as
elements of SO (d) do not commute, we could not repeat our process and obtain (x) from (1.5).

In Section 2 we will construct the operators O, , f. Some preliminary results will be given
in Section 3 and the Jackson-type result (1.5) will be proved in Section 4. In Section 5 the open
conjecture () is presented with a prize for its proof.

2. Definition of the operators O, , f (x)

In this section we define the class of operators O, , f (x) which for some p (almost all p)
maps f into the space of spherical harmonic polynomials of degree 2n. We first define the kernels
Wn ()C -y ) by

o0 dy,
Watx-y) = n(%) { Ym,j(xwm,j(y)} @1
j=1

m=0
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where Y, ; is any basis of orthonormal elements of H,, and n(u) € C*°[0, c0), n(u) = 1 for

0 <u < 1andn(u) = 0 for u > 2. We recall that the zonal function Z)(Cm)(y) satisfies (see
[9, 143-149])

dln
ZM @) =Y Y j @)Y j(0) = Cma Pp(x - y), A =——,
j=1
where {P} (1)}or_o- the ultraspherical polynomials, are the orthogonal system of polynomials on

[—1, 1] with respect to the weight (1 — tz)%. Therefore, (2.1) can be rewritten as

Walx-y) =) n(%)zim)(y) =Y n(%)cm,dl’,ﬁ(x W, A=

m=0 m=0

It was shown in [1, Lemma 3.3] that
[Wy(cos0)| < J(@)n?1(1 4 no)~* (2.2)

for any integer £. Clearly, we have

T
/L;dfl [Wh(x - y)lpdy = Cd/O | W, (cos Q)|P(sin 9)d72d0.

Therefore, for sufficiently large ¢ (and any ¢ satisfying d < €p will do) the inequality (2.2)
combined with straightforward computation implies

/ | Wy (x - )Py < A(p, d)nP~DE=D 0 < p<1. (2.3)
Sd—l

We set [S77!| = [0 dy.
For homogeneous spherical polynomials of degree 2k there is a set Gi, Gy = {xx,i : xx,i €
Sd_l} which satisfies the cubature formula

1 Ny 2k
[59-T] /S‘H p(y)dy = Z)\Scp(xkys) forall ¢ € span(U Hg) 24

s=1 =0

Ni
with 0 < Ay and hence ) Ay = 1. It is also known (see for instance [6, Proposition 2, p. 204])

s=1

d+k—1 d+2k—1
( L )st5< i ) N = 1Gyl. (2.5)

Therefore, N ~ k4~!; thatis, A(d) " 'k?~! < Ny < A(d)k?'. The set Gy is sometimes called
spherical geometric design (when Ay = N, 1. We note that in many works in functional analysis
the gap between the lower and upper estimates of Ny = Ny (d) seems bigger, but the reason is
that in those works the dimension d is allowed to tend to infinity and & is fixed, while in our
work k grows and d remains fixed (but arbitrary). A less abstract proof of the existence of G
satisfying (2.4) and Ny = k9=1 can be found in [2] where conditions on the relative location of
xk,; and on the size of A; are given.

that
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We observe that oGy = {pxk; : xr; € Gy} also satisfies the cubature formula (2.4) as
2k 2k
@(px) € span {(EJO Hg} if (x) € span (590 Hg), and also a1 p(px)dx = [ga_1 @(x)dx.
We define O, , f by

Onpf ) =181 D7 dif(pxai) Walx - pxics) (2.6)

xk,i €Gk

for some k satisfying %n < k < 2n. Clearly, given a specific p (2.6) is not always defined for

all f e L dp(Sd_l) even when 1 < p < oo. In the next section we will show that for every
feLyS _1), with0 < p <1, 0, f(x) is defined and bounded in Lp(Sd_l) for almost all p
i.e. a.e. with respect to the Haar measure of S O (d). Obviously, O, , f (x) (when defined) maps f

2n n
into the space span {ZUO Hg}. We will further show that for f € span {ZU() H/g} yOnpfx) =
f(x) forall p.

3. Properties of O, , f (x)

We first prove an estimate of O, ,f(x). In this paper the Haar measure on SO(d) is
normalized by [¢ ;) dp = 1.

Theorem 3.1. For0 < p <1
1/p
{/SO(d) /SH 1On.p PN dp} < Cp@IfllL,(si-1)- (3.1

Proof. For 0 < p < 1 we write, using (2.3),

[ onaseoraras < [ [ S Gl Wt el dxdp
s0(d) Jsd-1 S0(d) Jsd-1

xk,i €Gk

IA

IA

A(p.d) nP=DE=D NP f(pxi i) Pdp
SO(d) x4 €Gr

AP DI} gD D7 A

xk,i €Gk

Using the Holder inequality and recalling % n <k < 2n, we have

|G| Gel \ P /1G] \ 7P )
D= m) () =G T @Th
i=1 i=1 i=1

which completes the proof of (3.1) forO < p <1. U

Therefore, for any f € L p(Sd ~1) and any n there exists p (depending on f and n) such that
||0n‘pf||Lp(sdfl) = Cp(d)”f”Lp(sdfl)- (3.2)

Furthermore, forany A > land0 < p <1

1

m (o2 1000 f 1] iy < ACH@PISFN] (gu)) = 1= 7 (3.3)
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Clearly, when f € C (541, On,p f (x) is defined for all p. We now show that O, , is the
identity on ¢ € span (1360 H() .
Theorem 3.2. For ¢ € span <160 Hg)

Onpp(x) = ¢(x). G4

2n
Proof. As O, ,¢(x) € span (zuo H() for any ¢ € C(S9~1, we have only to show for Yy ;

with 0 < £ < n that form < 2n

/Sd—l (On»PY@,j(x)) Ym,jl (x)dx = {

In the above we assume that for each H, {Y, ;} is a fixed orthonormal basis.

1 £=m,j=j
0 otherwise.

O+
We note that Yy j, (x)Y,, j,(x) € span < U’Z H,) following the fact that it is a homogeneous
e

polynomial of degree m + ¢ and using [9, Th. 2.1, p. 139].
When € # m (m < 2n)or{ =m and j # ji

|G|

_ m

N lln(;) > hiYe j(0xk.) Y, jy (PXki)
i=1

m
U (—) /SM Ye j(0)Ym ji (y)dy = 0.

n

_/_;d—l (On,pYZ,j(x)) Ym,j1 (x)dx

When £ = m and j = j;, thenn (2) = 1 and

k
N Z AiYe, j(pxii)Ye,j(pxk,i)
i=1

/SH (On,pYé,j(x)) Yo j(x)dx
= / Yej()Ye j(ndy =1. O
Sd—l

If f € L,(S?"!) and for some pair (n*, p*), Oy p+ f is defined and belongs to L, (54~ 1),
then for ¢ € C(8971) Oy o+ (f + @) is defined, and as O, ,¢(x) is continuous in p and hence
On,p0() € Lp(Sd_l) (for any n and p), O px(f + @) € Lp(Sd_l). In particular, the above

-1
holds if ¢ € span CUO Hg) .
~1
The spherical harmonic polynomial ¢, € span <ZU0 Hg) is the best approximant from span

n—1
(euo Hg) to fin L,(S97 1y if

n—1
1 = @nl sty = En(f)p sty = inf{ I = @l i1y € span (U Hk) } (3.5)

k=0

From the above we can derive:
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Corollary 3.3. For f € L,(S?~") and ¢, given by (3.5)

m(p : "0n,p(f - (pn)(')||€p(sd—l) =< ACp(d)p”f - wn”zp(sdl))

1
and for p € E(f,n, p, A)
100 £17 a1, = (ACH@" +2) IS} (gu-1y- (3.7)

Proof. As f — ¢, € L p(Sd’l), (3.6) is a corollary of (3.2). Furthermore, using Theorem 3.2,

Onpf(x)=Onp(f —0u)X) + Onp0u(x) = O p(f — @n)(x) + @n(x),
and hence for p € E(f, n, p, A)

”011,Pf(')”ip(sd71) S ACp(d)p”f - §0n||€p(54171) + ”wn”llip(sdfl)

< AC, IS + 2111 O

p p
Ly(s4=1) Ly(s4=1y

4. Jackson-type result for r =1
In this section we establish the Jackson-type inequality ford > 3,0 < p < landr = 1.

Theorem 4.1. For f € L,(S?~!) withd > 3 we have

1
En(f)pfcw(f’ ;) . p>0 4.1

p
where E, (f)p and w(f,t), are given by (1.6) and (1.3) respectively.

Proof. As a result stronger than (4.1) is given for 1 < p < oo in [5], we have to prove our
theorem only for 0 < p < 1. We note that E2,(f)p < |f — Opnpflp, and as a)(f, 1) <
p

ﬁ =
21/p g ( f ﬁ) (using the consideration in [4, 192-193]), it is sufficient to prove that for some
P

p and for any n > 1 the inequality || f — Oy, fll, < Co (f, %) to obtain (4.1) forn > 1.
p

Therefore, it is enough to show that
P

1
/ / |f(x) = On,p f(0)Pdxdp < Cw(f, —> (4.2)
SO Jsi-1 n

p

for some positive C to establish (4.1) forn > 1.
We now write

/ / | f(x) = On,p f(x)|Pdx dp
SO(d) Jsd-1

|G|

< |Sd—1|"/ f S OALIF) = fox )P Wa(x - pxe)|Pdx dp
So(d) Jsi-1
|G|

=i Y [ [ = Smal W pr s dp.
— " Jsow) Jsi
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Clearly,
/ / |f () = f(pxie,i) || Wy (x - pxi,i)|Pdx dp
50(d) Jsd-1
1
= ean / / Lf () = FOIPIWy(x - y)[Pdx dy.
|S¢= Jga-1 Jga-1
Therefore, following the arguments in the proof of Theorem 3.1, we need only show that
1= [ s = o yraray
§d—1 §d—1

p
< Cln(p_l)(d_l)a)( P 1) . 43)
nJp

We split the double integral of (4.3) into two parts, I1 and I» (I = I + 1), dealing with the
regions x - y > % andx -y < % respectively, and show that both yield the estimate required
for 1.

For I, we have |W, (x - y)| < J(¥)

nd—l
(1+2)°

d=1-t and hence

xn

Ip)

IA

Czn(d—l—é)p/ / |f(x) — f)I|Pdxdy
sd—1 Jgd—1

= Cy|s¢ 7 pd-1=0r / f |f(x) — f(Qx)|Pdx dQ
S0(d) S§d—1

Col ST n“U=1=0P o (f, )b
14

C3n(d—‘—‘3>l’nw(f, l) ,
n

p

IA

IA

which for ¢ sufficiently large, will yield the appropriate estimate. To evaluate /] we write

/4
I :/ / / |f(x)_f(y)|p|W”(C039)|pd)/(x)d9dy
sdi=1.Jo X-y=cos 6
where dy is the Lebesgue measure on the set {x : x - y = cos@}. For g € L1(5?~!) we define

1
Sp(g(),y) = m—g/ gx)dy(x), Sp(l,y)=1

Xx-y=cos

and as | f(x) — f(y)|” belongs to L (S91) for almost all v,

/4
= /qu /é mo S (lf(') - fI*, y) |W, (cos0)|? dg dy

d-1)p

/4
d=2
scf [T siro-rorye

do dy. (4.4)

At this point the proofs for even and odd dimensions d diverge.
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For even d we use the transformation 1y = Q! My Q where

cosf sind
sind cos@

O

Mg =
cosf sinf
—sinf cosf

O

and recall (see [3, 174—175]) that
So (IfFC) = FDMIP,y) = / |£(Q7'MyQy) — f()IPdQ.
50(d)

We may now use the Fubini theorem on (4.4) and write

d=2,d-1)p

/4
L <C M, — Pdyd }—de
| < fo {fso(d)fsd_l @ M0y~ FOIIPdydof T

/4 » gd—2,,d=Dp
<C ,0), ———— df
<c[ ool g
Following [4, Th.2.3], we have for0 < p < 1

p

o(f,0)p < (1 +nb)w <f, %) ,

p

and hence for ¢ large enough

p
I, < Cyn@-Dr-y, <f, l)
n

p

For odd d we use the transformation 7} = 0! M Q where

cosf sind
sinf cos6

O

cosf sinf
—sinf cosf

O

and define (see [3, (4.3)])
Ap (|f(~)—f(y)|”,y)5/ |£(Q7 M5 Qy) — f(»)PdQ.
S0(d)

As Q7'M}Qy -y = M;Qy- Qy =Mz z > cosf, we have

/ Ao (IfO) = fFODIP, y)dy = / / |£(Q™'M5Qy) — f(»)IPdydQ
§d-1 50(d) Jsd-1

IA

w(f, 0)h.

Using [3, Lemma 4.2], we have

389

(4.5)
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1 t
- f So (IF() = FOIP, ¥) 0972(1 +no) =7 do
t Jiyv2
<CU, pt2A+n) " PA(IFC) = FODIP, Y) (4.6)

with C (¢, p) independent of ¢, n, y and f. We now use (4.5) and (4.6) to estimate /1 (for odd d).
Recalling % < 1, we write

o0
I < CuP=D 3" 2 I=D2 () 4 ppily~tr

=0
' 0-if2
o ey Y (RO e I RN
§d-1 2—(i+D)/2
0 . .
< CnPU=D N m @D g p i)t / Ay (1F ) = FDIP, y) dy
-1
j=0
o0
— Cznp(d_l) Z 2—./(d—1)/2(1 + n2_j/2)_£pa)(f, 2—.//2)5
=0
Jjo—1 o
= {Z+Z} =J1+ /.
=0 Jj=jo

Selecting jj so that 27/0/2 < 1 < 2=(0=1/2 we estimate J, by
. o0 .
b < Cznp(dfl)a)(f, zfjo/z)ﬁ Z n—Jd=1)/2
Jj=Jo

1\?
< Can(P—D-1, <f’ _)
n

p
To estimate J; we use [4, Theorem 2.3,(2.4)] and write

Jo—1 -
Ji < CunP@=D Z 9—id=1)/2 (1 + Z(jo—j—l)/z) tr (1 i 2(jo—j)/2> w (f, 2—j0/2>P
j=0 P

p jo—1
ConP@=Do=in@=1/2,) ( s l) Y oG-t

"Jp =0
1\?
C6n(p])(d])a)(f, _)

n/p

IA

IA

provided that £ is large enough.
We proved (4.1) for n > ng for some fixed ng. To prove (4.1) for n < ny it is sufficient to
show that there exists a constant ¢ such that || f — ¢||, < Ciw(f, 1), , since then

En(f)p = El(f)p <If- c“p < Cio(f, l)p,
and using [4, (2.4)],

1
w(f, 1)p < C(nog, P)a)<f, —> for 1<n < nyg.
n
P



F. Dai, Z. Ditzian / Journal of Approximation Theory 162 (2010) 382-391 391

We now observe that there exists yg satisfying

1
ST /S /S L 1FO0) = folPdxdy

/ / |f(px) — f(x)|Pdx dy
SO(d) J§d-1
< o(f,m)h < Co(f, D,

and choose f(yg) = ¢ to complete the proof. [

IA

/ Lf(yo) — f(0)|Pdx
gd—1

5. Conclusion

In the effort to prove for En(f)Lp(Sd—l) of (1.6) (and (3.5)) and " (f, t)Lp(Sd—u) of [4] that

n

1
En(f)p,se-1) = Co' (fv —> (%)
Lp(Sdfl)

for all f € L,,(Sd’l), all d > 3, all integers »r and 0 < p < 1, this paper has made a small
contribution (i.e. (%) for r = 1). A prize of 100$ CAD will be given by the second author to the
person (or group) who is the first to prove (x) for all d > 3, all integers r and p > 0.

Partial results of the above conjecture will receive a nod of approval and a virtual pat on the
back.
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