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Abstract

The best approximation of functions in L p(Sd−1), 0 < p < 1 by spherical harmonic polynomials is
shown to be bounded by a modulus of smoothness recently introduced by the second author.
c© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

The space Hk of spherical harmonic polynomials of degree k on the unit sphere

Sd−1
≡ {x = (x1, . . . , xd) ∈ Rd

: |x |2 = x2
1 + · · · + x2

d = 1}

(d ≥ 3) is the collection of restrictions to Sd−1 of the homogeneous harmonic polynomials of

degree k. The dimension of Hk is
(

d+k−1
k

)
−

(
d+k−3

k−2

)
(see [9, p. 140]). The space Hk can also

be described by

Hk = {ϕ : ∆̃ϕ = −k((k + d − 2)ϕ)} (1.1)

where ∆̃ is the Laplace–Beltrami operator given by

∆̃ f (x) = ∆ f

(
x

|x |

)
for x ∈ Sd−1,∆ =

∂2

∂x2
1

+ · · · +
∂2

∂x2
d

. (1.2)
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The moduli of smoothness usually used for functions on the sphere (d ≥ 3) involves averages
and hence are not defined for f ∈ L p(Sd−1) when 0 < p < 1. We use here the modulus of
smoothness introduced in [4] and given by

ω( f, t)p = sup{‖∆ρ f ‖L p(Sd−1) : ρ ∈ SO(d), ρx · x ≥ cos t for all x ∈ Sd−1
} (1.3)

where SO(d) is the class of orthogonal matrices whose determinant equals 1 and where

∆ρ f (x) = f (ρx)− f (x). (1.4)

We will prove for 0 < p < 1 the Jackson-type inequality

En( f )p ≤ C ω

(
f,

1
n

)
p

(1.5)

where

En( f )p ≡ inf
{
‖ f − ϕ‖L p(Sd−1) : ϕ ∈ span

(n−1⋃
k=0

Hk

)}
. (1.6)

In [4] higher moduli of smoothness, ωr ( f, t)p were defined, and we conjecture that the more
general Jackson-type inequality

En( f )p ≤ C ωr ( f, t)p (∗)

is valid for d ≥ 3 with ωr ( f, t)p given in [4]. The Jackson-type inequality (∗) was proved for
L p(Sd−1), 1 ≤ p ≤ ∞ in [5] and for many other Banach spaces of functions in [3].

For the proof we will construct the operators On,ρ f (x) from f ∈ L p(Sd−1) to span
(

2n
∪

k=0
Hk

)
which will not necessarily exist for all ρ ∈ SO(d); for each f ∈ L p(Sd−1), however, On,ρ f (x)
will exist for almost all ρ with respect to the Haar measure of SO(d) and will have a specific
bound on a set of positive measure of SO(d). It will be shown that On,ρ f (x) has de la Vallée
Poussin-type properties.

This type of proof for a Jackson-type result was applied by Runovskii (see [7,8]) to
approximation by trigonometric polynomials on T = [0, 2π) and on the torus T d . Of course,
the situation here is much more involved as we have to replace a simple formula on T or on T d

by using kth degree geometric design or Marcinkiewicz-type cubature formulae. Moreover, as
elements of SO(d) do not commute, we could not repeat our process and obtain (∗) from (1.5).

In Section 2 we will construct the operators On,ρ f. Some preliminary results will be given
in Section 3 and the Jackson-type result (1.5) will be proved in Section 4. In Section 5 the open
conjecture (∗) is presented with a prize for its proof.

2. Definition of the operators On,ρ f (x)

In this section we define the class of operators On,ρ f (x) which for some ρ (almost all ρ)
maps f into the space of spherical harmonic polynomials of degree 2n. We first define the kernels
Wn(x · y) by

Wn(x · y) =
∞∑

m=0

η

(
m

n

){ dm∑
j=1

Ym, j (x)Ym, j (y)

}
(2.1)



384 F. Dai, Z. Ditzian / Journal of Approximation Theory 162 (2010) 382–391

where Ym, j is any basis of orthonormal elements of Hm and η(u) ∈ C∞[0,∞), η(u) = 1 for

0 < u ≤ 1 and η(u) = 0 for u ≥ 2. We recall that the zonal function Z (m)x (y) satisfies (see
[9, 143–149])

Z (m)x (y) =
dm∑
j=1

Ym, j (x)Ym, j (y) = cm,d Pλm(x · y), λ =
d − 2

2
,

where {Pλm(t)}
∞

m=0, the ultraspherical polynomials, are the orthogonal system of polynomials on

[−1, 1] with respect to the weight (1− t2)
d−3

2 . Therefore, (2.1) can be rewritten as

Wn(x · y) =
∞∑

m=0

η

(
m

n

)
Z (m)x (y) =

∞∑
m=0

η

(
m

n

)
cm,d Pλm(x · y), λ =

d − 2
2

.

It was shown in [1, Lemma 3.3] that

|Wn(cos θ)| ≤ J (`)nd−1(1+ nθ)−` (2.2)

for any integer `. Clearly, we have∫
Sd−1
|Wn(x · y)|

pdy = Cd

∫ π

0
|Wn(cos θ)|p(sin θ)d−2dθ.

Therefore, for sufficiently large ` (and any ` satisfying d < `p will do) the inequality (2.2)
combined with straightforward computation implies∫

Sd−1
|Wn(x · y)|

pdy ≤ A(p, d)n(p−1)(d−1), 0 < p ≤ 1. (2.3)

We set |Sd−1
| ≡

∫
Sd−1 dy.

For homogeneous spherical polynomials of degree 2k there is a set Gk , Gk = {xk,i : xk,i ∈

Sd−1
} which satisfies the cubature formula

1

|Sd−1|

∫
Sd−1

ϕ(y)dy =
Nk∑

s=1

λsϕ(xk,s) for all ϕ ∈ span
( 2k⋃
`=0

H`

)
(2.4)

with 0 ≤ λs and hence
Nk∑

s=1
λs = 1. It is also known (see for instance [6, Proposition 2, p. 204])

that (
d + k − 1

k

)
≤ Nk ≤

(
d + 2k − 1

2k

)
, Nk ≡ |Gk |. (2.5)

Therefore, Nk ≈ kd−1
; that is, A(d)−1kd−1

≤ Nk ≤ A(d)kd−1. The set Gk is sometimes called
spherical geometric design (when λs = N−1

k ). We note that in many works in functional analysis
the gap between the lower and upper estimates of Nk ≡ Nk(d) seems bigger, but the reason is
that in those works the dimension d is allowed to tend to infinity and k is fixed, while in our
work k grows and d remains fixed (but arbitrary). A less abstract proof of the existence of Gk
satisfying (2.4) and Nk ≈ kd−1 can be found in [2] where conditions on the relative location of
xk,i and on the size of λi are given.
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We observe that ρGk = {ρxk,i : xk,i ∈ Gk} also satisfies the cubature formula (2.4) as

ϕ(ρx) ∈ span
{

2k
∪
`=0

H`

}
if ϕ(x) ∈ span

(
2k
∪
`=0

H`

)
, and also

∫
Sd−1 ϕ(ρx)dx =

∫
Sd−1 ϕ(x)dx .

We define On,ρ f by

On,ρ f (x) = |Sd−1
|

∑
xk,i∈Gk

λi f (ρxk,i )Wn(x · ρxk,i ) (2.6)

for some k satisfying 3
2 n ≤ k < 2n. Clearly, given a specific ρ (2.6) is not always defined for

all f ∈ L p(Sd−1) even when 1 ≤ p ≤ ∞. In the next section we will show that for every
f ∈ L p(Sd−1), with 0 < p ≤ 1, On,ρ f (x) is defined and bounded in L p(Sd−1) for almost all ρ
i.e. a.e. with respect to the Haar measure of SO(d). Obviously, On,ρ f (x) (when defined) maps f

into the space span
{

2n
∪
`=0

H`

}
. We will further show that for f ∈ span

{
n
∪
`=0

H`

}
, On,ρ f (x) =

f (x) for all ρ.

3. Properties of On,ρ f (x)

We first prove an estimate of On,ρ f (x). In this paper the Haar measure on SO(d) is
normalized by

∫
SO(d) dρ = 1.

Theorem 3.1. For 0 < p ≤ 1{∫
SO(d)

∫
Sd−1
|On,ρ f (x)|pdx dρ

}1/p

≤ C p(d)‖ f ‖L p(Sd−1). (3.1)

Proof. For 0 < p ≤ 1 we write, using (2.3),∫
SO(d)

∫
Sd−1
|On,ρ f (x)|pdx dρ ≤

∫
SO(d)

∫
Sd−1

∑
xk,i∈Gk

λ
p
i | f (ρxk,i )|

p
|Wn(x · ρxk,i )|

pdx dρ

≤ A(p, d)
∫

SO(d)
n(p−1)(d−1)

∑
xk,i∈Gk

λ
p
i | f (ρxk,i )|

pdρ

= A(p, d)‖ f ‖p
L p(Sd−1)

n(p−1)(d−1)
∑

xk,i∈Gk

λ
p
i .

Using the Hölder inequality and recalling 3
2 n ≤ k ≤ 2n, we have

|Gk |∑
i=1

λ
p
i ≤

(
|Gk |∑
i=1

λi

)p (
|Gk |∑
i=1

1

)1−p

= |Gk |
1−p
≈ (nd−1)1−p,

which completes the proof of (3.1) for 0 < p ≤ 1. �

Therefore, for any f ∈ L p(Sd−1) and any n there exists ρ (depending on f and n) such that

‖On,ρ f ‖L p(Sd−1) ≤ C p(d)‖ f ‖L p(Sd−1). (3.2)

Furthermore, for any A > 1 and 0 < p ≤ 1

m
(
ρ : ‖On,ρ f ‖p

L p(Sd−1)
< AC p(d)

p
‖ f ‖p

L p(Sd−1)

)
≥ 1−

1
A
. (3.3)
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Clearly, when f ∈ C(Sd−1), On,ρ f (x) is defined for all ρ. We now show that On,ρ is the

identity on ϕ ∈ span
(

n
∪
`=0

H`

)
.

Theorem 3.2. For ϕ ∈ span
(

n
∪
`=0

H`

)
On,ρϕ(x) = ϕ(x). (3.4)

Proof. As On,ρϕ(x) ∈ span
(

2n
∪
`=0

H`

)
for any ϕ ∈ C(Sd−1), we have only to show for Y`, j

with 0 ≤ ` ≤ n that for m ≤ 2n∫
Sd−1

(
On,ρY`, j (x)

)
Ym, j1(x)dx =

{
1 ` = m, j = j1
0 otherwise.

In the above we assume that for each Hr {Yr,i } is a fixed orthonormal basis.

We note that Y`, j1(x)Ym, j2(x) ∈ span
(
`+m
∪

r=0
Hr

)
following the fact that it is a homogeneous

polynomial of degree m + ` and using [9, Th. 2.1, p. 139].
When ` 6= m (m ≤ 2n) or ` = m and j 6= j1∫

Sd−1

(
On,ρY`, j (x)

)
Ym, j1(x)dx = |Sd−1

|η

(
m

n

) |Gk |∑
i=1

λi Y`, j (ρxk,i )Ym, j1(ρxk,i )

= η
(m

n

) ∫
Sd−1

Y`, j (y)Ym, j1(y)dy = 0.

When ` = m and j = j1, then η
(m

n

)
= 1 and∫

Sd−1

(
On,ρY`, j (x)

)
Y`, j (x)dx = |Sd−1

|

k∑
i=1

λi Y`, j (ρxk,i )Y`, j (ρxk,i )

=

∫
Sd−1

Y`, j (y)Y`, j (y)dy = 1. �

If f ∈ L p(Sd−1) and for some pair (n∗, ρ∗), On∗,ρ∗ f is defined and belongs to L p(Sd−1),
then for ϕ ∈ C(Sd−1) On∗,ρ∗( f + ϕ) is defined, and as On,ρϕ(x) is continuous in ρ and hence
On,ρϕ(·) ∈ L p(Sd−1) (for any n and ρ), On∗,ρ∗( f + ϕ) ∈ L p(Sd−1). In particular, the above

holds if ϕ ∈ span
(

n−1
∪
`=0

H`

)
.

The spherical harmonic polynomial ϕn ∈ span
(

n−1
∪
`=0

H`

)
is the best approximant from span(

n−1
∪
`=0

H`

)
to f in L p(Sd−1) if

‖ f − ϕn‖L p(Sd−1) = En( f )L p(Sd−1) ≡ inf
{
‖ f − ϕ‖L p(Sd−1) : ϕ ∈ span

(n−1⋃
k=0

Hk

)}
. (3.5)

From the above we can derive:
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Corollary 3.3. For f ∈ L p(Sd−1) and ϕn given by (3.5)

m

(
ρ : ‖On,ρ( f − ϕn)(·)‖

p
L p(Sd−1)

≤ AC p(d)
p
‖ f − ϕn‖

p
L p(Sd−1)

)
≡ m (E( f, n, p, A)) ≥ 1−

1
A
, (3.6)

and for ρ ∈ E( f, n, p, A)

‖On,ρ f ‖p
L p(Sd−1)

≤
(

AC p(d)
p
+ 2

)
‖ f ‖p

L p(Sd−1)
. (3.7)

Proof. As f − ϕn ∈ L p(Sd−1), (3.6) is a corollary of (3.2). Furthermore, using Theorem 3.2,

On,ρ f (x) = On,ρ( f − ϕn)(x)+ On,ρϕn(x) = On,ρ( f − ϕn)(x)+ ϕn(x),

and hence for ρ ∈ E( f, n, p, A)

‖On,ρ f (·)‖p
L p(Sd−1)

≤ AC p(d)
p
‖ f − ϕn‖

p
L p(Sd−1)

+ ‖ϕn‖
p
L p(Sd−1)

≤ AC p(d)
p
‖ f ‖p

L p(Sd−1)
+ 2‖ f ‖p

L p(Sd−1)
. �

4. Jackson-type result for r = 1

In this section we establish the Jackson-type inequality for d ≥ 3, 0 < p < 1 and r = 1.

Theorem 4.1. For f ∈ L p(Sd−1) with d ≥ 3 we have

En( f )p ≤ Cω

(
f,

1
n

)
p
, p > 0 (4.1)

where En( f )p and ω( f, t)p are given by (1.6) and (1.3) respectively.

Proof. As a result stronger than (4.1) is given for 1 ≤ p ≤ ∞ in [5], we have to prove our

theorem only for 0 < p < 1. We note that E2n( f )p ≤ ‖ f − On,ρ f ‖p, and as ω
(

f, 1
n

)
p
≤

21/pω
(

f, 1
2n

)
p

(using the consideration in [4, 192–193]), it is sufficient to prove that for some

ρ and for any n ≥ 1 the inequality ‖ f − On,ρ f ‖p ≤ Cω
(

f, 1
n

)
p

to obtain (4.1) for n > 1.

Therefore, it is enough to show that∫
SO(d)

∫
Sd−1
| f (x)− On,ρ f (x)|pdx dρ ≤ Cω

(
f,

1
n

)p

p
(4.2)

for some positive C to establish (4.1) for n > 1.
We now write∫

SO(d)

∫
Sd−1
| f (x)− On,ρ f (x)|pdx dρ

≤ |Sd−1
|
p
∫

SO(d)

∫
Sd−1

|Gk |∑
i=1

λ
p
i | f (x)− f (ρxk,i )|

p
|Wn(x · ρxk,i )|

pdx dρ

= |Sd−1
|
p
|Gk |∑
i=1

λ
p
i

∫
SO(d)

∫
Sd−1
| f (x)− f (ρxk,i )|

p
|Wn(x · ρxk,i )|

pdx dρ.
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Clearly,∫
SO(d)

∫
Sd−1
| f (x)− f (ρxk,i )|

p
|Wn(x · ρxk,i )|

pdx dρ

=
1

|Sd−1|

∫
Sd−1

∫
Sd−1
| f (x)− f (y)|p|Wn(x · y)|

pdx dy.

Therefore, following the arguments in the proof of Theorem 3.1, we need only show that

I =
∫

Sd−1

∫
Sd−1
| f (x)− f (y)|p|Wn(x · y)|

pdx dy

≤ C1n(p−1)(d−1)ω

(
f,

1
n

)p

p
. (4.3)

We split the double integral of (4.3) into two parts, I1 and I2 (I = I1 + I2), dealing with the
regions x · y ≥ 1

√
2

and x · y < 1
√

2
respectively, and show that both yield the estimate required

for I.

For I2 we have |Wn(x · y)| ≤ J (`) nd−1

(1+ nπ
4 )

` ≈ nd−1−`, and hence

I2 ≤ C2n(d−1−`)p
∫

Sd−1

∫
Sd−1
| f (x)− f (y)|pdx dy

= C2|S
d−1
|n(d−1−`)p

∫
SO(d)

∫
Sd−1
| f (x)− f (Qx)|pdx dQ

≤ C2|S
d−1
|n(d−1−`)pω( f, π)p

p

≤ C3n(d−1−`)pnω

(
f,

1
n

)p

p
,

which for ` sufficiently large, will yield the appropriate estimate. To evaluate I1 we write

I1 =

∫
Sd−1

∫ π/4

0

∫
x ·y=cos θ

| f (x)− f (y)|p|Wn(cos θ)|pdγ (x) dθ dy

where dγ is the Lebesgue measure on the set {x : x · y = cos θ}. For g ∈ L1(Sd−1) we define

Sθ (g(·), y) ≡
1

mθ

∫
x ·y=cos θ

g(x)dγ (x), Sθ (1, y) = 1

and as | f (x)− f (y)|p belongs to L1(Sd−1) for almost all y,

I1 =

∫
Sd−1

∫ π/4

0
mθ Sθ

(
| f (·)− f (y)|p, y

)
|Wn(cos θ)|p dθ dy

≤ C
∫

Sd−1

∫ π/4

0
Sθ
(
| f (·)− f (y)|p, y

)
θd−2 n(d−1)p

(1+ nθ)`p dθ dy. (4.4)

At this point the proofs for even and odd dimensions d diverge.
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For even d we use the transformation τθ = Q−1 Mθ Q where

Mθ =


cos θ sin θ
− sin θ cos θ

©

. . .

©
cos θ sin θ
− sin θ cos θ


and recall (see [3, 174–175]) that

Sθ
(
| f (·)− f (y)|p, y

)
=

∫
SO(d)

| f (Q−1 Mθ Qy)− f (y)|pdQ.

We may now use the Fubini theorem on (4.4) and write

I1 ≤ C
∫ π/4

0

{∫
SO(d)

∫
Sd−1
| f (Q−1 Mθ Qy)− f (y)|pdy dQ

}
θd−2n(d−1)p

(1+ nθ)`p dθ

≤ C
∫ π/4

0
ω( f, θ)p

p
θd−2n(d−1)p

(1+ nθ)`p dθ.

Following [4, Th.2.3], we have for 0 < p < 1

ω( f, θ)p
p ≤ (1+ nθ)ω

(
f,

1
n

)p

p
,

and hence for ` large enough

I1 ≤ C1n(d−1)(p−1)ω

(
f,

1
n

)p

p
.

For odd d we use the transformation τ ∗θ = Q−1 M∗θ Q where

M∗θ =



cos θ sin θ
− sin θ cos θ

©

. . .

©
cos θ sin θ
− sin θ cos θ

1


and define (see [3, (4.3)])

Aθ
(
| f (·)− f (y)|p, y

)
≡

∫
SO(d)

| f (Q−1 M∗θ Qy)− f (y)|pdQ.

As Q−1 M∗θ Qy · y = M∗θ Qy · Qy = M∗θ z · z ≥ cos θ , we have∫
Sd−1

Aθ
(
| f (·)− f (y)|p, y

)
dy =

∫
SO(d)

∫
Sd−1
| f (Q−1 M∗θ Qy)− f (y)|pdy dQ

≤ ω( f, θ)p
p. (4.5)

Using [3, Lemma 4.2], we have
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1
t

∫ t

t/
√

2
Sθ
(
| f (·)− f (y)|p, y

)
θd−2(1+ nθ)−`pdθ

≤ C(`, p)td−2(1+ nt)−`p At
(
| f (·)− f (y)|p, y

)
(4.6)

with C(`, p) independent of t, n, y and f . We now use (4.5) and (4.6) to estimate I1 (for odd d).
Recalling π

4 < 1, we write

I1 ≤ C1n p(d−1)
∞∑
j=0

2− j (d−1)/2(1+ n2− j/2)−`p

×

∫
Sd−1

2 j/2
∫ 2− j/2

2−( j+1)/2
Sθ
(
| f (·)− f (y)|p, y

)
dθ dy

≤ Cn p(d−1)
∞∑
j=0

2− j (d−1)/2(1+ n2− j/2)−`p
∫

Sd−1
A2− j/2

(
| f (·)− f (y)|p, y

)
dy

= C2n p(d−1)
∞∑
j=0

2− j (d−1)/2(1+ n2− j/2)−`pω( f, 2− j/2)
p
p

≡

{ j0−1∑
j=0

+

∞∑
j= j0

· · ·

}
≡ J1 + J2.

Selecting j0 so that 2− j0/2 ≤ 1
n < 2−( j0−1)/2, we estimate J2 by

J2 ≤ C2n p(d−1)ω( f, 2− j0/2)
p
p

∞∑
j= j0

2− j (d−1)/2

≤ C3n(p−1)(d−1)ω

(
f,

1
n

)p

p
.

To estimate J1 we use [4, Theorem 2.3,(2.4)] and write

J1 ≤ C4n p(d−1)
j0−1∑
j=0

2− j (d−1)/2
(

1+ 2( j0− j−1)/2
)−`p (

1+ 2( j0− j)/2
)
ω
(

f, 2− j0/2
)p

p

≤ C5n p(d−1)2− j0(d−1)/2ω

(
f,

1
n

)p

p

j0−1∑
j=0

2−( j− j0)(d−`p)/2

≤ C6n(p−1)(d−1)ω

(
f,

1
n

)p

p

provided that ` is large enough.
We proved (4.1) for n ≥ n0 for some fixed n0. To prove (4.1) for n < n0 it is sufficient to

show that there exists a constant c such that ‖ f − c‖p ≤ C1ω( f, 1)p , since then

En( f )p ≤ E1( f )p ≤ ‖ f − c‖p ≤ C1ω( f, 1)p,

and using [4, (2.4)],

ω( f, 1)p ≤ C(n0, p)ω

(
f,

1
n

)
p

for 1 ≤ n < n0.
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We now observe that there exists y0 satisfying∫
Sd−1
| f (y0)− f (x)|pdx ≤

1

|Sd−1|

∫
Sd−1

∫
Sd−1
| f (y)− f (x)|pdx dy

=

∫
SO(d)

∫
Sd−1
| f (ρx)− f (x)|pdx dy

≤ ω( f, π)p
p ≤ C2ω( f, 1)p

p,

and choose f (y0) = c to complete the proof. �

5. Conclusion

In the effort to prove for En( f )L p(Sd−1) of (1.6) (and (3.5)) and ωr ( f, t)L p(Sd−1) of [4] that

En( f )L p(Sd−1) ≤ Cωr
(

f,
1
n

)
L p(Sd−1)

(∗)

for all f ∈ L p(Sd−1), all d ≥ 3, all integers r and 0 < p < 1, this paper has made a small
contribution (i.e. (∗) for r = 1). A prize of 100$ CAD will be given by the second author to the
person (or group) who is the first to prove (∗) for all d ≥ 3, all integers r and p > 0.

Partial results of the above conjecture will receive a nod of approval and a virtual pat on the
back.
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