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1. INTRODUCTION 

One of the fundamental questions in the cohomology of finite groups is 
the following. Given a module A4 for a finite group G, for what values of 
n do we have H”(G, M) = O? This paper consists of two related contribu- 
tions to the study of this question. 

Our first theorem is best stated in terms of Tate cohomology. 

THEOREM 1.1. If R is a commutative ring of coefficients, G a finite group, 
and M an RG-module, and if H”(G, M) # 0 for some n, then H”(G, M) # 0 
for infinitely many values of n, positive and negative. 

Secondly, we address the question of which groups have the property 
that every non-projective module in the principal block has cohomology. 
We provide some evidence for the following conjecture. 
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Conjecture 1.2. Suppose G is a finite group and k is a field of charac- 
teristic p, Then the following are equivalent. 

(i) The centaliser of every element of order p in G is p-nilpotent (i.e., 
has a normal p-complement). 

(ii) For every non-projective module M in the principal block 
B,(kG), H”(G, M) # 0 for some (and hence for infinitely many) n. 

We are able to prove this conjecture as long as p is odd, and more 
generally we can prove that condition (ii) implies condition (i) (Proposi- 
tion 5.3 and Theorem 9.5): 

THEOREM 1.3. If p is odd then Conjecture 1.2 is true. 

We are also able to prove that Condition (i) is equivalent to Condi- 
tion (ii) for non-projective trivial source modules M in the principal block, 
and that it is equivalent to Condition (ii) with M replaced by its Green 
correspondent. More precisely, we shall prove the following. 

THEOREM 1.4. Suppose G is finite group and k is afield of characteristic 
p. We haoe the implications (A) o (A’) o (A”) * (B) o (B’) S= (C)o 
(D) o (D’) o (E) * (F) among the following statements. 

(A) Every finitely generated module in B,(kG) is a trivial homology 
module (or TH module; for the definition, see Section 2). 

(A’) Every simple module in B,(kG) is a direct summand of a TH 
module. 

(A”) Every trivial source module in B,(kG) is a direct summand of a 
TH module. 

(B) For every finitely generated non-projective module M in B,(kG), 
we have H”(G, M) # 0 for some n. 

(B’) For every finitely generated non-projective periodic module M in 
B,(kG), we have H”(G, M) # 0 for some n. 

(C) For every non-projective trivial source module A4 in B,(kG), we 
have H”(G, M) # 0 for some n. 

(D) The centraliser of every element of order p in G is p-nilpotent. 

(D’) The centraliser of every non-trivial p-subgroup of G is p-nilpotent. 

(E) For every non-projective indecomposable module M in B,(kG), 
with vertex D and Green correspondent f(M), we have H”(N,(D), f(M)) # 0 
for some n. 

(F) The Cartan matrix of B,(kG) has only one non-unit principal 
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divisor. In other words, the Brauer characters of the projective modules and 
the trivial module span all Brauer characters in the principal block. 

Ifp is odd then (D)*(B). 

We also give some evidence for the implication (F) =- (A’). Namely, we 
show that for groups with dihedral Sylow subgroups in characteristic 2, as 
well as for A, in characteristic 3 and P&5,(8) in characteristic 2, every 
simple module in the principal block is a TH module. To prove this more 
generally, a new idea seems to be necessary. 

In Section 10 we give an interpretation of the above conjecture in terms 
of varieties. Namely, we define two subsets of the cohomology variety V, 
which we call the nucleus Y, and the representation theoretic nucleus 06, 
and we conjecture that these are equal. We prove the containment 
o,z Y,. 

We shall prove that for any module M in the principal block, the variety 
of A4 is contained in the union of 0, and the variety defined by the 
annihilator of H*(G, M). 

Finally, we formulate a conjecture for arbitrary finite groups which 
generalises the conjectured implication (F) = (A’) discussed above. This is 
given in terms of nuclear homology modules, which are a generalisation of 
trivial homology modules. For the sake of a non-trivial example, we prove 
this conjecture for the Mathieu group M,, in characteristic 2. 

This work grew out of an attempt to study a well known question in 
group cohomology. If S is a simple module in the principal block B,(kG), 
is it true that for some value of n > 0 we have H”(G, S) # O? At present no 
example is known where this fails. For other contributions to the study of 
this question, see Linnell [ 161 and Linnell and Stammbach [17, 181. 

2. TRIVIAL HOMOLOGY MODULES 

We begin with the definition. Let R be a commutative ring of coefficients 
and G a finite group. 

DEFINITION 2.1. An RG-module M is said to be a trivial homology 
module or TH module if there exists a finite complex 

of RG-modules and homomorphisms such that each Ci is a projective 
RG-module, H,(C,) is a direct sum of copies of the trivial RG-module R 
for i > 0, and H,(C,) E AL 

The following theorem was proved in [ 1, Lemma 6.21. 
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THEOREM 2.2. The trivial RG-module R is a TH module. Furthermore, 
given any positive integer B, there is a complex (C,, 6) as in the definition, 
with H,(C,) z H,(C,) r R and H,(C,) = 0 for 1 d i< B. 

Actually, in [ 1 ] it is shown that such a complex exists only for R = Z, 
the rational integers. However, if C, is such a complex of ZG-modules then 
RQ, C, is a complex of RG-modules with the desired properties. 

THEOREM 2.3. Let M be an R-projective RG-module. Let (C,, 0) be a 
finite complex of projective RG-modules. Then there exists a cohomology 
spectral sequence whose E2 term is the Tate cohomology 

E;’ = I%,,( H,( C,), M) 

and which converges to zero. 

Proof Let (F,, 8) be a doubly infinite projective resolution 

(F,,d): . . +F,& F++F_,+ ... 

of the trivial RG-module R. That is, the sequence is exact, each Fi is projec- 
tive, and a,(F,) r R E Ker(a_ r). We wish to investigate the cohomology of 
the total complex of the double complex Horn&F, OR C,, M). We have 
two coboundary maps on this complex, namely (10 e)* and (a 0 l)*, aris- 
ing from the boundaries 8 on C and a on F, respectively. Consequently we 
get two spectral sequences converging to the cohomology of the total com- 
plex, according to which of the two coboundary maps we use first. Now 
note that the complex (F, @ C,, 8 0 1) is a doubly infinite projective 
resolution of the projective module C,. Hence it is totally split and its 
cohomology with any coefficients is zero. Therefore the cohomology of the 
total complex is also zero. 

On the other hand, (F, 0 C,, 10 0) is also a totally split complex since 
F, is a projective module and C, is R-projective. However, this one has 
cohomology 

H,(F,OC,, lO@=F,OH,(C,,O 

The splitting shows that the E, term of the spectral sequence is 

E?’ Z Hom,,(F,s 0 H,(C,), M). 

To get the E, term we take homology with respect to the map induced by 
15 on F,. But (F, 0 H,(C,), J 0 1) is a projective resolution of H,(C,). So 
E;’ is as given. 1 
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Remark. The construction given above is in some sense an algebraic 
analogue of the equivariant cohomology spectral sequence 

H”(BG; H’(X; R)) =S &+‘(A’; R) 

for a finite G-CW-complex X, in the case where the action is free, so that 
Hz(X; R) r H*(X/G; R). Use of Tate cohomology gets rid of the finite E, 
term. 

We are now ready to prove Theorem 1.1. We state it again here in a 
slightly stronger form. 

THEOREM 2.4. Given a finite group G, there exists a positive integer r 
such that for any commutative ring R of coefficients and any RG-module M, 
if I?“(G, M) = 0 for r + 1 consecutive values of n then A”(G, M) = 0 for all 
n positive and negative. 

Proof We first prove this in the case where A4 is R-projective. Let 

(C,, e): c,* .‘. -+ c, -+ co 

be a complex of projective RG-modules as in Theorem 2.2 displaying R as 
a TH module, and consider the spectral sequence described in Theorem 2.3. 
Suppose that Z?‘(G, M) is not always zero, but is zero for r + 1 consecutive 
values of n, say m, m+ 1, ..,, m+r, with either I’?“-~(G, M) or 
Eim+r+ ‘(G, M) non-zero. Now the top and bottom rows of this spectral 
sequence are 

Ey 2 Ext”,,(H,(C,), M) z &(G, M) 

E&&,(H,(C,), M)g&(G,M), 

and so either Ey-13’#0 or E;,+r+‘30#0. However, E”:=O for 
m <s<m+r. The differential dk on the Ek term takes EC to E;l+k3’-k+1, 
and dk=O for k> r + 1. So whether E1;1-l,’ or ET+r+130 is non-zero, this 
group can never be killed at any stage in the spectral sequence. This 
contradicts the fact that the spectral sequence converges to zero. 

We now deal with the general case where M is not necessarily R-projec- 
tive. In this case, we first remark that since fi”(G, M) does not change 
when the coefficient ring R is replaced by Z, we may as well assume R is 
Z. Note at this stage that we have not assumed that A4 is finitely generated. 
Now if 

O+M’--+F-+M+O 

is a short sequence with F a free ZG-module, then M’ is Z-free [12, 
Theorem 1.5.11. Since I^I”(G, F) =0 (see, for example, [3, VI.5.3]), 
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fin(G, M) r A”+ ‘(G, M’) and so the theorem for M follows from the 
theorem for M’. 1 

Remark. The proof of the above theorem gives explicit values of r in 
terms of the generators of the cohomology ring (via the proof of 
Theorem 2.1 in [ 11). Better constants r may be found by relining the argu- 
ment given. 

COROLLARY 2.5. H*(G, M)#O ifand only ifH*(G, M)#O. 1 

COROLLARY 2.6. Suppose R is a Noetherian ring and M is a finitely 
generated RG-module with the property that some power of every element of 
positive degree in H*(G, R) annihilates H*(G, M) (by cup product). Then 
H*(G, M) = 0. 

Proof By Evens [S, Theorem 6.1, Corollary 6.21, H*(G, M) is finitely 
generated as a module over H*(G, R), and the latter is a finitely generated 
ring over R. So if some power of every element of positive degree in 
H*(G, R) annihilates H*(G, M), then H*(G, M) is non-zero only in 
finitely many degrees. Thus by Theorem 2.4, H*(G, M) = 0. 1 

PROPOSITION 2.7. Suppose M, is a TH RG-module and M, is any 
RG-module. Then either Ext”,,(M,, M2) = 0 for all n or H”(G, M2) # 0 for 
infinitely many n, positive and negative. 

Proof As in the proof of Theorem 2.4, we may reduce to the case where 
M, is R-projective. In this case, let 

(C*,8):C,+ ..‘+c,+c, 

be a complex of projective RG-modules displaying M, as a TH module, 
and consider the spectral sequence 

&#,(C,), M,) e-0 

described in Theorem 2.3. If fin(G, M2) = 0 for all n, then the only possible 
non-zero row of this spectral sequence is 

E;O = &,(M,, M2). 

Since the spectral sequence converges to zero, this row too must be zero. 

Thus if I%t&(Mi, M,) # 0 for some n, then k’(G, M2) # 0 for some n and 
hence, by Theorem 2.4, for infinitely many n, positive and negative. 1 

COROLLARY 2.8. Suppose M is a non-projective TH module. Then 
H”(G, M) # 0 for infinitely many n, positive and negative. 

481 1311.4 
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Proof Apply the above proposition with M1 = M, = A4. By [S], for A4 

non-projective, E;t&(M, M) # 0. We can also see this by noting that there 

is a non-trivial element in &O,,(M, M) and using Theorem 2.4. 1 

This proves the implication (A) = (B) in Theorem 1.4. 

3. PROPERTIES OF TRIVIAL HOMOLOGY MODULES 

The basic constructions here depend on the fact that if 

(C*,t?): ... +c,-* ... -‘co 

is a complex of projective modules and 

(D,,d): ... +D,+ ... -‘D, 

is exact then any map H,(C) -+ H,,(D) extends to a chain map 
(C, 0) + (D, 4). For a proof of this well known fact, see, for example, [ 12, 
Theorem IV.4.11. 

LEMMA 3.1. Suppose that A4 is a TH module and B is a positive integer. 
Then there exists a complex (C,, 0) as in the definition, with H,(C,) = 0 for 
16idB. 

ProojI We prove this by induction on B. Suppose 

(C*,8):O-tC,+ ... -co+0 

is such a complex with H,(C,)=O for l<idB-1. Let (D,,&) be a 
complex as in Theorem 2.2 with H,(D,) = 0 for 1 < iQ r - B. Then we may 
form a homomorphism of complexes 

O+ c, -9 ... + c,,, + c, -+ ... -bc,+o 

I I I 
o+ .‘. +DrmB@HB(C*)’ .” -D,oH,(C,)~D,OH,(C,)~O 

By adding a suitable exact complex of projective modules to (C,, f9), we 
may convert this into a surjective homomorphism of complexes. By the 
long exact sequence of homology, the kernel of this is a complex with the 
desired properties. 1 

PROPOSITION 3.2. Suppose that 0 +M1+MZ+“M3+0 is a short 
exact sequence of RG-modules and two of the terms are TH modules. Then 
so is the third. 
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Proof We first treat the case where h4, and M3 are TH modules. In 
this case, let 

(C*,8):O+C,+ ... -*co+0 

be a complex displaying M, as a TH module. Using Lemma 3.1, we choose 
a complex 

(D,,~):O-+D,+ ... -+D,-+O 

displaying M, as a TH module, and with Hi(D,) = 0 for 1 d i Q r. The 
given homomorphism M, -+ M, now extends to a map of complexes 

o- c,- ...__f c,- 0 

I I 
O-D,-...-D,-...-D,-0 

Just as in the proof of Lemma 3.1, we now add an exact sequence of projec- 
tive modules to (C,, 0) to make the map surjective, and take the kernel. 
The long exact sequence of homology shows that this kernel displays M, 
as a TH module. 

To treat the remaining cases, we make the observation that if 
0 --) M’ --) P -+ M -+ 0 is a short exact sequence with P projective then M’ 
is a TH module if and only if M is. 

If M, and M, are TH modules, we choose a projective module P and a 
surjection v: P -+ M, with kernel 44;. Applying the snake lemma to the 
diagram 

o- o- P-P-O 

we see that there is a short exact sequence 0 -+ M; + PO M, -+ M, + 0. 
Since P 0 M, and M, are TH modules, so is M;, and hence so is M,. 

If on the other hand M, and M2 are TH modules, we choose a projective 
module P that maps onto M, with kernel M;. Composing with the surjec- 
tion M, -+ M,, we see that P also maps onto M,, and we write M; for the 
kernel. Applying the snake lemma to the diagram 

o-r:-i-” 
O-M,-M,-M,-0 
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we see that there is a short exact sequence 0 + M; + M; + M, -+ 0. Since 
M, and M; are TH modules, so is M;, and hence so is M,. i 

PROPOSITION 3.3. If M, and M, are TH kG-modules, where k is a field, 
then so is M, Ok M,. 

Proof: Let 

and 

(D*,q4):O+D,-, ... -,D,+O 

be complexes displaying M, and M, as TH modules. We augment these 
complexes to 

and 

C;:O-,C,+ ... -+C,+M,+O 

D;:O+D,+ ..’ --+D,-+M,+O 

and form the tensor product 

C:,QD:,:O+C,@D,+ ... ~C,OM,OM,OD,jM,OM,jO. 

By the Kiinneth theorem this complex has all its homology a sum of trivial 
modules, and so its truncation at M, OM2 is a complex displaying 
M, @ M2 as a TH module. 1 

Remark. This works equally well when k is replaced by a hereditary 
commutative coefficient ring R. 

PROPOSITION 3.4. Suppose M is a TH kG-module, where k is a field. 
Then so is M* = Hom,(M, k). 

Proof: Let 
(c*,e):o+c,+ .‘. -co+0 

be a complex of projective modules displaying M as a TH module. First we 
form the dual complex 

(c;,e’):o+c;,+ ... +C’,+O 

with CL, = (C,)*. Now we move copies of k in the homology from negative 
degree to positive degree one at a time as follows. Choose a complex 

(D,#):O-,D,+ ... -+D,-tO 
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giving k as a TH module, with Hi(I),) = 0 for 1 < id r. Then a non-zero 
map H-,(C’,) + H,(L),) extends to a map of complexes 

0~ D,----+ . ..- D,----+ . ..w D, -0 

We add an exact sequence of projective modules to (Ci, 0’) to make the 
map surjective, and take the kernel. The long exact sequence of homology 
shows that there is one less copy of k in negative degree in the resulting 
kernel. Continuing in this way we delete copies of k one at a time from 
negative degree and add copies in positive degree. Eventually we arrive at 
a complex displaying M* as a TH module. 1 

THEOREM 3.5. Let k he afield and G a finite group. Suppose every simple 
module in B,(kG) is a TH module. Then every finitely generated module in 
B,(kG) is a TH module. Thus every finitely generated non-projective module 
M in B,(kG) satisfies &‘(G, M) # 0 f or infinitely many n, positive and 
negative. 

Proof This follows easily from Corollary 2.8 and Proposition 3.2. 1 

LEMMA 3.6. Suppose M, and M2@ M, are TH modules and 
8 : M, + M, is surjective. Then M, 0 Ker( 0) is a TH module. 

Proof This applies by applying Proposition 3.2 to the short exact 
sequence 

G ii 3 O-*M,OKer(B)jM,OM,OM,- M,OM3+0, 

in which the last two terms are TH modules. 1 

PROPOSITION 3.7. A module M is a direct summand of a TH module if 
and only if MO Q(M) is a TH module, where Q(M) is the kernel of a map 
P + M with P projective. 

Proof Take M, = M and M, = P in the above lemma. 1 

COROLLARY 3.8. Suppose M is a non-projective direct summand of a TH 
module. Then I?‘(G, M) # 0 for infinitely many n, positive and negative. 

Proof By the proposition, MOQ(M) is a TH module. But 

Z?(G, MOSZ(M))zfi”(G, M)@Ei”-‘(G, M). 1 

This proves the implication (A’) 3 (B) of Theorem 1.4. 
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4. EXAMPLES IN WHICH ALL MODULES ARE TH MODULES 

We start off by looking at p-groups. 

PROPOSITION 4.1. Let k be a field of characteristic p and G a finite 
p-group. Then every finitely generated kG-module is a TH module. 

Proof This follows from Theorems 3.5 and 2.2. 1 

COROLLARY 4.2. Let k be a field of characteristic p and G a finite 
p-nilpotent group. Then every finitely generated module in B,(kG) is a TH 
module. 1 

THEOREM 4.3. Suppose R is the ring of integers in an algebraic number 
field or its localisation or completion at a prime ideal lying above p, and G 
is a finite p-group. Then every finitely generated RG-module is a summand 
of a TH module. 

Proof: First we deal with modules of finite length. For this purpose it 
is sufficient to deal with a simple module of finite length. Such a module 
is of the form R/g for some prime ideal M lying above p. Since p, regarded 
as an RG-module, is a summand of a sum of copies of R, it is a summand 
of a TH module, and hence by Proposition 3.2 so is R/p. 

We now deal with the general finitely generated module. Let F be the 
field of fractions of R, and first suppose F is a splitting field. Then the left 
regular representation is FG E ei nisi, where n, = dim(S,). Thus the left 
regular representation of RG contains a submodule L of finite index with 
L r @ i niLi and FLi E Si. Since RGfL is a torsion module of finite length, 
and hence a summand of a TH module, Proposition 3.2 shows that L is a 
summand of a TH module, and hence each L, is a summand of a TH 
module. But now any finitely generated RG-module has a submodule 
isomorphic to a sum of modules of the form Li, with finite quotient, and 
so another application of Proposition 3.2 completes this case. 

In case F is not a splitting field, we extend to a splitting field, form the 
required complex there, and then restrict back. The restriction of the trivial 
module R is a sum of trivial modules, so this proves the theorem in this 
case. 1 

In the case of a field of coefficients, in order that every simple module in 
the principal block be a TH module, it is certainly necessary that the 
characters of the trivial module and the projectives in the principal block 
additively generate all characters in the principal block. This is equivalent 
to the condition that the Cartan matrix of the principal block have only 
one principal divisor which is not a unit. We now prove a partial converse 
to this. 
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PROPOSITION 4.4. Suppose that the Cartan matrix of B,(kG) has only 
one non-unit principal divisor. Zf every simple module in B,(kG) is a sum- 
mand of a TH module, then every simple module in B,(kG) is a TH module. 

Proof. Suppose P is a projective module in B,(kG), and Q is a maximal 
submodule of P. Applying Lemma 3.6 with P in place of M, and P/Q in 
place of M2, we see that Q@ P/Q is a TH module. If Q’ is a maximal sub- 
module of Q, then the same procedure shows that Q’@Q/Q’ 0 P/Q is a 
TH module. Continuing this way down a composition series for P, we see 
that a semisimple module with the same composition factors as P is a TH 
module. 

Now by the condition on the Cartan matrix, given any simple module S, 
there are modules M, and M,, each a sum of projectives in the principal 
block and copies of the trivial module, such that the Brauer character of 
M, is the same as that of M2@ S. By the above argument, semisimple 
modules M; and M; with the same composition factors as M, and M, are 
TH modules. The proposition now follows by applying Proposition 3.2 to 
the short exact sequence 0 + M; + M; -+ S + 0. [ 

The following proposition, which also proves the implication (D) * (F) 
in Theorem 1.4, facilitates checking the conditions of Proposition 4.4. 

PROPOSITION 4.5. Suppose that the centraliser of every element of order 
p in G is p-nilpotent. Then the Cartan matrix of B,(kG) has only one non- 
unit principal divisor. 

ProoJ This is well known, but for the convenience of the reader we 
include a proof. 

We shall show that if 4 is a Brauer character in the principal block, then 
4 - 4( 1) . 1 is the character of a virtual projective (i.e., an integral combina- 
tion of characters of projective modules), where 1 denotes the trivial 
character. For then the Z-module generated by the Brauer characters in 
B,(kG) has a basis of the form 1 = til, & - &( 1). 1, . . . . 4, - 4,( 1). 1, where 
the 4, are the irreducible Brauer characters in the principal block, and this 
proves the proposition. 

To show that 4 - d( 1). 1 is the character of a virtual projective, it suf- 
fices to show that the class function 8 given by 4 - 4( 1) . 1 on p-regular 
elements and zero on p-singular elements is a generalised character. 
For then, since it vanishes on p-singular elements, it must be a virtual 
projective. 

If y is a p’-element of G, we now show that 4(y) = d( 1) (mod IC,( y)l,). 
If x is a non-trivial p-element centralising y, then for any irreducible 
character I,+ in B,(C,(x)) we have 1+9(x) = $(xy) since C,(x) is p-nilpotent. 
Thus by Brauer’s second and third main theorems, it follows that if we let 
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6 be an ordinary generalised character in B, lifting 4 (the decomposition 
map is surjective) then &xy) = i(x). If Q is a Sylow p-subgroup of C,(y) 
and we define 4’ on Q by d’(x) = &xy), then 4’ is an algebraic integer com- 
bination of characters of Q. Thus (4(y) - #( 1 ),/IQ/ = (4’ - JIQ, 1 )a is an 
algebraic integer. 

It now follows, for example, from [21, Lemma 2(iii)], that 0 is a 
generalised character of G, so that 4 - 4( 1) . 1 is the character of a virtual 
projective and we are done. 1 

THEOREM 4.6. Suppose k is a field of characteristic two and G is a finite 
group with dihedral Sylow two-subgroups. Then every simple module in 
B,(kG) is a TH module. Thus every non-projective module M in B,(kG) 
satisfies fi”(G, M) # 0 for infinitely many n, positive and negative. 

ProoJ: We use the structure of the projective indecomposable modules 
given in Erdmann [7]. According to the classification by Gorenstein and 
Walter, we have three possibilities for G/O,.(G). 

(i) PSL,(q) d G/O,,(G) B P&(q), q odd. 

We first treat the case where PSL,(q) < G/O,(G) but 
PGL,(q) & G/O,.(G). In this case, if q z 1 (mod 4) then there is a short 
exact sequence 

O+L@M+Q*k+k+O, 

where L and M are the non-trivial simple modules in the principal block. 
Thus by Propositions 3.2 and 4.4 every simple module in the principal 
block is a TH module. If, on the other hand, q = 3 (mod 4), then there is 
a short exact sequence 

so that again every simple module in the principal block is a TH module. 
In case PGL,(q) d G/O,(G), if q s 1 (mod 4) then there is a short exact 

sequence 

where M is the non-trivial simple module in the principal block and M’ is 
a uniserial module. If q = 3 (mod 4) then there is a short exact sequence 

O+M,@M,+Q-‘k+k+O, 

where M, is an extension of M by k, M2 is an extension of k by M, and 
M is the non-trivial simple module in the principal block. Thus, by 
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Proposition 3.2, MO A4 is a TH module, and hence, by Proposition 4.4, 
every simple module in the principal block is a TH module. 

(ii) G/O,.(G) z A,. 

In this case, the two non-trivial simple modules in the principal block are 
L of dimension 14 and M of dimension 20. There is a short exact sequence 

where L’ is an extension of L by itself. Thus M is a summand of a TH 
module. Now Q(L’) has only one composition factor not isomorphic to k 
or M, and this is isomorphic to L. Thus every simple module in the 
principal block is a TH module. 

(iii) G/O,(G) is isomorphic to a Sylow two subgroup of G. This 
case is trivial as there is only one simple module in the principal block, 
namely k. 1 

Our next example is the group A, in characteristic three. The modules 
R”(k) in this case were computed in [2]. From the information given 
there, we can see that there is a short exact sequence 

0 -+ k + !S3(k) + X@ Y + 0, 

where X and Y are modules with three composition factors. The unique top 
composition factor of each is the trivial module, and we denote by .8? and 
P the submodules with two composition factors. Thus X@ Y and 20 B 
are TH modules, by Proposition 3.2. There is then an exact sequence 

where L and M are the two three dimensional simple modules. Thus by 
another application of Proposition 3.2, L @ A4 is a TH module. Finally, the 
short exact sequence 

shows that N 0 N is a TH module. An application of Proposition 4.4 now 
shows that every simple module in the principal block is a TH module, so 
that every non-projective module in the principal block has cohomology. 
Note that this is an example of wild representation type, so that there is no 
chance of proving this by classifying the indecomposables. This example 
also shows that the same holds for A, in characteristic three, since 
e,. kA6fA7 E kA7, and every module is a direct summand of a module 
induced from A,. 

Our final example is one of rank three. We write 23 : 7 for the split exten- 
sion of an elementary abelian group of order eight by an automorphism of 
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order seven. This group has seven simple modules over a large enough field 
of characteristic two, all in the principal block, which we denote by So = k, 
S,, . . . . S, with the notation chosen so that the second Loewy layer of the 
projective cover of Si is Si + 1 @ S, + 2 @ Si + 4, with the indices taken modulo 
seven. In this case it turns out (and this is quite a hard calculation, which 
we shall omit for the sake of brevity) that there are short exact sequences 

in such a way that Y has S, 0 S,@ S4 as a direct summand. We now 
dualise and use Proposition 4.4 to deduce that every simple module is a TH 
module. Since e, . k2+f psL2(8) z kPSLzC8), it follows that the same is true for 
PSL,(8) in characteristic two. 

5. GENERATING MODULES WITH NO COHOMOL~CY 

We now give a general method for producing non-projective indecom- 
posable modules A4 in B,(kG) for which &(G, M) = 0 for all values of n. 

LEMMA 5.1. Let H be any subgroup of G and M0 be any indecomposable 
kH-module which is not in B,(kH). Then for any summand A4 of M,,fG and 
all values of n we have @(G, M) = 0. 

Proof: Let e, be the principal block idempotent for kG. By Shapiro’s 
lemma we have 

fi”(G, e, .A4,tc) = &(G, M,f’) $i A”(H, M,) = 0. 

Thus e, . MorG is a module with no cohomology, and so M also has no 
cohomology. 1 

Here are some examples of this phenomenon with A4 non-projective. 
We write D” for the simple kZ,-module corresponding to the p-regular 
partition 1, where p is the characteristic of k, as in James [ 151. 

PROPOSITION 5.2. Let M0 denote the module D”‘- l)p,p-l) for Z,- ,, 
and let M = e, . M,fzrp. Then A4 is a non-projective uniserial module of 
length 3 with composition factors D”‘- ‘)b,P), DCrp- ‘,l’, D”‘- “p,p’, and with 
no cohomology. 

Proof. The character of A4 is easily seen to be as given, be referring 
to James [15, Theorem 24.151. Since D (v- 1,‘)~2,_1 does not involve 
D((r-‘)p,p-‘), the Nakayama relations show that the module A4 is not 
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a direct sum. Since it is self dual it must be uniserial. It is clearly not 
projective. 1 

Another example may be obtained by inducing a 10 dimensional simple 
module from PS&( 11) to M,, in characteristic two. This simple module 
is in a block of defect one and is periodic of period one. Since 
10 0 5 z 10 @ (projective) for PSL,( 1 l), we have 

10~“~‘@(projective)=(10@5)~“” 

= ((lo,,,)lPSL2(11)05)tM” 

= lo@sy”‘l 

= 10@(16@44) 

= 10 0 44 @ (projective) 

and so this “explains” why Ext&,,( 10,44) = 0. The diagram for this module 
e,. 10 PSLZ(l,)fMi1~e,.(10044) is 

10 44 

i\lo ’ 1 

[/-/:I 

1 

44 10 

Can such an induced module ever have a simple summand in the prin- 
cipal block? Such a simple module would be a counterexample to the well 
known conjecture that every simple module in the principal block must 
have cohomology, but it seems hard to construct a counterexample in this 
way. 

The following proposition is a more systematic way of using the above 
technique. 

~OPOSITION 5.3. Suppose G has a non-trivial p-subgroup P such that 
C,(P) is not p-nilpotent. Then there is a non-projective trivial source 
kG-module M in the principal block with vertex P, such that l?‘(G, M) = 0 
for all values of n. 

Proof: Since C,(P) is not p-nilpotent, we can find a PI-element 
y E C,(P) with y 4 O,, C,( P) = O,, NG( P). The intersection of the kernels of 
the simple modules in B,(kN,(P)) is O,.,,No(P), which does not contain 
y, and so we may choose a simple module S in B,(kN,(P)) for which y is 
not in the kernel of the action on S. 
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Thus Sl <.v> x p contains some one dimensional submodule M, on which 
y acts non-trivially, and so M, is not in B,( ( y ) x P). By the Nakayama 
relations we have 

Horn NG(P,MJ NG(P ), S) E Horn <.Y)XP(&> ~l,.“,..)ZO 

and so MOfNG(P) has an indecomposable summand M, in the principal 
block. 

Since P is in the kernel of MO, it is also in the kernel of M, , which there- 
fore has vertex exactly P. The Green correspondent M of M, is then a non- 
projective summand of M,rc in the principal block. Since M, is not in the 
principal block, we have H”( G, M) = 0 for all values of n by Lemma 5.1. m 

This proposition proves the implications (C) * (D) and (E) * (D) in 
Theorem 1.4. 

6. PERIODIC MODULES 

In this section, we show that if all periodic modules in the principal 
block have cohomology, then so do all non-projective modules. We use this 
to analyse the case of a normal vertex. 

We shall need to use the language of varieties for modules, and our 
terminology will be the same as in [l]. In particular, we denote by V, the 
maximal ideal spectrum of the cohomology ring H’(G, k) = H*(G, k) if 
p = 2 and of the even cohomology ring H’(G, k) = He’(G, k) if p is odd. For 
a module M, V,(M) is the closed homogeneous subvariety of V, defined 
by the annihilator of Ext&(M, M). If [#O is an element of H’“(G, k) 
represented by a homomorphism [: Q2”(k) -+ k, we denote its kernel by L,. 
The following proposition, which is the same as [l, Proposition 3.11, 
summarises some of the properties of these varieties. The proofs are a 
culmination of the work of many people. 

PROPOSITION 6.1. Let A4 and N be kG-modules. 

(i) Vo(M) = (0) if and only if A4 is projective. 

(ii) dim V,(M) is equal to the complexity of ht. 

(iii) V,(M@ N) = V,(M) u V,(N). 
(iv) V,(M@N) = V,(M) n V,(N). 
(v) V,(Q”(M)) = V&M)for all n. 

(vi) For [EH’“(G, k), V&L,)= V,((c)), the hypersurface of V, 
determined by c. 
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(vii) The dimension of V, = V,(k) is equal to the p-rank of G (p is the 
characteristic of k). 

LEMMA 6.2. rf M, is a TH kG-module and I?‘(G, M2) = 0 for all n, then 
k”(G, M, @ M2) = 0 for all n. 

Proof This follows from Propositions 2.7 and 3.4 since 

I?“(G, M, @ M2) E it&M:, Al,). 1 

LEMMA 6.3, Suppose M, is an indecomposable kG-module and M, is a 
TH module. Then every non-projective summand of M, @ M, is in the same 
block as M,. 

Proof Tensor M, with a complex displaying M2 is a TH module. The 
part in any block other than that of M, is projective and exact except in 
degree zero, so the homology in degree zero is projective. 1 

THEOREM 6.4. Suppose that A4 is a module in B,(kG) with variety 
V,(M) # {0}, and H”(G, M) = 0 f or all n. If V is a closed homogeneous 
subset of V,(M), then there is a module M’ in B,(kG) with fi”(G, M’) = 0 
for all n, and Vo(M’) = V. 

Proof Choose elements of cohomology [,, . . . . [, with 

V= V,(Wn V,(<i,))n ... n V,((i,)), 

and let M’ be the non-projective part of M@ Li, @ . . . @ L,. By Proposi- 
tion 3.2, each L, is a TH module, and hence by Proposition 3.3 so is 
L,, 0 . . . @L,, so that by Lemma 6.2, I?(G, M’) = 0 for all n. We have 

V,(M’) = V,(M@ L,, 0 . . . @ LJ 

= V&W n VG(Lc,) n . . n V,(Ld 

= VG(Wn VG((ll))n ... n VG((ls)) 

= V. 

By Lemma 6.3, M’ is in the principal block. 1 

COROLLARY 6.5. If there is a non-projective module in the principal block 
with no cohomology, then there is a non-projective periodic module in the 
principal block with no cohomology. 

Proof This is the case dim V = 1 of the above theorem. 1 

This completes the proof of the implication (B) o (B’) in Theorem 1.4. 
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LEMMA 6.6. Let G be a finite group with O,(G) # 1 and O,.(G) = 1. 
Suppose the centraliser of every element of order p in O,(G) is p-nilpotent. 
Then every non-trivial PI-element in G acts fixed point freely (i.e., fixing only 
the identity element) on O,(G). 

Proof If a non-trivial Z/-element y centralises an element x of order p 
in O,(G), then (y) x (x) acts by conjugation on O,(G). Since C,(x) is 
p-nilpotent, y acts trivially on CoP(cJ (x). So by Thompson’s A x B lemma 
[lo, Theorem 5.3.41, y E C,(O,(G)). Since C,(O,(G)) is p-nilpotent, it 
follows that y E O,.(G) = 1. 1 

LEMMA 6.7. Suppose a cyclic PI-group T acts on a p-group P. Zf L. is a 
line through the origin in V, which is invariant under the action of T, and on 
which T acts faithfully, then there is an element { E H2”(P, k) for some n with 
the following properties. 

(i) Ln VA(i))= (01. 
(ii) The one dimensional subspace ([ > of H2”(P, k) is T-invariant and 

affords a faithful one dimensional representation of T. 

Proof The line L corresponds to a T-invariant ideal ZE H’(P, k). The 
map 

H’(P, k) -+ H’(P, k)/Z= k[L] 

splits as a map of graded kT-modules, since the order of T is coprime to 
p. Let p be such a splitting. 

Since T acts faithfully on L, T also acts faithfully on k[L], which is a 
polynomial ring in one generator in some degree. A generator of this poly- 
nomial ring therefore spans a one dimensional space in H2”(P, k)/Z for 
some n, on which T acts faithfully, and therefore its image under p has the 
desired properties. 1 

PROPOSITION 6.8. Suppose the centraliser of every element of order p in 
O,(G) is p-nilpotent. Zf M is an indecomposable periodic module in B,(kG), 
whose vertex is contained in O,(G), then fi”(G, M) # 0 for some n. 

Proof: First, we remark that since O,(G) is the kernel of B,(kG), we 
may assume O,.(G) = 1. If O,(G) = 1, the proposition is trivial, so we may 
assume O,(G) # 1, so that the previous lemma applies. 

We now apply Clifford theory with respect to the subgroup O,(G). Let 
M, be an indecomposable kO,(G)-module such that M is a summand of 
Mot’. Letting Go be the inertia group of Mo, namely 
G, = { g E G 1 g 0 M, z M,}, so that O,(G) c G, c G, Clifford theory tells 
us that M is induced from G, [ 13, Theorem VII.9.61. Thus by Shapiro’s 
lemma we may assume G = G,, so that M0 is inertial. 
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Now the variety V,P,,,(M,) is (projectively) connected [6], and hence 
is a single line through the origin in VOPcG). Since M, is inertial, this line 
must be invariant under the action of G/O,,(G). Let E be a minimal elemen- 
tary abelian subgroup of O,(G) such that M,J. is not projective. Then E 
is well defined up to conjugacy in O,(G), and since M0 is inertial, every 
G-conjugate of E is O,(G)-conjugate to E. Thus G = O,,(G) . N,(E) by the 
Frattini argument. Moreover, V,(M,) is a union of lines, and Nap,,,(E) 
acts transitively on these lines, as does N,(E). Thus if L is one such line, 
G = O,(G) . Stab,(L), where Stab,(L) is the subgroup of N,(E) stabilising 
L (setwise). It follows that Stab,(L)/C,(E) has one dimensional faithful 
representation (on L) in characteristic p, so that it is a cyclic @-group. 
Now C,(E) c O,(G) by Lemma 6.6, so that since G = O,(G). Stab,(L), 
it follows that G/O,(G) is a cyclic p’-group which acts faithfully on the 
line L. 

We now apply Lemma 6.7 to see that there is an element 
c E H2”(0,(G), k) for some n, such that T acts faithfully on the one dimen- 
sional subspace generated by [, and L n VOpcGJ( (0) = {O}. Thus (c ) is 
represented by a homomorphism Q2fl(k) -+ E of kG-modules, where E is a 
one dimensional representation whose kernel is O,(G). Denote by L, the 
kernel, so that there is a short exact sequence 

0 + L, -+ Q*“(k) + E + 0. 

Since 

V O,CC,(Li 0 Ml = VOp(&, Q MO) 

= Vop~&,) n VopcG,Wo) 
= V opcG,( (i >) n VOpdMO) 

= {O}, 

it follows that L,@M is a projective kG-module, and so the short exact 
sequence 

shows that Q2”(M) g E@ M. Since there is some non-zero element of 
A’( G, E’ @ M) for some r (M must have some top composition factor!), we 
deduce that 

kZnr(G, M) E fi’(G, Q2”‘(M)) 

g I!?‘( G, cr Q M) 

#O. I 
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THEOREM 6.9. Suppose the centrahser of every element of order p in G 
is p-nilpotent. Then for every non-projective indecomposable module A4 
in B,(kG) with vertex D and Green correspondent f(M), we have 
A~(N,(D), f(M)) #O for some n. 

ProoJ Since the Green correspondent of a module in the principal 
block is again in the principal block, we may replace G by N,(D). By 
Corollary 6.5, we may assume A4 is periodic. We now apply Proposi- 
tion 6.8. 1 

This completes the proof of the implication (D) 3 (E) in Theorem 1.4. 

7. TRIVIAL SOURCE MODULES 

The main obstacle to proving the implication (D) * (B) of Theorem 1.4, 
and hence Conjecture 1.2, using Theorem 6.9 is that all the cohomology of 
the Green correspondent of a periodic module may actually be in the image 
of the trace map (transfer) from proper subgroups of the vertex. When the 
module has trivial source, this cannot happen, as we shall see in the next 
theorem. This theorem gives the implication (D) * (C) of Theorem 1.4. 

THEOREM 7.1. Let G be a finite group in which the centraliser of every 
element of order p is p-nilpotent. Suppose A4 is a trivial source module in 
B,(kG) with vertex D and Green correspondent f(M). rf H*(N,(D), f(M)) 
~0, then H*(G, M) #O. 

Proof We must show that if H*(N,(D), f(M)) #O then there are 
elements which are not in the image of the trace map from proper sub- 
groups of D, since then the theorem follows from the Green corre- 
spondence. Now D is in the kernel of the action of N,(D) of f(M), and 
f(M) is projective as a module for N,(D)/D, since A4 is a trivial source 
module. The theorem now follows from the next lemma. 

LEMMA 7.2. Suppose M is an indecomposable trivial source module in 
B,(kG) whose vertex D # 1 is normal in G. Let Z be the subgroup of Z(D) 
generated by elements of order p, and suppose that C,(Z) is p-nilpotent. 
Then 

H*(G, M) 1 trH,GH*(H, M) #O. 
i H<D 

Proof We regard k(G/D) = kDtG as a G/D-G/D-bimodule. Then 
H*(G, kDfG) is a right k(G/D)-module, and the Shapiro isomorphism 

H*(G, k,f”) --% H*(D, k) 
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is a right k(G/D)-module isomorphism. Let e be a primitive idempotent in 
k(G/D) with M z k( G/D) . e. Then 

H*(G, M) = H*(G, k,tG .e) 

= H*(G, k,fG) .e 

= H*(D, k) . e c H*(D, k). 

Letting XC: k,t’J, -+ k, be the natural kD-module homomorphism, for 
any proper subgroup H of D we have the following diagram, which the 
reader will easily check is commutative: 

H*(H, Ml - H*(H, kJGL) 

I 

tr 111 \ 

H*(D, W - H*(R k,t%) 

I 

tr ltr \;““;: k\ 

H*(G, M) - H*(G, kJG) 3 H*(D, k)= H*(Z, k) 

The composite of transfer from H*(H, k) to H*(D, k) and restriction from 
H*(D, k) to H*(Z, k) is zero because Z is central, by the Mackey formula. 
It thus sullices to produce an element 5 E H*(D, k) with res,,(i . e) # 0, so 
that c .e E H*(G, M) cannot be a sum of tranfers from proper subgroups 
of D. 

To construct such an element [, we argue as follows. We know that 
C,(Z) is p-nilpotent, and since O,,C,(Z)< O,.(G) is in the kernel of 
B,(kG), we may assume without loss of generality that O,.C,(Z) = 1, so 
that C,(Z) is a p-group. So every simple k(G/D)-module appears as a com- 
position factor of H”(Z, k) for some n. The point is that G/C,(Z) acts 
faithfully on Z and hence also on a polynomial subring E*(Z) of H*(Z, k). 

Now for any n, there is a k(G/C,(Z))-module homomorphism 
H”(Z, k) + HP”“(Z, k), where p”=ID:ZI, given by 5+tPQ=rres,. 
norm,,(r), where norm,, is the Evens norm map. This map is injective 
on E*(Z), and so every simple k(G/C,(Z))-module is a composition factor 
of res& H”(D, k)) for some n. Since res,,, is a k(G/C,(Z))-module 
homomorphism, it follows that there exists an element 4’ E: H*(D, k) such 
that resD,.([.e)=res.,,([).e#O. 1 

We now prove the implication (A”) =z. (A’) of Theorem 1.4. 

THEOREM 7.3. Suppose that every permutation module in B,(kG) is a 
direct summand of a TH module. Then every finitely generated module in 
B,(kG) is a direct summand of a TH module. 
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Proof Every module induced from a p-subgroup has a filtration by per- 
mutation modules, since every module for the p-subgroup has a filtration 
by one dimensional modules. Thus by Proposition 3.2, every module 
induced from a p-subgroup is a summand of a TH module. But every 
module is a direct summand of a module induced from its vertex. 1 

Proof of Theorem 1.4. The implications (A)> (A’), (A)* (A”), 
(B)* (B’), and (B)*(C) are trivial. The implication (A)s (B) is 
Corollary 2.8, (A’) 9 (B) is Corollary 3.8, (A”) =z. (A’) is Theorem 7.3, 
(B’) * (B) is Corollary 6.5, (C) * (D) and (E) * (D) follow from Proposi- 
tion 5.3, (D)*(E) is Theorem 6.9, (D)+(E)*(C) is Theorem 7.1, and 
(D) = (F) is Proposition 4.5. The implication (D) o (D’) follows easily 
from the fact that any subgroup of a p-nilpotent group is p-nilpotent. 

The implications so far give (A”) 3 (A’) * (F). But by Proposition 4.4, 
(A’) and (F) together imply (A). 

The final statement about odd primes will be proved in the next two 
sections. m 

8. A STABLE EQUIVALENCE OF MODULE CATEGORIES 

In this and the next section, we shall prove Conjecture 1.2 for p odd. The 
basic idea is that if the centralisers of p-elements are p-nilpotent then we 
can find a suitable subgroup H of G with the properties that the module 
categories of the principal blocks of H and G are equivalent modulo projec- 
tives, and with H of such a tight shape that we can prove the theorem 
there. 

In this section, we provide a proof of an unpublished theorem of 
M. Broue, which enables us to descend to a suitable subgroup, and in the 
next section we go through the group theory required to find a subgroup 
of the right shape. The proof of Broue’s theorem presented here is perhaps 
closer in spirit to a proof by Alperin of the same result (also unpublished). 

DEFINITION 8.1. A subgroup H of a finite group G is said to be weakly 
p-embedded if H # G, p (1 HI, and N&Q) = NH(Q) O,.N,(Q) (note that 
O,,N,(Q) = O,,, C,(Q)) whenever Q # 1 is a p-subgroup of H. 

Note in particular that if H is weakly p-embedded in G then H contains 
a Sylow p-subgroup of G. Also by Alperin’s fusion theorem [ 10, Section 7.21, 
H controls strong p-fusion in G and so by the stable element method [ 14, 
Section X.123 we have H*(G, k) z H*(H, k). We shall see that the stronger 
hypothesis is sufficient to guarantee that H*(G, M)r H*(H, M) for any 
module M in the principal block. 

The following is a variant of a result of Nagao [19]. 
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LEMMA 8.2. Let M be an indecomposable module in a block B of kG, and 
let Q # 1 be a p-subgroup of G. Let X be an indecomposable summand of 

Ml NcCo, such that Xl o has a summand with vertex Q. Then X lies in a 
block b of kN,(Q) for which bG = B. 

Proof Let e be the central idempotent in kG corresponding to B. We 
may write e= e, + e2, where e, = Bra(e) is an idempotent in Z(kN,(Q)) 
and e, is an idempotent in CPie Tr,,a(kG)P. 

We have MJNcca,=el .MJ,,(Q,@e,.MJNcca,. Let E= End,(M) and let 
CJ: kG + E be the homomorphism given by the action of G on M. Then 
44 E CPcQ Trp,Q(EP)y so that by Rosenberg’s lemma any primitive 
idempotent of EQ occurring in the decomposition of o(ez) is in TrP,Q(EP) 
for some P < Q. Thus every summand of e, . MIQ has vertex properly 
contained in Q, and so X is a summand of e, . MINc(Q) = BrQ(e) .MINccQl 

and is hence in a block b with bG = B. 1 

THEOREM 8.3 (M. Broue). Suppose H is weakly p-embedded subgroup of 
G, and let M be an indecomposable module in B,(kG) with non-trivial vertex 
P s H. Then we have the following. 

(i) There is an indecomposable module f(M) in B,(kH), also with 
vertex P, such that Ml n = f(M) @ (projective). 

(ii) f(M)fG~M@(projectiue)@(modules outside the principal 
block). 

Proof (i) Suppose Q # 1 is a vertex of an indecomposable summand 
of Ml”. By [4 ; 20, Corollary 1.41, there is a bijection between indecom- 
posable summands of MJn with vertex Q and indecomposable summands 
of Ml,,,Q, with vertex Q. 

Let T be an indecomposable summand of MJNHCQJ with vertex Q. Let X 
be an indecomposable summand of MJNcCQ) such that T is a summand of 
Xl NH(Q). Then XJQ has a summand with vertex Q (namely a source of T) 
and so by the lemma and Brauer’s third main theorem, X is in B,(kN,(Q)). 
Since H is weakly p-embedded in G, NJQ) = NH(Q) O,, N&Q). Since 
O,, NJ Q) is the kernel of B,(N,(Q)), we thus have T= XJNHcQ), and X 
has vertex Q. Again applying [4; 20, Corollary 1.41, we see that Q = P, 
and X is the Green correspondent of M. Taking f(M) to be the Green 
correspondent of T yields the result. 

(ii) Let Q be a non-trivial p-subgroup of H, and consider the 
indecomposable summands of f(M)~“JNGcQl in the principal block of 
kN,(Q). 

Since H is weakly p-embedded in G, H controls strong p-fusion in G, and 
so Q d HR if and only if ge HN,(Q). It follows using Mackey decomposi- 
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tion that the indecomposable summands off(A4)tGJNG(o) with vertex Q ail 
occur in f(~)lN,(Qjt “‘G(Q). We claim that there can be such a summand 
with vertex Q in the principal block of kN,(Q) if and only if Q is H-con- 
jugate to P, in which case there is just one such summand, namely X (the 
Green correspondent of M). 

Now for any indecomposable M,(Q)-module U, O,.N,(Q) acts either 
without fixed points or trivially on U. If O,,N,(Q) acts without fixed 
points on U, then O,,N,(Q) acts without fixed points on UfNG(Q), so 
UfNGcQ) has no summands in B,(kN,(Q)). If O,.N,(Q) acts trivially on U, 
then the fixed points of O,.N,(Q) on UT NG(Q) have the same dimension as 
U. In this case, since N&Q) = NH(Q) O,,N,(Q), we may extend U to a 
kN,(Q)-module 8 which is a summand of UfNG(QJ. Hence 0 is the unique 
indecomposable summand of UfNG(Q) on which O,,N,(Q) acts trivially. 
This summand has the same vertex as U, and it lies in &(&V,(Q)) if and 
only if U lies in B,(N,(Q)). 

It follows that f(M)J,,,,,f Nc(Q) has no summand in &(,&V,(Q)) with 
vertex Q unless f( M)l NH(Q) has a summand with vertex Q in B,(UV,(Q)). 
If there is such a summand, then Q is a vertex for f(M) and the Green 
correspondent off(M) is the unique such summand. Thus we may suppose 
Q = P, in which case this summand is isomorphic to T, and X is the unique 
indecomposable summand of nNGcQ) in B,(kN,(Q)) with vertex Q. The 
result now follows by another application of [4; 20, Corollary 1.41. [ 

COROLLARY 8.4. Suppose H is a weakly p-embedded subgroup of G and 
A4 is a kG-module. Then the restriction map is an isomorphism 

resG,H: H*(G, M) -+ H*(H, M) = H*(H, f(M)). 

ProojY To deduce this from the theorem and Shapiro’s lemma, we must 
show that if M is an indecomposable module not in B,(kG) then Ml, has 
no non-projective summand in B,(kH). If Ml, has a summand in B,(kH) 
with vertex Q # 1 then Ml,,,, has a summand T in &(N,(Q)) with 
vertex Q. Lemma 8.2 and Brauer’s third main theorem show that this 
cannot happen. 1 

9. SOME GROUP THEORY 

For p odd, and under the assumption that the centraliser of every ele- 
ment of order p is p-nilpotent, we shall show that there is a suitable weakly 
p-embedded subgroup H, for which we can prove that evey non-projective 
module in the principal block has cohomology. We begin with some 
lemmas. 
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LEMMA 9.1. Suppose C,(x) is p-nilpotent whenever x is an element of 
order p in G. Then the same is true for every section of G. 

Proof This is clear for subgroups, so it s&ices to consider quotients 
G = G/N for N a normal subgroup of G. We proceed by induction on 1 Gl. 
We may assume that O,(G) = 1. 

Suppose that q is a prime divisor of INI and that a Sylow q-subgroup Q 
of N is not normal. Then by the Frattini argument G = N. NJQ) and 
G/N E NG(Q)/NN(Q). Since NJQ) is a proper subgroup of G we are done 
by induction. This shows that N is nilpotent. Since O,.(N) = 1 this implies 
that N is a p-group. 

Now C,(N) is p-nilpotent by hypothesis, and so it is a p-group, as 
O,(G) = 1. So C,O,(G) < C,(N) 6 O,(G), and hence G is p-constrained. 
Thus by a well known result of Bender (see, for example, [14, 
Lemma X.1.6]), O,,C&x)< O,(G) = 1 and hence C,(x) is a p-group 
whenever x is an element of order p in G. Since N is a p-group, for y a 
non-trivial p’-element of G we have C,(j) = C,(y) (where the bar denotes 
passage from G to G = G/N), and so C,(j) is a p/-group. Thus whenever 
X is a non-trivial element of order p in G, C,(X) is a p-group. This com- 
pletes the proof of the lemma. i 

PROPOSITION 9.2. Suppose that p is odd and that the centraliser of every 
element of order p in G is p-nilpotent. Let H = N,(ZJ(S)), with S a Sylow 
p-subgroup of G (here, J(S) is the Thompson subgroup; see, for example, 
[ 10, Sect. 8.21). Then H is weakly p-embedded in G. 

Proof: We first claim that H controls strong p-fusion in G. If not, then 
by a theorem of Glauberman [9, Theorem B], Qd(p) is involved in G, 
where Qd( p) denotes the semi-direct product (Z/p x Z/p): SL,(p) with the 
natural action. But this contradicts Lemma 9.1 since the centraliser of an 
element of order p in Qd( p) but not in 0, Qd( p) has order 2p2 and is not 
p-nilpotent. 

Now since H controls strong p-fusion in G, whenever Q is a non-trivial 
p-subgroup of H, we have NG(Q) = NH(Q) C,(Q). We claim that NH(Q) 
contains a Sylow p-subgroup of NJQ). For if T is a Sylow p-subgroup of 
G containing a Sylow p-subgroup of NJQ) then Tg = S for some g E G. 
Both Q and Qg are in S, and since H controls strong p-fusion in G, 
Qg = Qh for some h E H, and hence NJQ)” = NG(Q)h. Thus Shm’ contains 
a Sylow p-subgroup of NJQ), hence so does H. 

It now follows that we have NC(Q) = NH(Q) O,, NJQ) since C,(Q) is 
p-nilpotent. 1 

In order to make use of this, we investigate the structure of N,(ZJ(S)) 
under these hypotheses. 
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LEMMA 9.3. Suppose that p is odd and that the centraliser of every 
element of order p in G is p-nilpotent. Let H = NoZJ(S), with S a Sylow 
p-subgroup of G, and let R= H/O,.(H). Then one of the following occurs. 

(i) I? is a Frobenius group whose Frobenius kernel is its Sylow 
p-subgroup. 

(ii) Ii71 is odd and 0 p(R) is a Frobenius group whose kernel is its 
Sylow p-subgroup and whose Frobenius complement is cyclic. Also L?/Op(R) 
is cyclic. 

(OP(G) denotes the smallest normal subgroup of G for which the quotient 
is a p-group.) 

Proof: - -. Let Q = O,(R). Then by Lemma 6.6, H/Q 1s faithfully represen- 
ted as a group of linear transformations on Q/@(Q), in which all non- 
trivial p/-elements act without non-trivial fixed points. If p 1 jr7 : &I, then 
we are in Case (i), so we may suppose that p I \R : 01. 

By the argument used in the proof of Lemma 9.1, the centraliser in R of -- 
a non-trivial p-element is a p-group, and the same holds in H/Q. Now if A 
contains an involution i then since i acts on Q/@(Q) without non-trivial 
fixed points, it must act as minus the identity and so iQ is central in g/&. 
Since p 1 ]Z?: Ql this is a contradiction, and so R/Q has odd order, so by 
the Feit-Thompson theorem it is solvable. 

Let L = R/p. Then an element of order p in L cannot have a non-trivial 
fixed point on O,(L) since its centraliser is a p-group. Thus by a theorem 
of Thompson [lo, Theorem 10.2.11 O,.(L) is nilpotent. Also, whenever 
r # p is a prime divisor of 1 Lj, the Sylow r-subgroup of L is cyclic, because 
otherwise, as r is odd, the Sylow r-subgroup contains Zfr x Z/r and so 
some non-trivial r-element would centralise a non-trivial element of Q. 
This forces O,(L) to be cyclic. Since L is solvable and O,(L) = 1, 
C,O,(L) < O,(L) (see, for example, [lo, Theorem 6.3.2]), so that 
L/O,(L) is abelian, since it acts faithfully on a cyclic group. Since the 
centraliser of an element of order p is a p-group, L/O,(L) is a cyclic 
p-grow I 

Before we prove the main theorem of this section, we need a 
cohomological lemma. 

LEMMA 9.4. Let M be a kG-module and H a normal subgroup of G of 
index a power of p. If H*(H, M) #O then H*(G, M)#O. 

Proof Examine the spectral sequence 

Es’ = H”(GjH, H’(H, &I))* H’“(G, M). 

Choose n minimal with H”(H, M) # 0. Then Ey = Horn&k, H”(H, M)) 
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# 0 as G/H is a p-group. Since E;* = 0 for t < n, it follows that EO,” # 0, and 
so H”(G, M) # 0. m 

THEOREM 9.5. Suppose that p is odd and that the centraliser of every 

element of order p in G is p-nilpotent. If M is a non-projective module in 
B,(kG) then H*(G, M) # 0. 

ProoJ: Let H = N,ZJ(S), with S a Sylow p-subgroup of G. By Proposi- 
tion 9.2, H is weakly p-embedded in G. By Theorem 8.3 and its corollary 
we have 

H*(G, M)g H*(H, f(M))r H*(H/O,.(H), f(M)) 

and f(M) is in B,(kH). Thus by Lemma 9.3 it suffices to prove the theorem 
in the case where G has one of the two structures listed there. In the first 
case the theorem follows from Corollary 6.5 and Proposition 6.8. In the 
second case, we have the following situation. G has a normal subgroup 
H = Op( G) with G/H a non-trivial cyclic p-group. H is a Frobenius group 
with kernel O,(G) and G/O,(G) is a Frobenius group with kernel a cyclic 
p’-group. M is an indecomposable non-projective kc-module. Note that kG 
has only one block, as does kH in this situation. If Ml, is non-projective, 
we may apply Lemma 9.4, and then the theorem follows from Corollary 6.5 
and Proposition 6.8 as before. So suppose MJH is projective. Set 
N = O,(G), and let S be a Sylow p-subgroup of G. Then S n Sg = N for 
g E G\S. 

We choose M, an indecomposable summand of MJs such that M is a 
summand of M,f ‘, and write MOfc = MO X. Then M,i N is a summand of 
Ml N, so M,J, is projective. Now M,,t ‘1, = M, 0 Y, where Y is projective 
relative to N since S n Sg = N for g E G\S. Hence Xls is projective relative 
to N, so that X is projective relative to N. On the other hand, XJN is a 
summand of 

M,TGl,= 0 (gOM,)l,, 
KEG/S 

which is projective, as M,,J, is projective. Hence XJN is projective, and 
since X is projective relative to N it follows that X is projective. Hence for 
every n > 0, 

H”(G, M) = H”(G, M,TG) = H”(S, M,) # 0. m 

Remark. Gorenstein [ 11) has classified the finite groups in which the 
centraliser of every involution is 2-nilpotent. It may be that the best way 
to prove Conjecture 1.2 in case p = 2 is to go through the cases in this 
theorem individually. We have already initiated this process in Section 4 by 
treating the case where the Sylow 2-subgroups are dihedral. An example 
which we have not been able to tackle by the methods presented here is the 
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split extension (Z/2)‘n : SL,(2”), where the normal subgroup is formed 
from the natural module by restricting the field of coefficients to F,. 

If G has a connected split (B, N) pair of Lie rank greater than two of 
characteristic p, then there is a non-projective module A4 in B,(LG) with 
H*(G, M) = 0. The argument goes as follows. Suppose false. For p = 2, 
we must have that C,(t) is 2-nilpotent for each involution t, by 
Proposition 5.3. By standard properties of (B, N) pairs, this forces the 
centraliser of every involution of G/Z(G) to be a 2-group. The classification 
of such groups implies that G/Z(G) has Lie rank at most two. 

For p odd, the arguments of this section show that there is a p-local 
subgroup N which controls strong fusion. By the Borel-Tits theorem, we 
may assume that N < P for some parabolic subgroup P 3 B. Then P also 
controls strong fusion, and so we may from now on assume N = P. Now 
whenever P, is a parabolic subgroup containing B, we have P, = NJ U,) = 
C,( U,) NN( U,) as N controls fusion. But C,( U,) Q Z(G) x Z( U,) by 
standard properties of (B, N) pairs. Thus C,( U,) < N (as P = NJ U) for 
some p-subgroup U, and as U, 6 B < P). Hence P, 6 P. Now, however, 
(P,I Jc Z) d P, whereas if G has rank greater than one, then G = 
( PJ / Jc Z) (as the right hand group contains all generating reflections 
of W). 

10. VARIETIES AND THE NUCLEUS 

In this section, we investigate the varieties of modules in the principal 
block of an arbitrary finite group. 

DEFINITION 10.1. The nucleus Y, is the subvariety of I’, given as 
the union of the images of the maps res*: VCGcH) + V, induced by 
res : H’(G, k) -+ H’(C,(H), k), where H runs over the set of subgroups of G 
for which C,(H) is not p-nilpotent. 

The representation theoretic nucleus 0, is the subset of V, given as the 
union of the varieties V,(M) as A4 runs over modules in B,(kG) with 
H”(G, M) = 0 for all n. (Note that by Theorem 6.4, it suffices to consider 
periodic modules in this definition.) 

THEOREM 10.2. 0,~ Y,. 

Proof If H is a subgroup of G for which C,(H) is not p-nilpotent, then 
Proposition 5.3 provides a module A4 in B,(kG) with H”(G, M) = 0 for all 
n, and 

V,(M) = Im(res* : V,,.,, + VG). 1 
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Conjecture 10.3. O,= Y,. 

Remark. It does not even seem to be clear that 0, is a variety. 

DEFINITION 10.4. If A4 is a kG-module, then we define X,(M) to be the 
closed homogeneous subvariety of I/, defined by the annihilator in 
H’(G, k) of H*(G, M)= Ext&(k, M). Note that this is the same as the 

annihilator of l&&(k, M) by Theorem 2.4, and hence also equal to the 
annihilator of Ext,*,(M, k) = Ext&(k, M*) since by Tate duality 

E;t;,(k, M) z (&,-d’(M, k))*. 

The following two lemmas give the elementary properties of the variety 
X,(M). 

LEMMA 10.5. (i) X,(M)& V,(M). 

(9 V,(M) = USsimple XG(MO 9. 
(iii) X,(M) = {0} if and only if H*(G, M) = 0. 

Proof: The first two parts of this are well known, and can be deduced, 
for example, from the discussion in [S]. The third part follows from 
Corollary 2.6. 1 

LEMMA 10.6. If A4 is a TH module then we have the following. 

(i) X,(M) = VG(W. 
(ii) Zf Id’ is any module then X,(M@M’) s V,(M) n X,(M’). 

Proof. Let 
(C*,tq:C,+ ... +c,+c, 

be a complex of projective kG-modules displaying M as a TH module. 

(i) Consider the spectral sequence 

E;‘=&;,(H,(C,),M)*O 

of Theorem 2.3. If i E H*(G, k) annihilates I$tzG(k, M) then c annihilates 
Es’ whenever t>O. Since multiplication by [ commutes with the differen- 

tials, this means that some power of i must annihilate E;’ = E;t&(M, M) 
in order that the spectral sequence can abut to zero. This forces 
V,(M) E X,(M). The reverse inclusion is Lemma 10.5(i). 

(ii) Consider the spectral sequence 

E;’ = &it&( H,( C,) 0 M’, k) * 0. 
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If [E H*(G, k) annihilates &zJM’, k) then [ annihilates EF whenever 

t > 0. So some power of [ must annihilate Et0 = &t~G(MQM’, k). 
This forces X,(M@M’) E X,(M). The other inclusion is given by 
X&M@ M’) E I’JM@ M’) c V,(M) using Lemma 10.5(i) and Proposi- 
tion 6.1 (iv). 1 

Remark. It seems likely that we always have equality in part (ii) of the 
above lemma, but we have been unable to prove this except in the case 
where A4 = L,. 

THEOREM 10.7. For any module A4 in B,(kG), 

V,(M) c X,(M) u 0,. 

Proof: Suppose V,(M) s2 X,(M) u 0,. Then there is a non-zero 
closed homogeneous subvariety (for example, a line) 

with Vn (X,(M) u 0,) = (0). Now on the one hand we have 

V,(MQ L,, 0 . * QLJ= V&Wn VG(<ll))n ... n Vd(i,>) 

= V 

@ QG 

so that by definition of 0, we have H*(G, M@ L,, @ . . . @I LJ # 0. On 
the other hand we have 

XG(MQL,,Q ... QL,~)=X,(M)nX,((i,))n ... nX,((i,)) 

E X,(M) n V= (0) 

so that by Lemma lO.S(iii) we have H*(G, MQ L,, 0 . . . @L,) = 0. This 
contradiction completes the proof of the theorem. 1 

DEFINITION 10.8. We say a kG-module M is a nuclear homology module 
or NH module if there exists a finite complex 

of kG-modules and homomorphisms such that the following conditions 
hold. 

(i) Each Ci is a projective kG-module. 
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(ii) For i > 0, Hi(C,) is a direct sum of copies of the trivial 
kc-module k and modules M’ in the principal block with V&M’) E Y,. 

(iii) H,( C,) r M. 

PROPOSITION 10.9. (i) Suppose M is an NH module and B is a positive 
integer, Then there exists a complex (C,, 19) as in the definition, with 
H,(C,)=Ofor 1 <iidB. 

(ii) Suppose 0 + M, -+ M, + M, + 0 is a short exact sequence of 
RG-modules and two of the terms are NH modules. Then so is the third. 

(iii) If MI and M, are NH modules then so is M, OR M,. 

(iv) If M is an NH module, then so is M* = Hom,(M, k). 
(v) Suppose every simple module in B,(kG) is an NH module. Then 

every finitely generated module in B,(kG) is an NH module. 

(vi) Suppose M, and M, 0 M, are NH modules and 8: M, + M2 is 
surjective. Then M, @ Ker(0) is a TH module. 

(vii) A module M is a direct summand of an NH module if and only 
if MO Q(M) is an NH module. 

Proof The proofs of these are the same as the proofs of the correspond- 
ing results in Section 3. 1 

Conjecture 10.10. Every module in B,(kG) is a nuclear homology 
module. 

PROPOSITION 10.11. Zf M is an NH module and H*( G, M) = 0 then 
V,(M) c Y,. 

Proof Let 

(c,,e):c,+ . . . -4, 

be a complex displaying M as an NH module. Consider the spectral 
sequence 

E; = &;,( H,( C,), M) + 0 

of Proposition 2.3. Suppose [e Ker(res,,.,(,,: H*(G, k) + H*(H, k)) for 
every subgroup H with C,(H) not p-nilpotent (i.e., i vanishes on YG). 
Then by the definition of an NH module, 4 annihilates E;’ whenever t > 0. 

Thus some power of i annihilates Ez” = F&&(M, M). This proves that 
~AM)E Y,. I 

COROLLARY 10.12. Conjecture 10.10 implies Conjecture 10.3. 1 
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EXAMPLE. We shall prove Conjecture 10.10 in case G is the Mathieu 
group MI1 and k is a field of characteristic 2. The simple modules in the 
principal block in this case are k, A4 of dimension 44, and N of dimension 
10. The minimal resolution of k as a kG-module was described in [a]. By 
examining Q4(k), we see using Proposition 10.9 that 

M 
M I 
I Ok 

M I 
N 

is a TH module, and hence an NH module. Now Y, is the one dimensional 
subvariety of V, corresponding to the (unique) conjugacy class of 
involutions, and V,(N) = Y,, so that N is an NH module. Thus by 
Proposition 10.9(ii), 

M 

I OM 
M 

is an NH module. By stripping all copies of k and N from Pk, we see that 
MOM is an NH module, and hence so is M by the above. Thus by 
Proposition 10.9(v) every finitely generated module in the principal block 
is an NH module, so by Corollary 10.12 we have 0, = Y,. In particular, 
every non-projective,. non-periodic module has cohomology, since the 
variety cannot be in YG for dimensional reasons. 

ACKNOWLEDGMENTS 

This paper was written while the lirst two authors were visiting the University of 
Manchester Institute of Science and Technology, for a representation theory symposium 
funded by the SERC. We thank the SERC and all those involved in making this meeting 
possible. 

REFERENCES 

1. D. J. BENSON AND J. F. CARLSON, Complexity and multiple complexes, M&h. Z. 195 
(1987) 221-238. 

2. D. J. BENSON AND J. F. CARLSON, Diagrammatic methods for modular representations 
and cohomology, Comm. Algebra 15 (1987), 53-121. 

3. K. S. BROWN, “Cohomology of groups,” Graduate Texts in Mathematics, Vol. 87, 
Springer-Verlag, Berlin/New York, 1982. 



VANISHING OF GROUP COHOMOLOGY 73 

4. D. W. BURRY AND J. F. CARLSON, Restrictions of modules to local subgroups, Proc. Amer. 
Marh. Sot. 84 (1982), 181-184. 

5. J. F. CARLSON, Complexity and Krull dimension, Lecture Notes in Mathematics, Vol. 903, 
Springer-Verlag, Berlin/New York, 1981. 

6. J. F. CARLSON, The variety of an indecomposable module is connected, Inuenr. Math. 77 
(1984), 291-299. 

7. K. ERDMANN, Principal blocks of groups with dihedral Sylow 2-subgroups, Comm. 
Aigebru 5 (1977), 665-694. 

8. L. EVENS, The cohomology ring of a finite group, Trans. Amer. Math. Sot. 101 (1961), 
224-239. 

9. G. GLAUBERMAN, A characteristic subgroup of a p-stable group, Canad. J. Math. 20 
(1968), 1101-l 135. 

10. D. GORENSTEIN, “Finite Groups,” Chelsea, New York, 1968. 
11. D. GORENSTEIN, Finite groups the centralisers of whose involutions have normal 

2-complements, Canad. J. Math. 21 (1969), 335-357. 
12. P. J. HILTON AND U. STAMMBACH, “A Course in Homological Algebra,” Graduate Texts 

in Mathematics, Vol. 4, Springer-Verlag, Berlin/New York, 1971. 
13. B. HUPPERT AND N. BLACKBURN “Finite Groups II,” Grundlehren der Mathematischen 

Wissenschaften, Vol. 242, Springer-Verlag, Berlin/New York, 1982. 
14. B. HUPPERT ANU N. BLACKBURN, “Finite Groups III,” Grundlehren der Mathematischen 

Wissenschaften, Vol. 243, Springer-Verlag, Berlin/New York, 1982. 
15. G. D. JAMES, “The Representation Theory of the Symmetric Groups,” Springer Lecture 

Notes in Mathematics, Vol. 682, Springer-Verlag, Berlin/New York, 1978. 
16. P. A. LINNELL, Cohomology of finite soluble groups, J. Algebra 107 (1987), 53-62. 
17. P. A. LINNELL AND U. STAMMBACH, The block structure and Ext of p-soluble groups, 

J. Algebra 108 (1987), 28&282. 
18. P. A. LINNELL AND U. STAMMBACH, The cohomology of p-constrained groups, J. Pure 

Appl. Algebra 49 (1981), 273-279. 
19. H. NAGAO, A proof of Brauer’s theorem on generalized decomposition numbers, Nago~~a 

Marh. J. 22 (1963), 73-77. 
20. L. PLXG, Pointed groups and construction of characters, Math. Z. 176 (1981), 265-292. 
21. G. R. ROBINSON, Blocks, isometries, and sets of primes, Proc. London Murh. Sot. 51 

(1985), 432448. 


