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a b s t r a c t

This article deals with the equivalence of representations of behaviors of linear differential systems. In
general, the behavior of a given linear differential system has many different representations. In this
paper we restrict ourselves to kernel and image representations. Two kernel representations are called
equivalent if they represent one and the same behavior. For kernel representations defined by polynomial
matrices, necessary and sufficient conditions for equivalence are well known. In this paper, we deal
with the equivalence of rational representations, i. e. kernel and image representations that are defined
in terms of rational matrices. As the first main result of this paper, we will derive a new condition for
the equivalence of rational kernel representations of possibly noncontrollable behaviors. Secondly we
will derive conditions for the equivalence of rational representations of a given behavior in terms of the
polynomial modules generated by the rows of the rational matrices. We will also establish conditions for
the equivalence of rational image representations. Finally, we will derive conditions under which a given
rational kernel representation is equivalent to a given rational image representation.

© 2010 Elsevier B.V. Open access under the Elsevier OA license.
1. Introduction

In this article, we dealwith the issue of equivalence of represen-
tations of a given behaviorwith the emphasis on rational represen-
tations. In the behavioral approach, amathematicalmodel of a phe-
nomenon is viewed as a restricted subset of all possible outcomes.
More precisely, a mathematical model is defined as a pair (U, B),
with U the universum, with outcomes as its elements, andB the be-
havior. A dynamical system is viewed as a mathematical model in
which the objects of interest are functions of time: the universum
U is a function space. The behaviorB of the dynamical system is the
set of all time trajectories in U that are compatible with the laws
of the system. More precisely, a dynamical system Σ is defined as
a triple Σ = (T, W, B), with T a subset of R, called the time axis,
W a set called the signal space, and B a subset of WT (the collec-
tion of all maps from T to W) called the behavior (see [1]). In the
context of linear, finite-dimensional, time-invariant systems this
leads to the concept of linear differential system. A linear differen-
tial system is defined to be a systemwhose behavior is equal to the
set of solutions of a finite number of higher order, linear, constant
coefficient differential equations. This set of differential equations
is then called a representation of the behavior, often called a ker-
nel representation. One and the same behavior admits many differ-
ent kernel representations. In addition to kernel representations,
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controllable linear differential systems can be represented in many
ways as the image of a differential operator. Traditionally, kernel
and image representations of linear differential systems involve
polynomial matrices. Recently, in [2], the concept of rational rep-
resentationwas defined and elaborated, extending the class of rep-
resentations to kernel, latent variable, and image representations
involving rational matrices (see Sections 3, 5 and 6 of [2], respec-
tively). The motivation for this comes from the fact that in systems
and control, representations of dynamical systems often involve
(rational) transfermatrices. In order to be able to fit such represen-
tations into the behavioral framework in a natural way, the notion
of rational representations of behaviors needed to be formalized.
Related material on rational representations of behaviors can be
found in [3–5] and, in an input–output framework, in [6–8].

As noted above, a given linear differential system admits
many different representations. Two representations are called
equivalent if they represent one and the same behavior. The
issue of equivalence of representations of behaviors has been
studied before, in an input–output framework in [9–14], and in
a behavioral framework in [1,15–17]. In the present paper, we
will study the equivalence of kernel representations and image
representation in terms of rational matrices. In particular, we
consider the question how the rational matrices appearing in
equivalent rational kernel representations and rational image
representations are related.

The outline of this article is as follows. In the remainder of
this section we will introduce the notation, and review some basic
material on polynomial and rational matrices. In Section 2 we
will review linear differential systems and their polynomial and
rational kernel and image representations. In Section 3we formally
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state the main problems addressed in this paper. In Section 4
we review the problem of equivalence of polynomial kernel
representations. We establish new results here, and obtain, for
two given polynomial kernel representations, separate conditions
under which their controllable parts are equal, and their sets
of autonomous parts are equal. Combining these conditions, we
reobtain the well known ‘‘classical’’ result on the equivalence of
polynomial kernel representations. In Section 5wewill apply these
results to obtain up to now unknown conditions under which
rational representations of possibly uncontrollable behaviors are
equivalent. In Section 6 we deal with the module characterization
of equivalence of rational kernel representations of a given
behavior. In Section 7 we consider the equivalence of image
representations. Finally in Section 8 we deal with the question of
under what conditions kernel representations are equivalent to
image representations.

As announced, first a few words about the notation and
nomenclature used. We use the standard symbols for the fields
of real and complex numbers R and C. We use Rn, Rn×m, etc. for
the real linear spaces of vectors and matrices with components
in R. C∞(R, Rw) denotes the set of infinitely often differentiable
functions from R to Rw. R(ξ) will denote the field of real rational
functions in the indeterminate ξ . R[ξ ] will denote the ring of
polynomials in the indeterminate ξ with real coefficients. We will
use R(ξ)n, R(ξ)n×m, R[ξ ]

n, R[ξ ]
n×m, etc. for the spaces of vectors

and matrices with components in R(ξ), and R[ξ ] respectively. If
one, or both, dimensions are unspecified, we will use the notation
R(ξ)•×m, R(ξ)n×•, R[ξ ]

•×• or R(ξ)•×•, etc. Elements of R(ξ)n×m

are called real rational matrices, elements of R[ξ ]
n×m are called real

polynomial matrices. A square non-singular polynomial matrix U is
called unimodular if the determinant of U is a non-zero constant.

To conclude this sectionwe state the followingwell known facts
that are used ubiquitously in the analysis in the rest of this paper
(see Theorem 6.3-16 and Section 6.5.2 from [18]).

Proposition 1.1. Let R ∈ R[ξ ]
p×q be a full row rank polynomial

matrix. Then there exist unimodular polynomial matrices U and V
such that R = U


D 0


V , where D = diag(z1, z2, . . . , zp),

z1, z2, . . . , zp are monic polynomials obeying the division property
zi || zi+1, i = 1, 2, . . . , p − 1. The polynomial matrix


D 0


is

called the Smith form of R.

Proposition 1.2. Let G ∈ R(ξ)p×q be a full row rank rational matrix.
Then there exist unimodular polynomial matrices U and V such that
G = UΠ−1


D 0


V , where D = diag(z1, z2, . . . , zp) and Π =

diag(π1, π2, . . . , πp). Here, z1, z2, . . . , zp are monic polynomials
obeying the division property zi || zi+1, i = 1, 2, . . . , p − 1 and
π1, π2, . . . , πp are monic polynomials obeying the division property
πi+1 || πi, i = 1, 2, . . . , p − 1. Also zi and πi are coprime
for i = 1, 2, . . . , p. The rational matrix Π−1


D 0


is called the

Smith–McMillan form of G.

2. Linear differential systems

In this sectionwewill review the basicmaterial on linear differ-
ential systems and their polynomial and rational representations.

In the behavioral approach to linear systems, a dynamical sys-
tem is given by a triple Σ = (R, Rw, B), where R is the time axis,
Rw is the signal space, and the behavior B is a linear subspace of
C∞(R, Rw) consisting of all solutions of a set of higher order, lin-
ear, constant coefficient differential equations. For any such sys-
tem Σ = (R, Rw, B) there exists a real polynomial matrix R with
w columns, i.e. R ∈ R[ξ ]

•×w, such that

B =


w ∈ C∞(R, Rw) | R


d
dt


w = 0


. (1)
Such a system is called a linear differential system. The set of all
linear differential systems with w variables is denoted by Lw. The
representation (1) of the behavior B is called a polynomial kernel
representation of B, and often wewrite B = ker


R

 d
dt


. If R has p

rows, then the polynomial kernel representation is said to bemin-
imal if every polynomial kernel representation of B has at least p
rows. A given polynomial kernel representation, B = ker


R

 d
dt


,

is minimal if and only if the polynomial matrix R has full row rank
(see [1], Theorem 3.6.4). The number of rows in any minimal poly-
nomial kernel representation of B, denoted by p(B), is called the
output cardinality of B. This number corresponds to the number
of outputs in any input/output representation of B. For a detailed
exposition of polynomial representations of behaviors, we refer
to [1].

Recently, in [2], ameaningwas given to the equationR
 d
dt


w =

0, where R(ξ) is a given real rationalmatrix. In order to do this, we
need the concept of left coprime factorization over R[ξ ].

Definition 2.1. Let G be a real rational matrix. The pair of real
polynomial matrices (P,Q ) is called a left coprime factorization of
G over R[ξ ] if

1. det(P) ≠ 0,
2. G = P−1Q ,
3. the matrix


P(λ) Q (λ)


has full row rank for all λ ∈ C.

A meaning to the equation

G


d
dt


w = 0, (2)

with R(ξ) a real rational matrix is then given as follows: Let (P,Q )
be a left coprime factorization of R over R[ξ ]. Then we define:

Definition 2.2. Let w ∈ C∞(R, Rw). Then we define w to be a
solution of (2) if it satisfies the differential equation Q

 d
dt


w = 0.

This space of solutions is independent of the particular left
coprime factorization. Indeed, if R = P−1

1 Q1 is a second left
coprime factorization then by [18], Theorem 6.5-4, there exists
a unimodular U such that P1 = UP and Q1 = UQ . Hence
from Theorem 3.6.2 in [1], ker


Q1

 d
dt


= ker


Q

 d
dt


. Thus,

(2) represents the uniquely determined linear differential system
Σ =


R, Rw, ker


Q

 d
dt


∈ Lw.

Since the behavior B of the system Σ is the central item, of-
ten we will speak about the system B ∈ Lw (instead of Σ ∈ Lw).
If a behavior B is represented by G

 d
dt


w = 0


or : B =

ker

G

 d
dt


, with G(ξ) a real rational matrix, then we call this a

rational kernel representation of B. IfG has p rows, then the rational
kernel representation is calledminimal if every rational kernel rep-
resentation of B has at least p rows. It can be shown that a given
rational kernel representation B = ker


G

 d
dt


is minimal if and

only if the rational matrix G has full row rank. As in the polynomial
case, every B ∈ Lw admits a minimal rational kernel representa-
tion. It follows immediately fromDefinition 2.2 that the number of
rows in anyminimal rational kernel representation ofB is equal to
the number of rows in anyminimal polynomial kernel representa-
tion of B, and therefore equal to p(B), the output cardinality of B.
In general, if B = ker


G

 d
dt


is a rational kernel representation,

then p(B) = rank(G). This follows immediately from the corre-
sponding result for polynomial kernel representations (see [1]).

Before proceeding, we recall the concepts of autonomous
behavior and controllable behavior. We state the following
definitions from [1]:

Definition 2.3. A behavior B ∈ Lw is called autonomous if for all
w1, w2 ∈ B, w1(t) = w2(t) for t ≤ 0 implies w1(t) = w2(t) for
all t.
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Definition 2.4. Let B ∈ Lw. It is called controllable if for any two
trajectories w1, w2 ∈ B, there exists a t1 ≥ 0 and a trajectory
w ∈ B with the property that w(t) = w1(t) for t ≤ 0, and
w(t) = w2(t − t1) for t ≥ t1.

We denote the set of all autonomous linear differential systems
with w variables by Lw

aut and the set of all controllable linear
differential systems with w variables by Lw

contr.
It is well known that a behavior B ∈ Lw is controllable if and

only if there exists a positive integerl and a real polynomialmatrix
M ∈ R[ξ ]

w×l such that

B =


w ∈ C∞(R, Rw) | ∃ℓ ∈ C∞(R, Rl) s.t. w = M


d
dt


ℓ


. (3)

The representation (3) is called a polynomial image representation
of B because B is written as the image of the differential operator
M

 d
dt


. In this casewewillwriteB = im


M

 d
dt


. It can be shown

that the polynomial matrix M can be chosen of full column rank.
Also,M has full column rank if and only if the number of columns is
equivalent to m(B), the input cardinality ofB. This number is equal
to w− p(B), and equals the number of inputs in any input–output
representation of B. Evenmore,M can be chosen to be right prime
over R[ξ ], equivalently, M(λ) has full column rank for all λ ∈ C.
In that case, in (3) the latent variable ℓ is uniquely determined
by the manifest variable w, and the image representation is called
observable.

In [2], also the concept of rational image representation was
introduced. We will give a brief review here. Let H(ξ) be a real
rational matrix. We will first give a meaning to the equation

w = H


d
dt


ℓ. (4)

Of course (4) should be interpreted as
I − H


d
dt

 
w
ℓ


= 0,

in the context of (2). If H = D−1N is a left coprime factorization
over R[ξ ] then D−1(D−N) is a left coprime factorization of (I−H)
and therefore (w, ℓ) satisfies (4) if and only if D

 d
dt


w = N

 d
dt


ℓ.

For a given B ∈ Lw, the representation

B =


w ∈ C∞(R, Rw) | ∃ℓ ∈ C∞(R, R•) s.t. w = H


d
dt


ℓ


,(5)

with H ∈ R(ξ)w×•, is called a rational image representation. In
that case, we write B = im


H

 d
dt


. It was shown in [2] that

B ∈ Lw admits a rational image representation if and only if
it is controllable. Like for polynomial image representations, the
rational matrix H can then be chosen of full column rank, and it
has full column rank if and only if the number of columns is equal
to the input cardinality m(B).

3. Problem formulation

In this section, we shall state the main problems addressed in
this paper.

Problem 1. Let B1, B2 ∈ Lw. Let G1,G2 ∈ R(ξ)•×w. Let B1 =

ker

G1

 d
dt


and B2 = ker


G2

 d
dt


be minimal rational kernel

representations. Find necessary and sufficient conditions onG1 and
G2 so that B1 = B2.

Problem 2. Let B1, B2 ∈ Lw
contr. Let H1,H2 ∈ R(ξ)w×• have full

column rank. Let B1 = im

H1

 d
dt


and B2 = im


H2

 d
dt


be rational image representations. Find necessary and sufficient
conditions on H1 and H2 so that B1 = B2.
Problem 3. Let B1, B2 ∈ Lw
contr. Let G ∈ R(ξ)•×w have full

row rank and H ∈ R(ξ)w×• have full column rank. Let B1 =

ker

G

 d
dt


and B2 = im


H

 d
dt


be a rational kernel and im-

age representation respectively. Find necessary and sufficient con-
ditions on G and H so that B1 = B2.

4. Equivalence of polynomial kernel representations

In this section, we discuss the equivalence of polynomial kernel
representations from a slightly different perspective compared
to that discussed in [1], and arrive at conditions which we shall
use in addressing the issue of equivalence of rational kernel
representations.

Given a behavior B ∈ Lw, it can be decomposed into the direct
sum of its controllable part Bcontr, and an autonomous part Baut,
i.e. B = Baut ⊕Bcontr. This is dealt with in detail in [1]. It is proved
in [1] that for a given behavior, the controllable part is unique. It is
also shown in [1] that for a given behavior, an autonomous part is
not unique. Let

A(B) = {P ∈ Lw
aut | P ⊕ Bcontr = B} (6)

denote the set of all autonomous direct summands of Bcontr in B.
The following lemma expresses the equality of behaviors in terms
of equality of the controllable parts and equality of the sets of
autonomous parts.

Lemma 4.1. Let B1, B2 ∈ Lw. Then B1 = B2 if and only if
1. B1,contr = B2,contr and
2. A(B1) = A(B2).

Proof (Only If). : This part of the proof is obvious.
(If): Let P1 ∈ A(B1). Then we have B1 = P1 + B1,contr =

P1 + B2,contr. Since also P1 ∈ A(B2) the latter equals B2. �

Kernel representations of the behaviors in A(B) are discussed
in [1]. For the sake of completeness, we shall state the following
lemma, which describes kernel representations of the controllable
as well as the autonomous parts of a given behavior.

Lemma 4.2. Let B ∈ Lw. Let B = ker

R

 d
dt


be a minimal

polynomial kernel representation, and let U and V be unimodular
polynomial matrices such that R = U


D 0


V , where


D 0


is

the Smith form of R. Then we have:
1. Bcontr = ker


I 0


V

 d
dt


, and

2. P ∈ A(B) if and only if P = ker
[

D


d
dt


0

0 I

]
W

 d
dt


V

 d
dt


,

for some unimodular polynomial matrix W, satisfying

D 0


=

D 0

W.

This characterization of the autonomous parts of a given behavior
is also dealt with in [1], in Excercise 5.6. It can be verified that W
mentioned above takes the form W =


I 0

W3 W4


, where W3 is

any polynomial matrix of appropriate dimensions, and W4 is any
unimodular polynomial matrix.

Remark 4.3. Let B ∈ Lw. Let B = ker

R

 d
dt


be a minimal

polynomial kernel representation, and let U and V be unimodular
polynomial matrices such that R = U


D 0


V , where


D 0


is

the Smith form of R. From the above lemma and the structure of
W , a unimodular polynomial matrix, it is clear that P ∈ A(B) if
and only if it admits a minimal polynomial kernel representation

ker


D


d
dt


0

F


d
dt


S


d
dt


 V


d
dt

 , (7)
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where F is an arbitrary polynomial matrix of appropriate
dimensions, and S is an arbitrary unimodular polynomial matrix.

Equivalence of polynomial kernel representations has been
dealt with before in [1]. We recall the following well known result
given as Theorem 3.6.2 in [1]:

Proposition 4.4. Let B1, B2 ∈ Lw. Let R1, R2 ∈ R[ξ ]
•×w be such

that R1
 d
dt


w = 0 and R2

 d
dt


w = 0 are minimal polynomial

kernel representations of B1 and B2 respectively. Then B1 = B2
if and only if there exists a unimodular polynomial matrix U such that
R1 = UR2.

In order to proceed, we have the following lemma:

Lemma 4.5. Let B ∈ Lw. Let B = ker

R

 d
dt


be a minimal

polynomial kernel representation. Let R = FR′ be any factorization
of R such that F ∈ R[ξ ]

p(B)×p(B) is square and non-singular, and
R′

∈ R[ξ ]
p(B)×w such that R′(λ) has full row rank for all λ ∈ C. Then

Bcontr = ker

R′

 d
dt


.

Proof. Let U and V be unimodular polynomial matrices such that
R = U


D 0


V , where


D 0


is the Smith form of R.

It is clear that Bcontr = ker

I 0


V

 d
dt


(from Lemma 4.2).

Now let R = FR′ be any factorization of R such that R′(λ) has full
row rank for all λ ∈ C and F is square and non-singular. We have
following identities:
UD 0


= FR′V−1

= F

R′

11 R′

12


,

=

FR′

11 FR′

12


,

where

R′

11 R′

12


:= R′V−1. This implies FR′

12 = 0, and hence
R′

12 = 0. Since R′(λ)V−1(λ) has full row rank for all λ ∈ C and
R′

11 is square, we must have that R′

11 is a unimodular polynomial
matrix. Therefore R′

= U ′

I 0


Vand ker


R′

 d
dt


= ker


U ′

 d
dt


I 0


V

 d
dt


= Bcontr (from Proposition 4.4). �

The following theorem is the main result of this section. It
expresses equality of the controllable parts of two behaviors in
terms of their polynomial kernel representations, and it gives
additional conditions under which the sets of autonomous parts
are also equal.

Theorem 4.6. Let B1, B2 ∈ Lw. Let B1 = ker

R1

 d
dt


and B2 =

ker

R2

 d
dt


be minimal polynomial kernel representations. Then

(a) B1,contr = B2,contr if and only if there exist square nonsingular
polynomial matrices M and N such that

MR1 = NR2. (8)

(b) Assume that B1,contr = B2,contr. Then for any pair of square
nonsingular polynomial matrices M,N such that (8) holds, we
have A(B1) = A(B2) if and only if M−1N is a unimodular
polynomial matrix.

Proof. Let Ui and Vi be unimodular polynomial matrices such that
Ri = Ui


Di 0


Vi, where


Di 0


is the Smith form of Ri, for

i = 1, 2. From Lemma 4.2, we haveB1,contr = ker

I 0


V1

 d
dt


,

and B2,contr = ker

I 0


V2

 d
dt


.

(a) (Only if): Since B1,contr = B2,contr, by Proposition 4.4, there
exists a unimodular polynomial matrix U such that


I 0


V1

= U

I 0


V2 holds.

Consequently, D1

I 0


V1 = D1UD−1

2 D2

I 0


V2. It is easy

to seethat there exist square nonsingular polynomial matrices
M̃ and Ñ , such that M̃−1Ñ = D1UD−1

2 . Therefore we have
M̃D1

I 0


V1 = ÑD2


I 0


V2. Define M := M̃U−1

1 and
N := ÑU−1

2 . Then we have MR1 = NR2.
(If): Let G1 = MR1 = NR2. Then we have

G1 = MU1D1

I 0


V1 = NU2D2


I 0


V2. (9)

Further, from Lemma 4.5, it is evident that

ker


G1

 d
dt


contr

= ker

I 0


V1

 d
dt


= ker


I 0


V2

 d
dt


. Therefore

B1,contr = B2,contr.
(b) (Only if): Assume A(B1) = A(B2). As B1,contr = B2,contr,

from Lemma 4.1 it is clear that B1 = B2. Therefore from
Proposition 4.4, we have

R1 = UR2, (10)

where U is a unimodular polynomial matrix. Further we have

R1 = M−1NR2. (11)

Since R1 and R2 are minimal kernel representations, R1 and R2
have full row rank. Therefore from (10) and (11) it is clear that
U = M−1N .
(If): As B1,contr = B2,contr, from Proposition 4.4, we have
I 0


V1 = Ũ


I 0


V2, where Ũ is a unimodular poly-

nomial matrix, and it can be checked that V1V−1
2 takes the

form V1V−1
2 =


Ṽ11 0
Ṽ21 Ṽ22


, where Ṽ11, Ṽ22 are unimodular

polynomial matrices. Further, we have MU1

D1 0


V1 =

NU2

D2 0


V2. Define M ′

= MU1 and N ′
= NU2.

Then we have

D1 0


V1 = M ′−1N ′


D2 0


V2. Now, con-

sider any P ∈ A(B1), then from Remark 4.3, we know
that there exists a square nonsingular polynomial matrix F1,
and a unimodular polynomial matrix S1, such that P =

ker

D1


d
dt


0

F1


d
dt


S1


d
dt


 V1

 d
dt

. We have

[
D1 0
F1 S1

]
V1 =


M ′−1N ′


D2 0


F1 S1


V1V−1

2


V2

=


M ′−1N ′


D2 0


F̃1 S1Ṽ22

 
V2

=

[
M ′−1N ′ 0

0 I

] [
D2 0
F̃1 S1Ṽ22

]
V2.

It is easy to see that

M ′−1N ′ 0

0 I


and S1Ṽ22 are unimodular

polynomial matrices. From Proposition 4.4, we have P =

ker

D2


d
dt


0

F̃1


d
dt


S1


d
dt


Ṽ22


d
dt


 V2

 d
dt

. From Remark 4.3

it is clear thatP ∈ A(B2). The reverse inclusion is obvious. �

Evidently, from the above theorem we have the following
corollary:

Corollary 4.7. Let B1, B2 ∈ Lw. Let B1 = ker

R1

 d
dt


and B2 =

ker

R2

 d
dt


be minimal polynomial kernel representations. Then

B1 = B2 if and only if there exist square and nonsingular polynomial
matrices M,N such that MR1 = NR2 and M−1N is a unimodular
polynomial matrix.

Obviously, Corollary 4.7 is a restatement of Proposition 4.4.
However, in combination with Theorem 4.6 it shows the origin of
the unimodular matrix U . The corollary has been derived in two
stages. Firstly, it has been shown that equality of the controllable
parts of a given behavior is equivalent to the existence of square
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and non-singular matrices M and N . Secondly, unimodularity of
M−1N has been shown to be equivalent to equality of the sets of
autonomous parts of the behavior.

5. Equivalence of rational kernel representations

In this section we address the question of equivalence of
minimal rational kernel representations. We will first recall the
concepts of polynomial and rational annihilators of a given
behavior from [2], Section 7.

Definition 5.1. Let B ∈ Lw.

1. n ∈ R[ξ ]
1×w is called a polynomial annihilator ofB if n

 d
dt


w =

0 for all w ∈ B.
2. n ∈ R(ξ)1×w is called a rational annihilator of B if n

 d
dt


w = 0

for all w ∈ B.

We denote the set of polynomial annihilators of B ∈ Lw by B⊥R[ξ ]

and the set of rational annihilators ofBbyB⊥R(ξ) . It is awell known
result that for B ∈ Lw, B⊥R[ξ ] is a finitely generated submodule of
the R[ξ ]-module R[ξ ]

1×w. Moreover, if B = ker

R

 d
dt


is a poly-

nomial kernel representation, then this submodule is generated by
the rows of R. In the context of rational representations one needs
to impose controllability:

Theorem 5.2. Let B ∈ Lw. Then B⊥R(ξ) is a subspace of the
R(ξ)-linear vector space R(ξ)1×w if and only if B is controllable. If
G

 d
dt


w = 0 is a minimal rational kernel representation of B, then

the rows of G form a basis of (Bcontr)
⊥R(ξ) , the rational annihilators

of the controllable part of B.

Proof. The first statement is the content of Statement 1 of
Theorem 11 in [2]. Let G = P−1Q be a left coprime factorization
over R[ξ ] of G. Then B = ker


Q

 d
dt


is a minimal polynomial

kernel representation. Let Q = UD

I 0


Vbe the Smith form of

Q . Then from Lemma 4.2 we haveBcontr = ker

I 0


V

 d
dt


. Let

n ∈ (Bcontr)
⊥R(ξ) . Let n = u−1v be a left coprime factorization of n

over R[ξ ]. Then by definition we have v
 d
dt


w = 0 for all w ∈

Bcontr. Thus, by Definition 5.1, v ∈ (Bcontr)
⊥R[ξ ] . Consequently,

there exists a l ∈ R[ξ ]
1×• such that v = l


I 0


V . Hence

n = u−1v

= u−1l

I 0


V

= (u−1lD−1U−1P)(P−1UD

I 0


V )

= (u−1lD−1U−1P)(P−1Q )

= (u−1lD−1U−1P)G.

Define m := u−1lD−1U−1P . Then we have n = mG. Thus, n is a
R(ξ)-linear combination of the rows ofG. Since nwas arbitrary, the
rows of G span the subspace (Bcontr)

⊥R(ξ) of the R(ξ)-linear vector
space R(ξ)1×w. Finally, as B = ker


G

 d
dt


is a minimal rational

kernel representation, the rows of G are linearly independent
over R(ξ). We conclude then that these rows form a basis of
(Bcontr)

⊥R(ξ) . �

Remark 5.3. It follows immediately from the previous theorem
for any behavior B ∈ Lw

contr we have dim(B⊥R(ξ)) = p(B),
i.e. the dimension of the linear space of rational annihilators of a
controllable behavior is equal to the output cardinality of B.

The following theorem is an immediate consequence of Theo-
rem 5.2. It gives necessary and sufficient conditions for the con-
trollable parts of two behaviors to be equal in terms of the rational
kernel representations.
Theorem 5.4. Let B1, B2 ∈ Lw. Let B1 = ker

G1

 d
dt


and B2 =

ker

G2

 d
dt


be minimal rational kernel representations. Then the

following statements are equivalent:
(a) B1,contr = B2,contr.
(b) There exists a nonsingular rational matrix W such that G1 =

WG2.
(c) There exist nonsingular polynomial matrices M and N such that

MG1 = NG2.

Proof. The equivalence of (b) and (c) is obvious. We first prove the
implication (a) ⇒ (b). As B1,contr = B2,contr we have (B1,contr)

⊥R(ξ)

= (B2,contr)
⊥R(ξ) =: T. From Theorem 5.2, the rows of G1 and G2

both form a basis for the subspace T of R(ξ)1×w. Then, from basic
linear algebra, there exists a square, nonsingular rationalmatrixW
such that G1 = WG2.

Conversely, assume G1 = WG2. Let G1 = P−1
1 Q1 and G2 =

P−1
2 Q2 be left coprime factorizations over R[ξ ] of G1 and G2. Let

W = M−1N be a left coprime factorization over R[ξ ] of W .
Then both M and N are nonsingular. By definition we have B1 =

ker

Q1

 d
dt


and B2 = ker


Q2

 d
dt


. Then,

G1 = WG2 ⇐⇒ P−1
1 Q1 = M−1NP−1

2 Q2

⇐⇒ Q1 = P1M−1NP−1
2 Q2.

Now factorize P1M−1NP−1
2 = M̃−1Ñ . Then we have M̃Q1 = ÑQ2.

From Theorem 4.6,(a) follows. �

Evidently, the above theorem only gives a necessary condition
on G1 and G2 for the associated behaviors to be equal. Again
however, we would like to obtain conditions that are necessary
and sufficient. As shown in Corollary 4.7, in case of polynomial
kernel representations, Statement 3 of Theorem 5.4 together with
unimodularity of M−1N serves the purpose. Hence, a first guess is
to check whether this also holds true for rational representations.
However, the following simple counterexample shows that this is
not the case.

Example 5.5. G1(ξ) = 1 and G2(ξ) =
1
ξ
. These are equivalent

representations since they both represent the {0}-behavior. For all
M,N such thatMG1 = NG2, we haveM−1N =

1
ξ
, which is not even

a polynomial.

In order to proceed we need following definition:

Definition 5.6. A greatest common left divisor (gcld) of two
polynomial matrices P,Q ∈ R[ξ ]

m
× • is any square polynomial

matrix D such that P = DP1 and Q = DQ1, and such that for all
square polynomial matrices D1 satisfying P = D1P1 and Q = D1Q1
there exists a polynomial matrix F such that D = D1F .

For given polynomial matrices P and Q , we denote by gcld(P,Q )
any greatest common left divisor (gcld) of P and Q . If


P Q


has

full row rank, then any gcldmust be a non-singular polynomialma-
trix. In that case any two gcld’s are related by post-multiplication
with a unimodular polynomial matrix.

Now, the following theorem is the firstmain result of this paper.
The theorem states that the additional conditions on M and N so
that the sets of autonomous parts of ker


G1

 d
dt


and ker


G2

 d
dt


are also equal involve the greatest common left divisor matrices
gcld(M,MG1) and gcld(N,NG2). More precisely:

Theorem 5.7. Let B1, B2 ∈ Lw. Let B1 = ker

G1

 d
dt


and B2 =

ker

G2

 d
dt


be minimal rational kernel representations. Assume

B1,contr = B2,contr. Then we have A(B1) = A(B2) if and only if
there exist square nonsingular polynomial matrices M and N such
that MG1 = NG2,MG1 = NG2 is a polynomial matrix, and
gcld(M,MG1)

−1 gcld(N,NG2) is a unimodular polynomial matrix.
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Proof (Only if). Let Ui and Vi be unimodular polynomial matrices
such that Gi = UiΠ

−1
i


Di 0


Vi, where Π−1

i


Di 0


is

the Smith–McMillan form of Gi, for i = 1, 2.
Assume A(B1) = A(B2). Then from Remark 4.3, P ∈ A(B1)

admits a polynomial kernel representation

ker


D1


d
dt


0

F1


d
dt


S1


d
dt


 V1


d
dt

 ,

similarly it also admits apolynomial kernel representation

ker


D2


d
dt


0

F2


d
dt


S2


d
dt


 V2


d
dt

 ,

where F1, F2 are arbitrary polynomial matrices of appropriate
dimensions and S1, S2 are unimodular polynomial matrices. From
Proposition 4.4, there exists a U , a unimodular polynomial matrix,
such that[
D1 0
F1 S1

]
V1 = U

[
D2 0
F2 S2

]
V2.

Using the assumption that B1,contr = B2,contr, it can be verified

that U must be of the form U =


U11 0
U21 U22


, where U11 and U22 are

unimodular polynomial matrices. Therefore we have[
D1 0
F1 S1

]
V1 =

[
U11 0
U21 U22

] [
D2 0
F2 S2

]
V2,

which implies[
Π1U−1

1 U1Π
−1
1


D1 0


V1

F1 S1

V1

]
=

[
U11 0
U21 U22

] [
Π2U−1

2 U2Π
−1
2


D2 0


V2

F2 S2

V2

]
.

DefineM := Π1U−1
1 and N := U11Π2U−1

2 . Then we have[
M 0
0 I

] [
G1

F1 S1

V1

]
=

[
N 0

U21Π2U−1
2 U22

] [
G2

F2 S2

V2

]
.

It is evident from the above equation that MG1 and NG2 are
polynomial matrices and that MG1 = NG2. Define L := MG1 =

NG2. Then we have R1 := gcld(M, L) = I , and similarly R2 :=

gcld(N, L) = U11. Hence, it is evident that R−1
1 R2 = U11 is a

unimodular polynomial matrix.
(If): Assume that L := MG1 = NG2 is a polynomial matrix.

Let gcld(M, L) =: R1 and gcld(N, L) =: R2. Let G1 = P−1
1 Q1

and G2 = P−1
2 Q2 be left coprime factorizations of G1 and G2 over

R[ξ ]. Obviously we have P−1
1 Q1 = M−1L and P−1

2 Q2 = N−1L.
Hence, from [18], Lemma 6.5-5, there exist square nonsingular
polynomial matrices R̃1, R̃2 such that R̃1


P1 Q1


=


M L


and

R̃2

P2 Q2


=


N L


. Further, using the left primeness of

Pi Qi

, it can be verified that R̃1 and R̃2 are gcld’s of


M L


and

N L

respectively. Also, since M and N are square nonsingular

polynomial matrices,

M L


and


N L


have full row rank. Con-

sequently, we have that R1 and R2 are nonsingular. Hence, there
exist unimodular polynomial matrices U1 and U2 such that R1 =

R̃1U1 and R2 = R̃2U2. Define M̃ := R1U1, Ñ := R2U2. Then we
have M̃Q1 = ÑQ2 and M̃−1Ñ = U , which is a unimodular poly-
nomial matrix. Therefore, from Theorem 4.6, we have A(B1) =

A(B2). �

The following corollary is the second main result of this paper. It
gives necessary and sufficient conditions on the rational matrices
G1 and G2 for ker


G1

 d
dt


and ker


G2

 d
dt


to be equal. In fact, by

combining Theorems 5.4 and 5.7 we immediately obtain:

Corollary 5.8. Let B1, B2 ∈ Lw. Let B1 = ker

G1

 d
dt


and

B2 = ker

G2

 d
dt


be minimal rational kernel representations. Then

B1 = B2 if and only if there exist square and nonsingular polynomial
matrices M,N such that

(a) MG1 = NG2,
(b) MG1 = NG2 is a polynomial matrix and
(c) gcld(M,MG1)

−1gcld(N,NG2) is a unimodular polynomial ma-
trix.

Corollary 5.8 is illustrated below in the following examples.

Example 5.9. G1(ξ) = 1,G2(ξ) =
1
ξ
represent the same behavior:

1. MG1 = NG2 withN(ξ) = ξ,M(ξ) = 1 nonsingular polynomial,
2. MG1 = NG2 = 1 is polynomial and gcld(N,NG2) = gcd(ξ , 1) =

1, gcld(M,MG1) = gcd(1, 1) = 1.

Example 5.10. G1(ξ) = (ξ ξ),G2(ξ) =


1
ξ

1
ξ


do not represent

the same behavior:

1. their controllable parts are the same: MG1 = NG2 with N(ξ) =

ξ 2,M(ξ) = 1 nonsingular polynomial,
2. for any M,N such that MG1 = NG2 we must have N(ξ) =

ξ 2M(ξ). Hence gcld(M,MG1) = gcd(M, ξM, ξM) = M , while
gcld(N,NG2) = gcd(ξ 2M, ξM, ξM) = ξM .

Remark 5.11. We note that, in the case that G1 and G2 are polyno-
mial matrices, Corollary 5.8 immediately yields Corollary 4.7. In-
deed, in that case gcld(M,MG1) = M and gcld(N,NG2) = N so
condition (b) becomes:M−1N is a unimodular polynomial matrix.

According to Corollary 5.8, in order to check the equivalence
of rational representations, we need to check for the existence of
square and nonsingular polynomial matrices M and N that satisfy
(a), (b) and (c) in Corollary 5.8. The algorithm below achieves this
objective.

Algorithm 1. LetG1,G2 ∈ R(ξ)k×w and letB1 = ker

G1

 d
dt


and

B2 = ker

G2

 d
dt


be minimal kernel representations. Then,

1. Solve G1 = WG2 for W ∈ R(ξ)k×k. If there exists no solution,
declare B1 ≠ B2, else continue further.

2. Find a left coprime factorization of W over R[ξ ]. Let it be W =

M−1N , where M,N are square and nonsingular polynomial
matrices.

3. Find a left coprime factorization of MG1 over R[ξ ]. Let it be
MG1 = P−1Q where P,Q ∈ R[ξ ]

•×•. Then PMG1 = PNG2 = Q
is a polynomial matrix.

4. Find L := gcld(PM,Q )−1gcld(PN,Q ). If L is a unimodular
polynomial matrix, declare B1 = B2, else declare B1 ≠ B2.

Before elaborating on the above algorithm, we state an alterna-
tive algorithm to check the equivalence of rational representations
of a given behavior.

Algorithm 2. LetG1,G2 ∈ R(ξ)k×w and letB1 = ker

G1

 d
dt


and

B2 = ker

G2

 d
dt


be minimal kernel representations. Then,

1. Find a left coprime factorization of G1 over R[ξ ]. Let it be G1 =

P−1
1 Q1, where P1,Q1 ∈ R[ξ ]

•×•.
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2. Find a left coprime factorization of G2 over R[ξ ]. Let it be G2 =

P−1
2 Q2, where P2,Q2 ∈ R[ξ ]

•×•.
3. Solve Q1 = UQ2 for U , where U is a unimodular polynomial

matrix. If a solution exists, declare B1 = B2, else declare
B1 ≠ B2.

The first algorithm has two advantages. Firstly, in case
the behaviors B1, B2 are not equal, it is already declared in
Step-1, without actually proceeding to left coprime factorizations.
Secondly, it finds in Step-1 whether the controllable parts of the
behavior are equal for the given kernel representations.

6. A module characterization of equivalence of rational repre-
sentations

In this section, we will give conditions for the equivalence
of rational representations of a given behavior in terms of
the polynomial modules generated by the rows of the rational
matrices. In Section 5, the polynomial and rational annihilators of
a given behavior B ∈ Lw have been introduced and discussed.
For a given behavior B ∈ Lw, with rational representation B =

ker

G

 d
dt


, we will now first establish the relation between the

R[ξ ]-module generated by the rows of the rational matrix G, and
the module of polynomial annihilators of B. In case of polynomial
kernel representations, the following proposition is well known.

Proposition 6.1. Let B ∈ Lw. Let B = ker

R

 d
dt


be a minimal

polynomial kernel representation. Let B⊥R[ξ ] denote the module of
polynomial annihilators of B. Then the rows of R form a basis for
B⊥R[ξ ] .

In the following, for a given rational matrix G ∈ R(ξ)•×w, we will
denote by ⟨G⟩R[ξ ] the set of all linear combinations of the rows of G
using coefficients from the polynomial ring R[ξ ]. Clearly this set
is a R[ξ ]-module. The intersection ⟨G⟩R[ξ ] ∩ R[ξ ]

1×w consists of
all linear combinations of the rows of G using coefficients from
R[ξ ] that are polynomial vectors. Clearly, this intersection is a
R[ξ ]-submodule ofR[ξ ]

1×w. The following theorem states that this
intersection module is in fact equal to the module of polynomial
annihilators of B.

Theorem 6.2. Let B ∈ Lw. Let G ∈ R(ξ)•×w. Let B = ker

G

 d
dt


be aminimal rational kernel representation. Then ⟨G⟩R[ξ ]∩R[ξ ]

1×w
=

B⊥R[ξ ] .

Proof. LetG = P−1Q be a left coprime factorization ofG overR[ξ ].
We first prove the following inclusion: B⊥R[ξ ] ⊆ ⟨G⟩R[ξ ] ∩R[ξ ]

1×w.
By Definition 2.2, B = ker


Q

 d
dt


. From Proposition 6.1, we

know that the rows of Q form a basis for B⊥R[ξ ] . Let n ∈ B⊥R[ξ ] .
Then there exists a polynomial row vector l such that n = lQ .
Hence

n = lQ
= lPP−1Q
= lPG
= mG,

where m = lP is a polynomial row vector. Therefore n ∈ ⟨G⟩R[ξ ] ∩

R[ξ ]
1×w.

We now prove the converse inclusion, ⟨G⟩R[ξ ] ∩ R[ξ ]
1×w

⊆

B⊥R[ξ ] . Let U and V be unimodular polynomial matrices such that
G = UΠ−1


D 0


V , where Π−1


D 0


is the Smith–McMillan

form of Gi. Define P := ΠU−1 and Q :=

D 0


V . Then G =

P−1Q is a left coprime factorization and B = ker

Q

 d
dt


. Let
l ∈ ⟨G⟩R[ξ ] ∩ R[ξ ]
1×w. Then we have l = nG for some polynomial

row vector n. Define l′ := lV−1. Then

l′ = nUΠ−1 
D 0


, where l′ := lV−1

= ñΠ−1 
D 0


, where ñ := nU

= ñ
[
diag


z1
π1

, . . . ,
zk
πk


0
]

. (12)

Write l′ =

l1 l2 · · · lw


and ñ =


ñ1 ñ2 · · · ñk


. From

Eq. (12) we have l′i = ñi
zi
πi
, for i = 1, 2, . . . , k and, l′i = 0 for

i > k. As (zi, πi) are coprime, there exists mi ∈ R[ξ ] such that
ñi = miπi, for k = 1, 2, . . . , k. Let m =


m1 m2 · · · mk


.

Then n = ñU−1
= mΠU−1

= mP so l = nG = mPG = mQ .
Therefore l ∈ B⊥R[ξ ] . �

By combining Theorems 6.2 and 5.7 we finally get the following
complete characterization of the equivalence of rational kernel
representations:

Theorem 6.3. Let B1, B2 ∈ Lw. Let B1 = ker

G1

 d
dt


and

B2 = ker

G2

 d
dt


be minimal rational kernel representations. Then

following statements are equivalent:

1. B1 = B2.
2. B

⊥R[ξ ]

1 = B
⊥R[ξ ]

2 .
3. There exists square non-singular polynomial matrices M and N

such that
(a) MG1 = NG2,
(b) MG1 = NG2 is a polynomial matrix and
(c) gcld(M,MG1)

−1gcld(N,NG2) is a unimodular polynomial
matrix.

4. ⟨G1⟩R[ξ ] ∩ R[ξ ]
1×w

= ⟨G2⟩R[ξ ] ∩ R[ξ ]
1×w.

7. Equivalence of rational image representations

In this section we will address the issue of equivalence of
rational image representations. In particular, we will establish a
solution to Problem 2 as stated in Section 3. We first recall the
following fact on polynomial and rational image representations
of behaviors (see Theorem 9 in [2]).

Theorem 7.1. Let B ∈ Lw. Then the following statements are
equivalent:

1. B is controllable,
2. B admits a polynomial image representation B = im


M

 d
dt


,

with M ∈ R[ξ ]
w×• of full column rank.

3. B admits a polynomial image representation B = im

M

 d
dt


with M ∈ R[ξ ]

w×• right prime over R[ξ ],
4. B admits a rational image representation with B = im


H

 d
dt


with H ∈ R(ξ)w×• of full column rank.

In the sequel, the following result will be useful. The result states
that right coprime factorization of a rational image representation
leads to a polynomial image representation.

Lemma 7.2. Let B ∈ Lw
contr. Let H ∈ R(ξ)w×• be such that B =

im

H

 d
dt


. Let H = MP−1 be a right coprime factorization over

R[ξ ]. Then B = im

M

 d
dt


.

Proof. Let H = D−1N be a left coprime factorization over R[ξ ].
Then we have

ker
[

D


d
dt


N


d
dt

]
= im


 M


d
dt


−P


d
dt




 .
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Thuswe obtain

B =


w ∈ C∞(R, Rw) | ∃ℓ s.t. D


d
dt


w = N


d
dt


ℓ



=

w ∈ C∞(R, Rw) | ∃ℓ, ℓ′ s.t.


w
ℓ


=

 M


d
dt


−P


d
dt


 ℓ′


=


w ∈ C∞(R, Rw) | ∃ℓ′ s.t. w = M


d
dt


ℓ′


. �

In order to proceed, we will now first study the question under
which conditions two polynomial image representations are
equivalent, i.e. represent the same behavior.

Theorem 7.3. 1. Let B1, B2 ∈ Lw
contr. Let M1,M2 ∈ R[ξ ]

w×•

have full column rank, and let B1 = im

M1

 d
dt


and B2 =

im

M2

 d
dt


. Then B1 = B2 if and only if there exists a square

nonsingular rational matrix R such that M2 = M1R.
2. Let B1, B2 ∈ Lw

contr. Let M1,M2 ∈ R[ξ ]
w×• be right prime over

R[ξ ], and let B1 = im

M1

 d
dt


and B2 = im


M2

 d
dt


. Then

B1 = B2 if and only if there exists a unimodular polynomial
matrix U such that M2 = M1U.

Proof. We first prove the ‘only if’ part of Statement 2. By right
primeness, both M1(λ) and M2(λ) have full column rank for all
λ ∈ C, so correspond to observable image representations. From
B1 = B2 it follows that also the orthogonal complements
coincide, i.e. B⊥

1 = B⊥

2 (see [19]). By observability we have
B⊥

i = ker

M∼

i

 d
dt


, where M∼

i (ξ) := M⊤

i (−ξ) (i = 1, 2).
By Proposition 4.4 there exists a unimodular polynomial matrix V
such that M∼

2 = VM∼

1 . This implies M2 = M1U , with U := V∼

again unimodular.
Next, we prove the ‘only if’ part of Statement 1. BothM1 andM2

have full column rank. Hence, we can factorize Mi = M iRi, with
Mi right prime over R[ξ ] and Ri a nonsingular polynomial matrix
(i = 1, 2). By nonsingularity, Ri

 d
dt


is surjective, and therefore

im

Mi

 d
dt


= im


M i

 d
dt


(i = 1, 2). Consequently, B1 = B2

implies im

M1

 d
dt


= im


M2

 d
dt


. Then, by the ‘only if’ part of

Statement 2, there exists a unimodular polynomial matrix U such
thatM2 = M1U . This impliesM2 = M1R, with R := R−1

1 UR2.
Finally we prove the ‘if’ part of Statement 1. Assume thatM2 =

M1R with R a nonsingular rational matrix. Let R = KL−1 be a
right coprime factorization of R over R[ξ ]. Then we have M2L =

M1K , with K and L nonsingular polynomial matrices. Again by the
surjectivity of L

 d
dt


and K

 d
dt


, we obtain B1 = im


M1

 d
dt


=

im

M1

 d
dt


K

 d
dt


= im


M2

 d
dt


L
 d
dt


= im


M2

 d
dt


= B2.

This also proves the ‘if’ part of Statement 2. �

Next, we consider controllable behaviors represented by rational
image representations.

Theorem 7.4. Let B1, B2 ∈ Lw
contr. Let H1,H2 ∈ R(ξ)w×• have full

column rank and let B1 = im

H1

 d
dt


and B2 = im


H2

 d
dt


.

ThenB1 = B2 if and only if there exists a square nonsingular rational
matrix R such that H2 = H1R.

Proof. Let Hi = MiP−1
i be a right coprime factorization over R[ξ ].

Then by Lemma 7.2,Bi = im

Mi

 d
dt


(i = 1, 2). By Theorem 7.3,

B1 = B2 implies that there exists a nonsingular rational matrix
R such that M2 = M1R. Thus H2 = H1R, with R := P1RP−1

2
nonsingular. Conversely, if H2 = H1R then M2 = M1P−1

1 RP2. Then,
by Theorem 7.3, im


M1

 d
dt


= im


M2

 d
dt


so B1 = B2. �
8. Equivalence of rational kernel and image representations

So far, we have derived necessary and sufficient conditions
under which the kernels of two rational differential operators
represent one and the same behavior and conditions under which
the images of two rational differential operators represent the
same behavior. In the present section, wewill derive necessary and
sufficient conditions for behaviors given as the kernel of a rational
differential operator and the image of a rational differential
operator to be equal.

Theorem 8.1. Let B1, B2 ∈ Lw
contr. Let B1 = ker


G

 d
dt


and

B2 = im

H

 d
dt


be a minimal rational kernel representation and

a rational image representation of B1 and B2, respectively, where
G ∈ R(ξ)p×w has full row rank and H ∈ R[ξ ]

w×m has full column
rank. Then B1 = B2 if and only if GH = 0 and p + m = w.

Proof. Let G = P−1Q and H = ND−1 be left and right coprime
factorizations of G and H , respectively over R[ξ ]. Then from
Definition 2.2 and Lemma 7.2, we have B1 = ker


Q

 d
dt


and

B2 = im

N

 d
dt


. As B1, B2 ∈ Lw

contr, we recall that B
⊥R(ξ)

1

and B
⊥R(ξ)

2 are subspaces of the R(ξ)-linear vector space R(ξ)1×w

(see Theorem5.2)with dim(B
⊥R(ξ)

1 ) = p and dim(B
⊥R(ξ)

2 ) = w−m.
(Only if): As B1 = B2 we have p = w − m. Further, since

ker

Q

 d
dt


= im


N

 d
dt


, we have Q

 d
dt


N

 d
dt


ℓ = 0 for all

ℓ ∈ C∞(R, Rw−m). Consequently, we have QN = 0 so GH = 0.
(If) We have GH = 0 if and only if P−1QND−1

= 0 if and only if
QN = 0. In order to proceed we first prove B2 ⊆ B1. Let w ∈ B2,
then there exists an ℓ ∈ C∞(R, Rw−m) such that w = N

 d
dt


ℓ.

Then Q
 d
dt


w = Q

 d
dt


N

 d
dt


ℓ = 0 (since Q

 d
dt


N

 d
dt


= 0).

Therefore w ∈ B1, so B2 ⊆ B1. Finally B2 ⊆ B1 implies that
B

⊥R(ξ)

1 ⊆ B
⊥R(ξ)

2 . By using the assumption that p = w − m, the
dimensions of these two subspaces are equal, so we must have
B

⊥R(ξ)

1 = B
⊥R(ξ)

2 . Therefore we conclude that B1 = B2. �

9. Conclusions

In this paper we have dealt with the equivalence of represen-
tations of a given behavior with emphasis on rational representa-
tions. We have obtained new necessary and sufficient conditions
for the equivalence of polynomial kernel representations, illustrat-
ing the origin of the unimodular matrix appearing in equivalent
polynomial kernel representations. As the first major contribution
of this paper, we have obtained necessary and sufficient condi-
tions for the equivalence of rational kernel representations of con-
trollable as well as uncontrollable behaviors. As the second major
contribution of this paper, we also have derived conditions for
the equivalence of rational representations of a given behavior in
terms of the polynomial modules generated by the rows of the ra-
tionalmatrices. Further, we have obtained necessary and sufficient
conditions for the equivalence of image representations in the con-
text of both polynomial and rational representations. Finally, we
have obtained necessary and sufficient conditions for the equality
of behaviors defined as the kernel of a rational differential operator
and the image of a rational differential operator.
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