
Discrete Mathematics 97 (1991) 357-369 

North-Holland 

357 

The spectrum of maximal sets of 
one-factors 

Rolf Rees 
Department of Mathematics and Computer Science, Mount Allison University, Sackville, N. B., 
Canada EOA X0 

W.D. Wallis 
Southern Illinois University, IL, USA 

Received 7 March 1990 

In memory of Egmont Kiihler. 

Abstract 

Rees, R. and W.D. Wallis, The spectrum of maximal sets of one-factors, Discrete Mathematics 
97 (1991) 357-369. 

A set {e} of disjoint one-factors on n vertices is maximal if the complement of the graph IJ 4 
has no one-factor. We determine the spectrum of pairs ((n, k): there exists a maximal set of k 
one-factors on n vertices}. 

1. Introduction 

A graph G = (V, E) consists of a non-empty set V of vertices together with a 
collection E of unordered pairs of distinct vertices from V, these pairs being 
called edges. Two vertices are said to be adjacent if and only if there is an edge 
joining them. The degree of a vertex is the number of edges to which it belongs; a 
graph is called regular if and only if every vertex has the same degree. If 
G = (V, E) and H = (V, E’) are graphs then the union G U H of G and H is the 
graph (V, E U E’). The complement G of G is the graph (V, .!?) where 
,?? = {(x, y): (x, y) $ E}. In particular then if G is any graph on n vertices, G U e 

is the complete graph K,. 

A matching is a vertex-disjoint collection of edges; a one-factor is a matching 
which covers the vertices of G (or, equivalently, a l-regular spanning subgraph of 
G). A pair of one-factors will be called dkjoint if they have no edges in common. 
A one-factorization of G is a collection of pairwise disjoint one-factors which 
partitions the edge set of G. In order to have one-factorization, G must have an 
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even number of vertices and must be regular, but these necessary conditions are 

not sufficient. Petersen [7] observed that if a regular graph of degree 3 has an 

edge whose removal disconnects the graph (a ‘bridge’) then it has no one- 

factorization; and there are bridgeless regular graphs without one-factorizations 

(the Petersen graph is an example on 10 vertices). 

It has been widely conjectured (see [3, 61) that every regular graph G of degree 

d on 2m vertices has a one-factorization ‘provided d is large enough’-where 

‘large enough’ usually means that d is approximately m or bigger. Various forms 

of this conjecture have been called ‘the one-factorization conjecture’. In 

considering this there has been some interest in the case where the complement 

of G has a one-factorization, or equivalently in discussing whether a set of 

pairwise disjoint one-factors can be embedded in a one-factorization of a 

complete graph. 

A set of one-factors of Kz, is called premature [8] if they are edge-disjoint but 

cannot be extended to a one-factorization; a premature set is maximal [4] if it 

cannot be extended by adding even one more factor. In other words, a collection 

{E} of mutually disjoint one-factors on a set V of 2m vertices will be called a 

maximal set if the graph lJE contains no one-factor. The problem with which we 

are herein concerned is to determine for which integers 0 < k -=c 2m does there 

exist a maximal set F,, . . . , Fk of precisely k one-factors on a set of 2m vertices. 

We are able to give a complete solution to this problem. 

Theorem 1.0. Let n be a positive even integer. There exists a maximal set of k 
mutually disjoint one-factors on n vertices if and only if either 

(i) 2~~n/4]+l~k~r~-landkisodd,or 

(ii) +(2n + 4) 6 k c n - 4 and k is even. 

We direct the reader to [0] for a general reference on graph theory, and to [6] 

for a specific discussion of and survey on one-factors and one-factorizations. 

2. Preliminary results 

In this section we review some of the basic material which we will need to 

prove Theorem 1.0. 

Lemma 2.1. If m is odd then a maximal set in K2,,, contains at least m one-factors. 

If m is even, a maximal set in KZm contains at least m + 1 one-factors. 

The bulk of the proof of Lemma 2.1 is a straightforward application of Dirac’s 

Theorem. Showing that when m is even K,, cannot contain a maximal set of m 

one-factors is a little more involved, and we refer the reader to [4]. 
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It is easy to see that there cannot exist a maximal set of n - 2 one-factors on n 
vertices; the complement of the union of these one-factors is itself a one-factor. 
To establish the lower bound k 2 a(2n + 4) in condition (ii) of Theorem 1.0 we 
will need the following result from [9]. 

Lemma 2.2. Let G be a regular graph of odd valency d on n vertices. Zf G has no 

one-factor then n 2 3d + 7. 

Proof. Since G has no one-factor Tutte’s Theorem implies that there is some 
w-set W of vertices in G whose deletion creates at least w + 2 odd components 
(since n is even, w and the number of odd components must have the same 
parity). Since d is odd, G itself cannot have any odd components, whence w > 1. 
Let us call an odd component of G - W large if it has more than d vertices, and 
small otherwise. Clearly any odd component of G - W is joined to W by at least 
one edge; in the case of a small component it is not difficult to see that there must 
be at least d edges joining it to W (since the graph G is regular of valency d). 

Thus if we let (Y be the number of large components and /3 be the number of small 
components of G - W, we have 

a+/3aw+2 (2.1) 

and 

a+d/3<wd. (2.2) 

Since d is odd, each large component of G - W has at least d + 2 vertices. 
Therefore 

n>w+(d+2)a+p. (2.3) 

Now (Y is nonnegative, so inequality (2.2) implies p 6 w, so that in turn 
inequality (2.1) implies (Y 2 2; but applying (2.2) and (2.1) again we have in fact 
(Y 2 3. Recalling that w Z= 1 inequality (2.3) now gives n 2 3d + 7. 

This completes the proof of Lemma 2.2. 0 

Now suppose that we have a maximal set of k one-factors on n vertices, where 
n -k is even. Setting d = n -k - 1 and applying Lemma 2.2 we see that 
n 2 3(n - k - 1) + 7, which simplifies to k 2 $(2n + 4). 

We summarize the foregoing discussion. 

Lemma 2.3. The conditions (i), (ii) of Theorem 1.0 are necessary in order that 

there exist a maximal set of k one-factors on n vertices. 

Showing that condition (i) is in fact sufficient is quite simple, and we dispense 
of this case now. 

Theorem 2.4 [4]. Zf n is a positive even integer, 2 [n/4] + 1 c k s n - 1 and n - k 

15 odd then there is a maximal set of k mutually disjoint one-factors on n vertices. 
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Proof. Take the vertex set Z, U {ai: 1 s i =S n - k}, and develop the following 
one-factor modulo k: 

4, 0 

a2, 1 

a3, k - 1 

a4, 2 

;(n - k - 1) + 1, k - +(n - k - 1) - 1 

$(n - k - 1) + 2, k - t(n -k - 1) - 2 

$(k - l), i(k + 1) 

a,_,_,, f(n -k - 1) 

a,_,, k - +(n -k - 1) 

The edges in the right hand column are used only when k # n/2. These edges 
represent k - n/2 pairs in a starter on &. 

The complement of the union of these k one-factors has as one of its 
components a Kn-k (on the symbols {a,: 1 S i S n - k}); since n - k is odd our k 
one-factors constitute a maximal set. 0 

Dealing with the case where k is even is considerably more difficult (only the 
case k = n - 4 has previously been solved, see [2]), and it is to this case that the 
remainder of the paper is devoted. 

Let F,, . . . , Fk be a maximal set of one-factors on n vertices. The complement 
of l_le is a regular graph of valency n - 1 -k; we will call the number 
d = n - 1 - k the deficiency of the maximal set. For the sake of brevity we will 
call F,, . . . , Fk a d-set in K,,. From Lemma 2.2 it remains to be shown that for 
each odd integer d 2 3 and each even integer n 3 3d + 7 there exists a d-set in K,. 

We will need three preliminary results, the first of which involves the notion of 
a sub-one-fractorization. A one-factorization F of a graph G is a decomposition of 
the edge set of G into disjoint one-factors. If H is an induced subgraph of G then 
a one-factorization F’ of H is called a sub-one-factorization of F provided that for 
each one-factor f’ E F’ there is a one-factor f E F such that f’ ~6 The following is 
well known (see e.g. [6]). 

Lemma 2.5. If m and n are even integers with n 2 2m then the complete graph K,, 

admits a one-factorization containing a sub-one-factorization of some K,,, E K,,. 

Corollary 2.6. Zf there is a d-set in K,,, then there is a d-set in K,, for each even 
integer n 2 2m. 

Proof. Take a one-factorization {F,, F2, . . . , F,_l} on K,, containing a sub-one- 
factorization {F;, F;, . . . , FL_,} on K,,, (where for each i = 1, 2, . . . , m - 1 
F] E &). Replace the one-factors on K,,, by a d-set {fi, f2, . . . , f,,_l-d}. Then the 
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one-factors in 

{fi u (F, - C)> fi u (4 - G), . . . ,fm-1-d u R-l--d - Fir--l--d)) 

u {cl, E?z+1, . . . 2 K-1) 

form a d-set in K,. 0 

The second result is a special case of a theorem of Folkman and Fulkerson [5, 
Theorem 4.21. (For an elementary proof see e.g. [l].) 

Lemma 2.7. Let G be a graph with e = c . k edges, where c 2 x(G) (=edge 
coloring number of G). Then the edge set of G admits a decomposition into c 
matchings, each with k edges. 

Finally, we will make use of the following result concerning edge-colorings in 
complete bipartite graphs. 

Lemma 2.8. Let K,,,, be the complete bipartite graph with bipartition [X, Y] 
where IXI=m, lYl=n, msn. Let Y,, Y2 ,..., Y, be any collection of m-subsets 
of Y such that each vertex y E Y is contained in exactly m of the J$s. Then there is 
an edge-decomposition of K,,, into matchings M,, M2, . . . , M,, where for each 
j=l,2,..., n M, is a matching (with m edges) from X to 7.. 

Proof. (J.A. Bondy, personal communication.) Let A be the (0, 1)-incidence 
matrix of the design with point set Y and blocks Y,, Y2, . . . , Y,. Then A is an 
n x n matrix with constant row and column sum m, and so by Hall’s Theorem we 
can write A as a sum 

A=P,+P,+...+P,,, 

of permutation matrices. For each j = 1, 2, . . . , n the matching Mj is defined as 
follows: Take the jth column in A and let yi,, y,,, , . . , yi, be the vertices (in Y) 
indexing the rows in which a 1 occurs. For each k = 1, 2, . . . , m there is a unique 
permutation matrix Pk with a 1 in the (i,, j) position. Now set Mj = {(xk, y,,): 
k = 1, 2, . . . , m; xk E X}. It is readily verified that the matchings 

M,, Mz,. . . , M, form an edge-decomposition of K,,,. 0 

3. Maximal sets of odd deficiency 

In this section we will establish that for each odd integer d 3 3 and each even 
integer n 2 3d + 7 there is a d-set in K,. From the discussion following Theorem 
2.4 this will, together with Theorem 2.4, establish Theorem 1.0. 

We begin by defining a family of graphs which we shall use repeatedly 
throughout the sequel. For each odd integer d Z= 3 let 9-& be the following graph 
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on 3d + 7 vertices: 
Vertex set: ((Z,,, U {a}) X {l, 2, 3)) U {m} 
Edge set: all edges (x, y) where x E (Z,,, U {a}) x {i} and y E (Zd+l u {a}) x 

{j}, i#j; additionally, the edges 

oIlI, 2131, . . . , Cd - 3),(d - ‘31, Cd - Iha,, &al; 

mr 2232, . . . , Cd - %(d - 212, (d - l),az, be; 

0~; 2333, 3343, . . . > (gfg; (~)~~), 

(yfg;... 3 (d - l)+L 423, w&; 

and all edges coil, mi2 where i E Z,,,. 

The graphs $&;, ‘& and Y& are illustrated in Figs. l-3. 
Note that $& is a (2d + 6)-regular graph on 3d + 7 vertices. Furthermore, $ 

has no one-factor (removing ~0 leaves three odd components). 

Lemma 3.1. For each odd integer d 2 3 the graph Y& has a one-factorization. 

=2 

Fig. 1. 
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Fig. 2. 

a a2 

Fig. 3. 
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Proof. We consider two cases. 
Case (i): d = 3 module 4, d 2 7. 

Develop each of the following two one-factors modulo d + 1: 

(I) 
1IL !(d + 7)132 22% f(d + 5)&d + 1)s +I + l), 

3152 $(d + 11)172 421, f(d +9)&i + 3)3 a&f + 3), 

5192 i(d + 15),11, 62, aIdz 

0$(3d - 1)3 w.& 

f(d - l),(d - 2)2 d,(d - 4)2 (d - 1)&d - 3)3 ; 

O&d - 1)3 i(d - 3),(d - 1)3 

(11) 

0112 l(d + 5),3, i(d + 5)203 l&i + 1)3 m$(d + l)z 

2,5, w + 9)172 f(d + 9),13 3,i(d + 3)3 a,$(d - 1)3 

419, $(d + 13),11, $(d + 13)223 5,i(d + 5)3 a&d + l), 

a& 

+(d - 3),(d - 2)2 (d - l),(d - 4)2 O&d - 3)3 d,d, 

$(d - 3)&d - 3)3 

The remaining edges in Sd can be arranged into two hamiltonian cycles, viz: 

d = 7 0111022112312J303~4 3 2 3 4 5 4 5 6 a 7 6 5 6 7 a a 7 0 . 33321122111233332217 

06aaa2321~5643423545767101070 122132113 3123122132132132231. 

d 2 11 01110221123,221303~[~(d + l),$(d - 1)3. . . 3323]32[4151‘t252. . * 

+(d + 1)&d + 3)&d + l),+(d + 3)2] 

t(d +5)&d +7)&d + 5),+(d + 3),+(d + 5)3 

+(d + 7),;(d + 9),[+(d + 11)&d + 9),(d + 7),i(d + 9)3 

$(d + ll),+(d + 13)l. . . 

Cd - 2Md - %(d - 4Md - Wd - 92 

Cd - lhl*a14(d - l12(d - Wd - 1)3d3a3a2dA; 
Ol(d - l)2a2ala323312113~[~(d + 3),l(d + 5), 

$(d + l),+(d - l),$(d + 1)&d - 3)~ 

. . . 334122][325143527163 . . . $(d + 3),$(d + 7),;(d + 5),][i(d + 7),+(d + 9)1 

$(d + 5),l(d + 7)d(d + ll),i(d + 9)3. * . (d - 2)3 
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(d - l)I(d - 3)*(d - 2)*d,(d - lb1 

41,w,w301. 

* Omit this sequence when d = 11. 

Case (ii): d = 1 modulo 4, d 2 5. 

Develop each of the following two one-factors modulo d + 1: 

(I) 1112 2203 i(d + 7ht@ + 3)3 

3152 4213 b(d + 11)&d + 5)3 +(d + 3), 

5192 622, t(d + 15),i(d + 7)3 aI(d - 2)2 

(d - 2)r(d - 6)2 

d&d + 1)3 

(d - 1)24(d - 3)3 %d - l),d3 d3dI 

O&d - 1)3 

(11) 1122 i(d + 5)203 O&d - 113 

3162 i(d + 9)213 2,%d + 1)3 c+(d + 1)2 

51102 i(d + 13)223 4&d + 3)3 drd3 

d2dI 

(d - 2),(d - 5), $(d - 3),$(d - 3)3 (d - l),(d - 1)3 d3(d - 1)~ 

The remaining edges in C$ can be arranged into two hamiltonian cycles, viz.: 

d = 5 0,1,02211,31221303~3 2 3 4 a 5 4 a a 5 4 5 0 . 3321 1122333217 

o,42334122325143~1 31133122132231. 2 3 2 a a a 5 1 0 1 0 5 0 

d 2 9 0,1,022112312~130~~[~(d + l),i(d - 1)3. 1 . . 3323]32[4,514252 . . . 

$(d + 3)&d + 5),$(d + 3)&d + 5)&d + 3)3 

i(d + 5),[$(d +7)&d + 9)1 

i(d + 7),4(d + 9),;(d + 7),4(d + 9)3 . . . (d - 3),(d - 2),(d - 3)2 

(d - 2Md - 3),(d - %l*(d - 111 
a14(d - l)2a2a3d3(d - 1)3401; 
Odd - lM(d - &Cd - lM(d - Md - l),(d - %(d - 413 

(d - 3),(d - 2), . . . ;(d + 5)3 
$(d + 7),i(d +9)&d +5)&d +7)&d + 3),][$(d + l),+(d + 3),;(d - 1)2 

&d - 3),l(d - 1),&d - 5)~. . . 334,22][325,43527163. . . $(d + 1)2 

$(d + 5),;(d + 3)3]m 

1232aaadlOlOdO 3 1 13 3 1 2 2 2 3 1. 13 2 

* Omit this sequence when d = 9. 
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The value d = 3 remains to be dealt with. Develop each of the following 

one-factors modulo 4: 

The remaining edges in 3 can be arranged into two hamiltonian cycles: 

0 1 0 2 1 0 1 2 3 2 ~3#23a,a*3~0~; 1121233213 

0,22a2a323321~03~132,U~3~1202330~. 

This completes the proof of Lemma 3.1. 0 

Theorem 3.2 Let d be an odd integer, d 2 3. If n = 3d + 7 or n is even and 
n 2 6d + 14, then there is a d-set in K,,. 

Proof. Apply Lemma 3.1 and the remark preceding it. Then apply Corollary 

2.6. 0 

It remains to be shown that for each even integer n, 3d + 9 c n c 6d + 12, 
there exists a d-set in K,,. We begin by considering the case n 2 4d + 8. 

Theorem 3.3 For each odd integer d 2 3 and each even integer n, 4d + 8 =S n c 

6d + 12, there exists a d-set in K,,. 

Proof. Let H be the graph Y& v K,,--(3d+7) (where v denotes the usual join 

function). Let t = n - (3d + 7); then d + 1 G t s 3d + 5. Let {FI, F2, . . . , F2d+6}be 

the one-factorization of Y& constructed in Lemma 3.1, and let 

{F;, G, . . . , F:--(ci+~) } be a collection of t - (d + 1) mutually disjoint one-factors 

in K,. We construct our d-set as follows. 

For each i = 1, 2, . . . , t - (d + 1) take the one-factors Ej = 4 U Fz!. 

There remain in ‘$ the one-factors FI--d, FI_-d+l, . . . , F2d+6 which among them 

contain (3d + 7) * i(2d + 6 - (t - d) + 1) = (3d + 7) * ?(3d + 7 - t) edges. Apply 

Lemma 2.7 with c = 3d + 7 to partition this set of edges into 3d + 7 matchings 

M,, M,, . . . , M3ci+7, each with 4(3d + 7 - t) edges. For each i = 1, 2, . . . , 3d + 7 

the matching Mi covers all but a set Sj of t vertices; since the union of all 

matchings Mj is a regular graph of valency 3d + 7 - t each vertex in Y$ is 

contained in exactly t of the sets Sj. Now we apply Lemma 2.8 to construct a set 

M;, & . . . , ML+, of matchings on H where each M; matches the vertices of Sj 

to the vertices of K,. For each i = 1, 2, . . . , 3d + 7 take the one-factor Ej = Mj U 
M,‘. 

The set of one-factors {Ej: 1 G i =Z t - (d + 1)) U {Ej: 1 <i =G 3d + 7) then con- 

sistutes a maximal set (the complement of their union cannot contain a 

one-factor, since we have noted previously that $ contains no one-factor), and 

so a d-set as required. Cl 



The spectrum of maximal sets of one-factors 367 

Finally, we turn our attention to the case where 3d + 9 c n G 4d + 6. Let d 5 3 
be given, and for each w = 3,5, . . . , d let q be the graph obtained from Y& as 
follows: First we remove the vertex 03. Next, we consider the subgraph %d of Y& 
spanned by the vertices ((&+r - (0, 1)) X (3)) U {u3} (these are precisely the 
vertices which are not adjacent to O3 in $); this subgraph forms a d-cycle minus 
an edge. Relabel the vertices of Xd with the elements of Z, so that the edges form 
the path 0, 2, 4, . . . , d -2. Now we add (w - 1) *i(d - w) new edges to this 
subgraph: for each i = 0, 1, . . . , w - 2 add the edges in the set 

Note that if w = d then E(i) = 0 for each i = 0, 1, . . . , d - 2 (whence no new 
edges are being added). 

For each i=O, 1,. . . , w - 2 let V(i) be the d - w + 1 vertices in the set 

(i.e. the vertex i together with the vertices covered by the edges in E(i)), and let 
V(w - 1) be the d - w + 1 vertices in the set {w - 1, w, . . . , d - l}. 

Lemma 3.4. The graph % has 3d + 6 vertices and has edge-coloring number 

X(K)s2d+5+w. 

Proof. The graph +& has edge-coloring number 2d + 6 (Lemma 3.1). Since each 
set of edges E(i) forms a matching in $’ and there are w - 1 of these matchings it 
followsthatX(q)<2d+6+w-l=2d+5+w. El 

The graph Y$’ has 

(3d + 7)(2d + 6) 

2 
-(2d+6)+(w-1).!(d-w)=(2d+5+w).(3d+;-w) 

edges. From Lemma 3.4 we can now apply Lemma 2.7 (with c = 2d + 5 + w) to 
construct an edge decomposition of E into matchings M;, MI, . . . , M;d+S+w, 

each with (3d + 6 - w)/2 edges. For each i = 1,2, . . . ,2d + 5 + w let Sj be the 
vertices in C$’ which are not covered by the matching M,‘. 

Let us now turn our attention to the sets V(i) defined prior to Lemma 3.4. 
These sets form the rows in the following w x (d - w + 1) array written on Z, 
(where w = d, the array consists of the first column only): 

0 i(w + 1) +(w+3) .a. d-b(w+l) 

1 $(w + 3) I(w+5) ... d-;(w-1) 

w -2 $(3w -3) 4(3w - 1) . * * l(w - 5) 

w-l W w+l 0.. d-l. 
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A simple rearrangement of the symbols in the first column and last row (namely, 

k+ k + (w - 1)/2 (mod d)) transforms the above array into one which contains 

each symbol at most once in each column; for each i = 1, 2, . . . , d - w + 1 let Si 

be the set of vertices in Y$J represented by the ith column in the transformed 

array. 

Lemma 3.5. The sets Sl, j = 1, 2, . . . , 2d + 5 + w together with Si, i = 
1, 2, . . . ) d - w + 1 form a collection of 3d + 6 w-sets with the property that each 
vertex in % is contained in exactly w of them. 

Proof. Let x be a vertex in 32. If x is not a vertex of 9& then x has degree 2d + 5 
in % and so will be contained in w of the sets S,!. Since each Si is a subset of the 

vertices of Xd, x will not be contained in any of these sets. 

Now let x be a vertex of Xd. Then x has degree 2d + 6 + k in 9; where k is the 

number of matchings E(i) that cover x. Hence, x is not contained in 2d + 5 + 
w-(2d+6+k)= w - k - 1 of the matchings IV,! and thus is in w - k - 1 of the 

sets S,!. Now k = # matchings E(i) that cover x = # (sets V(i) that contain 

X) - 1 = # (sets S, that contain X) - 1; that is, x is contained in k + 1 of the sets Si. 

In total then x is contained in w - k - 1 + k + 1 = w sets. That each set Si, S,! 

contains w vertices follows from their definitions. 0 

We are now in a position to prove the following. 

Theorem 3.6. For each odd integer d 3 3 and each even integer n with 3d + 9 G 
n < 4d + 6 there is a d-set in K,. 

Proof. Let w = n - (3d + 6); then w is odd and 3 c w cd. Take the graph 

% v l?,,,. From Lemma 2.8 and Lemma 3.5 the edges joining 3: to J?, can be 

arranged into 3d + 6 matchings MI, M2, . . . , M3d+6 where for each j = 

1 . . , 2d + 5 + w Mj is matching from S,! to K,. Recalling that S,! is the set of 

vertices not covered by the matching M,’ in %, we now form the graph H by 

taking as its edges the union of the one-factors M,! U Mj on % v I?,, for 

j=l,..., 2d + 5 + w. Then fi is a d-regular graph on IZ = 3d + 6 + w vertices. It 

remains to be shown that fi has no one-factor. To see this, note that the graph H 
can be considered as being constructed from Y& by replacing the vertex O3 in ?& 

by w new vertices xi, x2, . . . , x,, replacing each edge (v, 0,) in Y& by w new 

edges (u, xl), (v, x2), . . . , (v, x,) and then adding some edges to the subgraph 

spanned by the vertices of Xd U {xl, x2, . . . , x,}. In particular then (referring 

back to the definition of Y&h) removing the vertex CO from H will create an odd 

component on the vertices (Zd+i U {a}) x (1) and a second odd component on 

the vertices (Zd+l U {a}) x (2) (just as happened in 9&d). By Tutte’s Theorem l? 

therefore contains no one-factor. 0 
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Collecting the results of Theorems 3.2, 3.3 and 3.6 we get the main result of 
this section. 

Theorem 3.7. For each odd integer d a 3 and each even integer n > 3d + 7 there is 

a d-set in K,,. 

Conclusion 

Theorems 2.4 and 3.7 together give us the spectrum for maximal sets of 
one-factors (Theorem 1.0): If n is a positive even integer then a maximal set of k 
mutually disjoint one-factors on n vertices exists if and only if either 2 * [n/4] + 

lckGn-landkisodd,or~(2n+4)GkGn-4andkiseven. 
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