The spectrum of maximal sets of one-factors

Rolf Rees
Department of Mathematics and Computer Science, Mount Allison University, Sackville, N.B., Canada EOA 3CO

W.D. Wallis

Southern Illinois University, IL, USA
Received 7 March 1990

In memory of Egmont Köhler.

Abstract

Rees, R. and W.D. Wallis, The spectrum of maximal sets of one-factors, Discrete Mathematics 97 (1991) 357-369.

A set $\left\{F_{i}\right\}$ of disjoint one-factors on n vertices is maximal if the complement of the graph $\cup F_{i}$ has no one-factor. We determine the spectrum of pairs $\{(n, k)$: there exists a maximal set of k one-factors on n vertices $\}$.

1. Introduction

A graph $G=(V, E)$ consists of a non-empty set V of vertices together with a collection E of unordered pairs of distinct vertices from V, these pairs being called edges. Two vertices are said to be adjacent if and only if there is an edge joining them. The degree of a vertex is the number of edges to which it belongs; a graph is called regular if and only if every vertex has the same degree. If $G=(V, E)$ and $H=\left(V, E^{\prime}\right)$ are graphs then the union $G \cup H$ of G and H is the graph ($V, E \cup E^{\prime}$). The complement \bar{G} of G is the graph (V, \tilde{E}) where $\bar{E}=\{(x, y):(x, y) \notin E\}$. In particular then if G is any graph on n vertices, $G \cup \bar{G}$ is the complete graph K_{n}.

A matching is a vertex-disjoint collection of edges; a one-factor is a matching which covers the vertices of G (or, equivalently, a 1-regular spanning subgraph of G). A pair of one-factors will be called disjoint if they have no edges in common. A one-factorization of G is a collection of pairwise disjoint one-factors which partitions the edge set of G. In order to have one-factorization, G must have an
even number of vertices and must be regular, but these necessary conditions are not sufficient. Petersen [7] observed that if a regular graph of degree 3 has an edge whose removal disconnects the graph (a 'bridge') then it has no onefactorization; and there are bridgeless regular graphs without one-factorizations (the Petersen graph is an example on 10 vertices).
It has been widely conjectured (see $[3,6]$) that every regular graph G of degree d on $2 m$ vertices has a one-factorization 'provided d is large enough'-where 'large enough' usually means that d is approximately m or bigger. Various forms of this conjecture have been called 'the one-factorization conjecture'. In considering this there has been some interest in the case where the complement of G has a one-factorization, or equivalently in discussing whether a set of pairwise disjoint one-factors can be embedded in a one-factorization of a complete graph.

A set of one-factors of $K_{2 m}$ is called premature [8] if they are edge-disjoint but cannot be extended to a one-factorization; a premature set is maximal [4] if it cannot be extended by adding even one more factor. In other words, a collection $\left\{F_{i}\right\}$ of mutually disjoint one-factors on a set V of $2 m$ vertices will be called a maximal set if the graph $\bar{\bigcup} \bar{F}_{i}$ contains no one-factor. The problem with which we are herein concerned is to determine for which integers $0<k<2 m$ does there exist a maximal set F_{1}, \ldots, F_{k} of precisely k one-factors on a set of $2 m$ vertices. We are able to give a complete solution to this problem.

Theorem 1.0. Let n be a positive even integer. There exists a maximal set of k mutually disjoint one-factors on n vertices if and only if either
(i) $2 \cdot\lfloor n / 4\rfloor+1 \leqslant k \leqslant n-1$ and k is odd, or
(ii) $\frac{1}{3}(2 n+4) \leqslant k \leqslant n-4$ and k is even.

We direct the reader to [0] for a general reference on graph theory, and to [6] for a specific discussion of and survey on one-factors and one-factorizations.

2. Preliminary results

In this section we review some of the basic material which we will need to prove Theorem 1.0.

Lemma 2.1. If m is odd then a maximal set in $K_{2 m}$ contains at least m one-factors. If m is even, a maximal set in $K_{2 m}$ contains at least $m+1$ one-factors.

The bulk of the proof of Lemma 2.1 is a straightforward application of Dirac's Theorem. Showing that when m is even $K_{2 m}$ cannot contain a maximal set of m one-factors is a little more involved, and we refer the reader to [4].

It is easy to see that there cannot exist a maximal set of $n-2$ one-factors on n vertices; the complement of the union of these one-factors is itself a one-factor. To establish the lower bound $k \geqslant \frac{1}{3}(2 n+4)$ in condition (ii) of Theorem 1.0 we will need the following result from [9].

Lemma 2.2. Let G be a regular graph of odd valency d on n vertices. If G has no one-factor then $n \geqslant 3 d+7$.

Proof. Since G has no one-factor Tutte's Theorem implies that there is some w-set W of vertices in G whose deletion creates at least $w+2$ odd components (since n is even, w and the number of odd components must have the same parity). Since d is odd, G itself cannot have any odd components, whence $w \geqslant 1$. Let us call an odd component of $G-W$ large if it has more than d vertices, and small otherwise. Clearly any odd component of $G-W$ is joined to W by at least one edge; in the case of a small component it is not difficult to see that there must be at least d edges joining it to W (since the graph G is regular of valency d). Thus if we let α be the number of large components and β be the number of small components of $G-W$, we have

$$
\begin{equation*}
\alpha+\beta \geqslant w+2 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha+d \beta \leqslant w d . \tag{2.2}
\end{equation*}
$$

Since d is odd, each large component of $G-W$ has at least $d+2$ vertices. Therefore

$$
\begin{equation*}
n \geqslant w+(d+2) \alpha+\beta . \tag{2.3}
\end{equation*}
$$

Now α is nonnegative, so inequality (2.2) implies $\beta \leqslant w$, so that in turn inequality (2.1) implies $\alpha \geqslant 2$; but applying (2.2) and (2.1) again we have in fact $\alpha \geqslant 3$. Recalling that $w \geqslant 1$ inequality (2.3) now gives $n \geqslant 3 d+7$.
This completes the proof of Lemma 2.2.
Now suppose that we have a maximal set of k one-factors on n vertices, where $n-k$ is even. Setting $d=n-k-1$ and applying Lemma 2.2 we see that $n \geqslant 3(n-k-1)+7$, which simplifies to $k \geqslant \frac{1}{3}(2 n+4)$.
We summarize the foregoing discussion.
Lemma 2.3. The conditions (i), (ii) of Theorem 1.0 are necessary in order that there exist a maximal set of k one-factors on n vertices.

Showing that condition (i) is in fact sufficient is quite simple, and we dispense of this case now.

Theorem 2.4 [4]. If n is a positive even integer, $2\lfloor n / 4\rfloor+1 \leqslant k \leqslant n-1$ and $n-k$ is odd then there is a maximal set of k mutually disjoint one-factors on n vertices.

Proof. Take the vertex set $\boldsymbol{Z}_{k} \cup\left\{a_{i}: 1 \leqslant i \leqslant n-k\right\}$, and develop the following one-factor modulo k :

$$
\begin{array}{cc}
a_{1}, 0 & \frac{1}{2}(n-k-1)+1, k-\frac{1}{2}(n-k \\
a_{2}, 1 & 1)-1 \\
a_{3}, k-1 & \frac{1}{2}(n-k-1)+2, k-\frac{1}{2}(n-k-1)-2 \\
a_{4}, 2 & \vdots \\
\vdots & \frac{1}{2}(k-1), \frac{1}{2}(k+1) \\
a_{n-k-1}, \frac{1}{2}(n-k-1) & \\
a_{n-k}, k-\frac{1}{2}(n-k-1) &
\end{array}
$$

The edges in the right hand column are used only when $k \neq n / 2$. These edges represent $k-n / 2$ pairs in a starter on \boldsymbol{Z}_{k}.

The complement of the union of these k one-factors has as one of its components a K_{n-k} (on the symbols $\left\{a_{i}: 1 \leqslant i \leqslant n-k\right\}$); since $n-k$ is odd our k one-factors constitute a maximal set.

Dealing with the case where k is even is considerably more difficult (only the case $k=n-4$ has previously been solved, see [2]), and it is to this case that the remainder of the paper is devoted.

Let F_{1}, \ldots, F_{k} be a maximal set of one-factors on n vertices. The complement of $\bigcup F_{i}$ is a regular graph of valency $n-1 k$; we will call the number $d=n-1-k$ the deficiency of the maximal set. For the sake of brevity we will call F_{1}, \ldots, F_{k} a d-set in K_{n}. From Lemma 2.2 it remains to be shown that for each odd integer $d \geqslant 3$ and each even integer $n \geqslant 3 d+7$ there exists a d-set in K_{n}.

We will need three preliminary results, the first of which involves the notion of a sub-one-fractorization. A one-factorization F of a graph G is a decomposition of the edge set of G into disjoint one-factors. If H is an induced subgraph of G then a one-factorization F^{\prime} of H is called a sub-one-factorization of F provided that for each one-factor $f^{\prime} \in F^{\prime}$ there is a one-factor $f \in F$ such that $f^{\prime} \subseteq f$. The following is well known (see e.g. [6]).

Lemma 2.5. If m and n are even integers with $n \geqslant 2 m$ then the complete graph K_{n} admits a one-factorization containing a sub-one-factorization of some $K_{m} \subseteq K_{n}$.

Corollary 2.6. If there is a d-set in K_{m} then there is a d-set in K_{n} for each even integer $n \geqslant 2 m$.

Proof. Take a one-factorization $\left\{F_{1}, F_{2}, \ldots, F_{n-1}\right\}$ on K_{n} containing a sub-onefactorization $\left\{F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{m-1}^{\prime}\right\}$ on K_{m} (where for each $i=1,2, \ldots, m-1$ $F_{i}^{\prime} \subseteq F_{i}$). Replace the one-factors on K_{m} by a d-set $\left\{f_{1}, f_{2}, \ldots, f_{m-1-d}\right\}$. Then the
one-factors in

$$
\begin{aligned}
& \left\{f_{1} \cup\left(F_{1}-F_{1}^{\prime}\right), f_{2} \cup\left(F_{2}-F_{2}^{\prime}\right), \ldots, f_{m-1-d} \cup\left(F_{m-1-d}-F_{m-1-d}^{\prime}\right)\right\} \\
& \quad \cup\left\{F_{m}, F_{m+1}, \ldots, F_{n-1}\right\}
\end{aligned}
$$

form a d-set in K_{n}.
The second result is a special case of a theorem of Folkman and Fulkerson [5, Theorem 4.2]. (For an elementary proof see e.g. [1].)

Lemma 2.7. Let G be a graph with $e=c \cdot k$ edges, where $c \geqslant \chi(G)$ (=edge coloring number of G). Then the edge set of G admits a decomposition into c matchings, each with k edges.

Finally, we will make use of the following result concerning edge-colorings in complete bipartite graphs.

Lemma 2.8. Let $K_{m, n}$ be the complete bipartite graph with bipartition $[X, Y]$ where $|X|=m,|Y|=n, m \leqslant n$. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be any collection of m-subsets of Y such that each vertex $y \in Y$ is contained in exactly m of the $Y_{j} s$. Then there is an edge-decomposition of $K_{m, n}$ into matchings $M_{1}, M_{2}, \ldots, M_{n}$ where for each $j=1,2, \ldots, n M_{j}$ is a matching (with m edges) from X to Y_{j}.

Proof. (J.A. Bondy, personal communication.) Let A be the (0,1)-incidence matrix of the design with point set Y and blocks $Y_{1}, Y_{2}, \ldots, Y_{n}$. Then A is an $n \times n$ matrix with constant row and column sum m, and so by Hall's Theorem we can write A as a sum

$$
A=P_{1}+P_{2}+\cdots+P_{m}
$$

of permutation matrices. For each $j=1,2, \ldots, n$ the matching M_{j} is defined as follows: Take the j th column in A and let $y_{i_{1}}, y_{t_{2}}, \ldots, y_{i_{m}}$ be the vertices (in Y) indexing the rows in which a 1 occurs. For each $k=1,2, \ldots, m$ there is a unique permutation matrix P_{k} with a 1 in the $\left(i_{k}, j\right)$ position. Now set $M_{j}=\left\{\left(x_{k}, y_{i_{k}}\right)\right.$: $\left.k=1,2, \ldots, m ; x_{k} \in X\right\}$. It is readily verified that the matchings $M_{1}, M_{2}, \ldots, M_{n}$ form an edge-decomposition of $K_{m, n}$.

3. Maximal sets of odd deficiency

In this section we will establish that for each odd integer $d \geqslant 3$ and each even integer $n \geqslant 3 d+7$ there is a d-set in K_{n}. From the discussion following Theorem 2.4 this will, together with Theorem 2.4, establish Theorem 1.0.

We begin by defining a family of graphs which we shall use repeatedly throughout the sequel. For each odd integer $d \geqslant 3$ let \mathscr{G}_{d} be the following graph
on $3 d+7$ vertices:
Vertex set: $\left(\left(\boldsymbol{Z}_{d+1} \cup\{a\}\right) \times\{1,2,3\}\right) \cup\{\infty\}$
Edge set: all edges (x, y) where $x \in\left(\boldsymbol{Z}_{d+1} \cup\{a\}\right) \times\{i\}$ and $y \in\left(\boldsymbol{Z}_{d+1} \cup\{a\}\right) \times$ $\{j\}, i \neq j$; additionally, the edges

$$
\begin{aligned}
& 0_{1} 1_{1}, 2_{1} 3_{1}, \ldots,(d-3)_{1}(d-2)_{1},(d-1)_{1} a_{1}, d_{1} a_{1} ; \\
& 0_{2} 1_{2}, 2_{2} 3_{2}, \ldots,(d-3)_{2}(d-2)_{2},(d-1)_{2} a_{2}, d_{2} a_{2} ; \\
& 0_{3} 1_{3} ; 2_{3} 3_{3}, 3_{3} 4_{3}, \ldots,\left(\frac{d-1}{2}\right)_{3}\left(\frac{d+1}{2}\right)_{3},\left(\frac{d+3}{2}\right)_{3}\left(\frac{d+5}{2}\right)_{3}, \\
& \left(\frac{d+5}{2}\right)_{3}\left(\frac{d+7}{2}\right)_{3}, \ldots,(d-1)_{3} d_{3}, a_{3} 2_{3}, a_{3} d_{3} ; \\
& \infty 0_{3}, \infty 1_{3}, \infty\left(\frac{d+1}{2}\right)_{3}, \infty\left(\frac{d+3}{2}\right)_{3} ;
\end{aligned}
$$

and all edges $\propto i_{1}, \infty i_{2}$ where $i \in \boldsymbol{Z}_{d+1}$.
The graphs $\mathscr{G}_{3}, \mathscr{G}_{5}$ and \mathscr{G}_{d} are illustrated in Figs. 1-3.
Note that \mathscr{G}_{d} is a $(2 d+6)$-regular graph on $3 d+7$ vertices. Furthermore, $\overline{\mathscr{G}}_{d}$ has no one-factor (removing ∞ leaves three odd components).

Lemma 3.1. For each odd integer $d \geqslant 3$ the graph \mathscr{G}_{d} has a one-factorization.

Fig. 1.

Fig. 2.

Fig. 3.

Proof. We consider two cases.
Case (i): $d \equiv 3$ modulo $4, d \geqslant 7$.
Develop each of the following two one-factors modulo $d+1$:
(I)

$1_{1} 1_{2}$	$\frac{1}{2}(d+7)_{1} 3_{2}$	$2_{2} 0_{3}$	$\frac{1}{2}(d+5)_{1} \frac{1}{2}(d+1)_{3}$	$\infty \frac{1}{2}(d+1)_{1}$
$3_{1} 5_{2}$	$\frac{1}{2}(d+11)_{1} 7_{2}$	$4_{2} 1_{3}$	$\frac{1}{2}(d+9)_{1} \frac{1}{2}(d+3)_{3}$	$a_{3} \frac{1}{2}(d+3)_{1}$
$5_{1} 9_{2}$	$\frac{1}{2}(d+15)_{1} 11_{2}$	$6_{2} 2_{3}$	\vdots	$a_{1} d_{2}$
\vdots	\vdots	\vdots	$0_{1} \frac{1}{4}(3 d-1)_{3}$	$a_{2} d_{3}$
$\frac{1}{2}(\mathrm{~d}-1)_{1}(\mathrm{~d}-2)_{2}$	$d_{1}(d-4)_{2}$	$(d-1)_{2} \frac{1}{2}(d-3)_{3}$	\vdots	
		$0_{2} \frac{1}{2}(d-1)_{3}$	$\frac{1}{2}(d-3)_{1}(d-1)_{3}$	

(II)

$0_{1} 1_{2}$	$\frac{1}{2}(d+5)_{1} 3_{2}$	$\frac{1}{2}(d+5)_{2} 0_{3}$	$1_{12}(d+1)_{3}$	$\infty \frac{1}{2}(d+1)_{2}$
$2_{1} 5_{2}$	$\frac{1}{2}(d+9)_{1} 7_{2}$	$\frac{1}{2}(d+9)_{2} 1_{3}$	$3_{1 \frac{1}{2}(d+3)_{3}}$	$a_{12}(d-1)_{3}$
$4_{1} 9_{2}$	$\frac{1}{2}(d+13)_{1} 11_{2}$	$\frac{1}{2}(d+13)_{2} 2_{3}$	$5_{12}(d+5)_{3}$	$a_{22}(d+1)_{1}$
\vdots	\vdots	\vdots	\vdots	$a_{3} d_{2}$
$\frac{1}{2}(d-3)_{1}(d-2)_{2}$	$(d-1)_{1}(d-4)_{2}$	$0_{24}^{\frac{1}{4}}(d-3)_{3}$	$d_{1} d_{3}$	
	\vdots			
		$\frac{1}{2}(d-3)_{2} \frac{1}{2}(d-3)_{3}$		

The remaining edges in \mathscr{G}_{d} can be arranged into two hamiltonian cycles, viz:

$$
\begin{aligned}
& d=7 \quad 0_{1} 1_{1} 0_{2} 2_{1} 1_{2} 3_{1} 2_{2} 1_{3} 0_{3} \infty 4_{3} 3_{3} 2_{3} 3_{2} 4_{1} 5_{1} 4_{2} 5_{2} 6_{1} a_{1} 7_{1} 6_{2} 5_{3} 6_{3} 7_{3} a_{3} a_{2} 7_{2} 0_{1} \text {; } \\
& 0_{1} 6_{2} a_{2} a_{1} a_{3} 2_{2} 3_{1} 2_{1} 1_{3} \propto 5_{3} 6_{1} 4_{2} 3_{3} 4_{1} 2_{2} 3_{2} 5_{1} 4_{3} 5_{2} 7_{1} 6_{3} 7_{2} 1_{1} 0_{3} 1_{2} 0_{2} 7_{3} 0_{1} \text {. } \\
& d \geqslant 110_{1} 1_{1} 0_{2} 2_{1} 1_{2} 3_{1} 2_{2} 1_{3} 0_{3} \infty\left[\frac{1}{2}(d+1)_{32} \frac{1}{2}(d-1)_{3} \cdots 3_{3} 2_{3}\right] 3_{2}\left[4_{1} 5_{1} 4_{2} 5_{2} \cdots\right. \\
& \left.\frac{1}{2}(d+1)_{1} \frac{1}{2}(d+3)_{12} \frac{1}{2}(d+1)_{2} \frac{1}{2}(d+3)_{2}\right] \\
& \frac{1}{2}(d+5)_{1} \frac{1}{2}(d+7)_{12} \frac{1}{2}(d+5)_{2} \frac{1}{2}(d+3)_{3} \frac{1}{2}(d+5)_{3} \\
& \frac{1}{2}(d+7)_{2} \frac{1}{2}(d+9)_{1}\left[\frac{1}{2}(d+11)_{1} \frac{1}{2}(d+9)_{2}(d+7)_{3} \frac{1}{2}(d+9)_{3}\right. \\
& \frac{1}{2}(d+11)_{2} \frac{1}{2}(d+13)_{1} \cdots \\
& (d-2)_{1}(d-3)_{2}(d-4)_{3}(d-3)_{3}(d-2)_{2} \\
& \left.(d-1)_{1}\right]^{*} a_{1} d_{1}(d-1)_{2}(d-2)_{3}(d-1)_{3} d_{3} a_{3} a_{2} d_{2} 0_{1} ; \\
& 0_{1}(d-1)_{2} a_{2} a_{1} a_{3} 2_{3} 3_{1} 2_{1} 1_{3} \infty\left[\frac{1}{2}(d+3)_{3} \frac{1}{2}(d+5)_{1}\right. \\
& \frac{1}{2}(d+1)_{2} \frac{1}{2}(d-1)_{3} \frac{1}{2}(d+1)_{1} \frac{1}{2}(d-3)_{2} \\
& \left.\cdots 3_{3} 4_{1} 2_{2}\right]\left[3_{2} 5_{1} 4_{3} 5_{2} 7_{1} 6_{3} \cdots \frac{1}{2}(d+3)_{2} \frac{1}{2}(d+7)_{12} \frac{1}{2}(d+5)_{3}\right]\left[\frac{1}{2}(d+7)_{32}(d+9)_{1}\right. \\
& \frac{1}{2}(d+5)_{2} \frac{1}{2}(d+7)_{2} \frac{1}{2}(d+11)_{12} \frac{1}{2}(d+9)_{3} \cdots(d \quad 2)_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left.(d-1)_{1}(d-3)_{2}(d-2)_{2} d_{1}(d-1)_{3}\right] \\
& d_{2} 1_{1} 0_{3} 1_{2} 0_{2} d_{3} 0_{1}
\end{aligned}
$$

* Omit this sequence when $d=11$.

Case (ii): $d \equiv 1$ modulo $4, d \geqslant 5$.
Develop each of the following two one-factors modulo $d+1$:
(I)

$1_{1} 1_{2}$	$2_{2} 0_{3}$	$\frac{1}{2}(d+7)_{12} \frac{1}{2}(d+3)_{3}$	
$3_{1} 5_{2}$	$4_{2} 1_{3}$	$\frac{1}{2}(d+11)_{12}(d+5)_{3}$	$\infty \frac{1}{2}(d+3)_{1}$
$5_{1} 9_{2}$	$6_{2} 2_{3}$	$\frac{1}{2}(d+15)_{1} \frac{1}{2}(d+7)_{3}$	$a_{1}(d-2)_{2}$
\vdots	\vdots	\vdots	$a_{2} \frac{1}{2}(d+1)_{3}$
$(d-2)_{1}(d-6)_{2}$	$(d-1)_{2} \frac{1}{2}(d-3)_{3}$	$\frac{1}{2}(d-1)_{1} d_{3}$	$a_{3} d_{1}$
	$0_{2 \frac{1}{2}(d-1)_{3}}$		

(II)

$1_{1} 2_{2}$	$\frac{1}{2}(d+5)_{2} 0_{3}$	$0_{1} \frac{1}{2}(d-1)_{3}$	
$3_{1} 6_{2}$	$\frac{1}{2}(d+9)_{2} 1_{3}$	$2_{1} \frac{1}{2}(d+1)_{3}$	$\infty \frac{1}{2}(d+1)_{2}$
$5_{1} 10_{2}$	$\frac{1}{2}(d+13)_{2} 2_{3}$	$4_{1} \frac{1}{2}(d+3)_{3}$	$a_{1} d_{3}$
\vdots	\vdots	\vdots	$a_{2} d_{1}$
$(d-2)_{1}(d-5)_{2}$	$\frac{1}{2}(d-3)_{2} \frac{1}{2}(d-3)_{3}$	$(d-1)_{1}(d-1)_{3}$	$a_{3}(d-1)_{2}$

The remaining edges in \mathscr{G}_{d} can be arranged into two hamiltonian cycles, viz.:

$$
\begin{array}{ll}
d=5 & 0_{1} 1_{1} 0_{2} 2_{1} 1_{2} 3_{1} 2_{2} 1_{3} 0_{3} \infty 3_{3} 2_{3} 3_{2} 4_{1} a_{1} 5_{1} 4_{2} a_{2} a_{3} 5_{3} 4_{3} 5_{2} 0_{1} ; \\
& 0_{1} 4_{2} 3_{3} 4_{1} 2_{2} 3_{2} 5_{1} 4_{3} \infty 1_{3} 2_{1} 3_{1} 2_{3} a_{3} a_{1} a_{2} 5_{2} 1_{1} 0_{3} 1_{2} 0_{2} 5_{3} 0_{1} . \\
d \geqslant 9 & 0_{1} 1_{1} 0_{2} 2_{1} 1_{2} 3_{1} 2_{2} 1_{3} 0_{3} \infty\left[\frac{1}{2}(d+1)_{3} \frac{1}{2}(d-1)_{3} \cdots 3_{3} 2_{3}\right] 3_{2}\left[4_{1} 5_{1} 4_{2} 5_{2} \cdots\right. \\
& \frac{1}{2}(d+3)_{1} \frac{1}{2}(d+5)_{12}(d+3)_{2} \frac{1}{2}(d+5)_{2} \frac{1}{2}(d+3)_{3} \\
& \frac{1}{2}(d+5)_{3}\left[\frac{1}{2}(d+7)_{1} \frac{1}{2}(d+9)_{1}\right. \\
& \frac{1}{2}(d+7)_{2} \frac{1}{2}(d+9)_{2} \frac{1}{2}(d+7)_{3} \frac{1}{2}(d+9)_{3} \cdots(d-3)_{1}(d-2)_{1}(d-3)_{2} \\
& \left.(d-2)_{2}(d-3)_{3}(d-2)_{3}\right]^{*}(d-1)_{1} \\
& a_{1} d_{1}(d-1)_{2} a_{2} a_{3} d_{3}(d-1)_{3} d_{2} 0_{1} ; \\
& 0_{1}(d-1)_{2}\left[(d-2)_{3}(d-1)_{3} d_{1}(d-2)_{2}(d-1)_{1}(d-3)_{2}(d-4)_{3}\right. \\
& (d-3)_{3}(d-2)_{1} \cdots \cdot \frac{1}{2}(d+5)_{3} \\
& \left.\frac{1}{2}(d+7)_{3} \frac{1}{2}(d+9)_{1}(d+5)_{2} \frac{1}{2}(d+7)_{1}(d+3)_{2}\right]\left[\frac{1}{2}(d+1)_{3} \frac{1}{2}(d+3)_{1} \frac{1}{2}(d-1)_{2}\right. \\
\left.\frac{1}{2}(d-3)_{3} \frac{1}{2}(d-1)_{1} \frac{1}{2}(d-5)_{2} \cdots 3_{3} 4_{1} 2_{2}\right]\left[3_{2} 54_{3} 5_{2} 7_{1} 6_{3} \cdots \frac{1}{2}(d+1)_{2}\right. \\
& \left.\frac{1}{2}(d+5)_{1} \frac{1}{2}(d+3)_{3}\right]_{\infty} \\
& 1_{3} 2_{1} 3_{1} 2_{3} a_{3} a_{1} a_{2} d_{2} 1_{1} 0_{3} 1_{2} 0_{2} d_{3} 0_{1} .
\end{array}
$$

* Omit this sequence when $d=9$.

The value $d=3$ remains to be dealt with. Develop each of the following one-factors modulo 4:

$$
\begin{array}{cccc}
1_{1} 1_{2} & \infty 2_{1} & 0_{1} 1_{2} & \infty 2_{2} \\
0_{2} 1_{3} & a_{1} 3_{2} \\
2_{2} 0_{3} & a_{2} 3_{3} ; & 0_{2} 0_{3} & a_{1} 1_{3} \\
0_{1} 2_{3} & a_{3} 3_{1} & 2_{3} & a_{2} 2_{1} \\
3_{1} 3_{3} & a_{3} 3_{2}
\end{array} .
$$

The remaining edges in \mathscr{G}_{3} can be arranged into two hamiltonian cycles:

$$
\begin{aligned}
& 0_{1} 1_{1} 0_{2} 2_{1} 1_{2} 0_{3} 1_{3} 2_{2} 3_{1} 2_{3} \infty 3_{3} a_{3} a_{1} a_{2} 3_{2} 0_{1} \\
& 0_{1} 2_{2} a_{2} a_{3} 2_{3} 3_{2} 1_{1} 0_{3} \infty 1_{3} 2_{1} a_{1} 3_{1} 1_{2} 0_{2} 3_{3} 0_{1}
\end{aligned}
$$

This completes the proof of Lemma 3.1.
Theorem 3.2 Let d be an odd integer, $d \geqslant 3$. If $n=3 d+7$ or n is even and $n \geqslant 6 d+14$, then there is a d-set in K_{n}.

Proof. Apply Lemma 3.1 and the remark preceding it. Then apply Corollary 2.6 .

It remains to be shown that for each even integer $n, 3 d+9 \leqslant n \leqslant 6 d+12$, there exists a d-set in K_{n}. We begin by considering the case $n \geqslant 4 d+8$.

Theorem 3.3 For each odd integer $d \geqslant 3$ and each even integer $n, 4 d+8 \leqslant n \leqslant$ $6 d+12$, there exists a d-set in K_{n}.

Proof. Let H be the graph $\mathscr{G}_{d} \vee K_{n-(3 d+7)}$ (where \vee denotes the usual join function). Let $t=n-(3 d+7)$; then $d+1 \leqslant t \leqslant 3 d+5$. Let $\left\{F_{1}, F_{2}, \ldots, F_{2 d+6}\right\}$ be the one-factorization of \mathscr{G}_{d} constructed in Lemma 3.1, and let $\left\{F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{t-(d+1)}^{\prime}\right\}$ be a collection of $t-(d+1)$ mutually disjoint one-factors in K_{t}. We construct our d-set as follows.

For each $i=1,2, \ldots, t-(d+1)$ take the one-factors $E_{i}=F_{i} \cup F_{i}^{\prime}$.
There remain in \mathscr{G}_{d} the one-factors $F_{t-d}, F_{t-d+1}, \ldots, F_{2 d+6}$ which among them contain $(3 d+7) \cdot \frac{1}{2}(2 d+6-(t-d)+1)=(3 d+7) \cdot \frac{1}{2}(3 d+7-t)$ edges. Apply Lemma 2.7 with $c=3 d+7$ to partition this set of edges into $3 d+7$ matchings $M_{1}, M_{2}, \ldots, M_{3 d+7}$, each with $\frac{1}{2}(3 d+7-t)$ edges. For each $j=1,2, \ldots, 3 d+7$ the matching M_{j} covers all but a set S_{j} of t vertices; since the union of all matchings M_{j} is a regular graph of valency $3 d+7-t$ each vertex in \mathscr{G}_{d} is contained in exactly t of the sets S_{j}. Now we apply Lemma 2.8 to construct a set $M_{1}^{\prime}, M_{2}^{\prime}, \ldots, M_{3 d+7}^{\prime}$ of matchings on H where each M_{j}^{\prime} matches the vertices of S_{j} to the vertices of K_{t}. For each $j=1,2, \ldots, 3 d+7$ take the one-factor $E_{j}=M_{j} \cup$ M_{j}^{\prime}.

The set of one-factors $\left\{E_{i}: 1 \leqslant i \leqslant t-(d+1)\right\} \cup\left\{E_{j}: 1 \leqslant j \leqslant 3 d+7\right\}$ then consistutes a maximal set (the complement of their union cannot contain a one-factor, since we have noted previously that $\overline{\mathscr{G}}_{d}$ contains no one-factor), and so a d-set as required.

Finally, we turn our attention to the case where $3 d+9 \leqslant n \leqslant 4 d+6$. Let $d \geqslant 3$ be given, and for each $w=3,5, \ldots, d$ let \mathscr{G}_{d}^{w} be the graph obtained from \mathscr{G}_{d} as follows: First we remove the vertex 0_{3}. Next, we consider the subgraph \mathscr{H}_{d} of \mathscr{G}_{d} spanned by the vertices $\left(\left(\mathcal{Z}_{d+1}-\{0,1\}\right) \times\{3\}\right) \cup\left\{a_{3}\right\}$ (these are precisely the vertices which are not adjacent to 0_{3} in \mathscr{G}_{d}); this subgraph forms a d-cycle minus an edge. Relabel the vertices of \mathscr{H}_{d} with the elements of \boldsymbol{Z}_{d} so that the edges form the path $0,2,4, \ldots, d-2$. Now we add $(w-1) \cdot \frac{1}{2}(d-w)$ new edges to this subgraph: for each $i=0,1, \ldots, w-2$ add the edges in the set

$$
E(i)=\left\{(i-j, i+j): \frac{w+1}{2} \leqslant j \leqslant \frac{d-1}{2}\right\} .
$$

Note that if $w=d$ then $E(i)=\emptyset$ for each $i=0,1, \ldots, d-2$ (whence no new edges are being added).

For each $i=0,1, \ldots, w-2$ let $V(i)$ be the $d-w+1$ vertices in the set

$$
\{i\} \cup\left\{i-j, i+j: \frac{w+1}{2} \leqslant j \leqslant \frac{d-1}{2}\right\}
$$

(i.e. the vertex i together with the vertices covered by the edges in $E(i)$), and let $V(w-1)$ be the $d-w+1$ vertices in the set $\{w-1, w, \ldots, d-1\}$.

Lemma 3.4. The graph \mathscr{G}_{d}^{w} has $3 d+6$ vertices and has edge-coloring number $\chi\left(\mathscr{G}_{d}^{N}\right) \leqslant 2 d+5+w$.

Proof. The graph \mathscr{G}_{d} has edge-coloring number $2 d+6$ (Lemma 3.1). Since each set of edges $E(i)$ forms a matching in $\mathscr{\mathscr { G }}_{d}^{w}$ and there are $w-1$ of these matchings it follows that $\chi\left(\mathscr{G}_{d}^{w}\right) \leqslant 2 d+6+w-1=2 d+5+w$.

The graph \mathscr{G}_{d}^{w} has

$$
\frac{(3 d+7)(2 d+6)}{2}-(2 d+6)+(w-1) \cdot \frac{1}{2}(d-w)=(2 d+5+w) \cdot\left(\frac{3 d+6-w}{2}\right)
$$

edges. From Lemma 3.4 we can now apply Lemma 2.7 (with $c=2 d+5+w$) to construct an edge decomposition of $\mathscr{G}_{d}^{\prime \prime}$ into matchings $M_{1}^{\prime}, M_{2}^{\prime}, \ldots, M_{2 d+5+w}^{\prime}$, each with $(3 d+6-w) / 2$ edges. For each $j=1,2, \ldots, 2 d+5+w$ let S_{j}^{\prime} be the vertices in \mathscr{G}_{d}^{w} which are not covered by the matching M_{j}^{\prime}.

Let us now turn our attention to the sets $V(i)$ defined prior to Lemma 3.4. These sets form the rows in the following $w \times(d-w+1)$ array written on \boldsymbol{Z}_{d} (where $w=d$, the array consists of the first column only):

0	$\frac{1}{2}(w+1)$	$\frac{1}{2}(w+3)$	\cdots	$d-\frac{1}{2}(w+1)$
1	$\frac{1}{2}(w+3)$	$\frac{1}{2}(w+5)$	\cdots	$d-\frac{1}{2}(w-1)$
\vdots	\vdots	\vdots		\vdots
$w-2$	$\frac{1}{2}(3 w-3)$	$\frac{1}{2}(3 w-1)$	\cdots	$\frac{1}{2}(w-5)$
$w-1$	w	$w+1$	\cdots	$d-1$.

A simple rearrangement of the symbols in the first column and last row (namely, $k \rightarrow k+(w-1) / 2(\bmod d))$ transforms the above array into one which contains each symbol at most once in each column; for each $i=1,2, \ldots, d-w+1$ let S_{i} be the set of vertices in \mathscr{G}_{d}^{w} represented by the i th column in the transformed array.

Lemma 3.5. The sets $S_{j}^{\prime}, j=1,2, \ldots, 2 d+5+w$ together with $S_{i}, i=$ $1,2, \ldots, d-w+1$ form a collection of $3 d+6 w$-sets with the property that each vertex in \mathscr{Y}_{d}^{w} is contained in exactly w of them.

Proof. Let x be a vertex in $\mathscr{G}_{d}^{\mathcal{N}}$. If x is not a vertex of \mathscr{H}_{d} then x has degree $2 d+5$ in \mathscr{G}_{d}^{w} and so will be contained in w of the sets S_{j}^{\prime}. Since each S_{i} is a subset of the vertices of \mathscr{H}_{d}, x will not be contained in any of these sets.
Now let x be a vertex of \mathscr{H}_{d}. Then x has degree $2 d+6+k$ in $\mathscr{G}_{d}^{\mathcal{W}}$ where k is the number of matchings $E(i)$ that cover x. Hence, x is not contained in $2 d+5+$ $w-(2 d+6+k)=w-k-1$ of the matchings M_{j}^{\prime} and thus is in $w-k-1$ of the sets S_{j}^{\prime}. Now $k=\#$ matchings $E(i)$ that cover $x=\#$ (sets $V(i)$ that contain x) $-1=\#$ (sets S_{i} that contain x) -1 ; that is, x is contained in $k+1$ of the sets S_{i}. In total then x is contained in $w-k-1+k+1=w$ sets. That each set S_{i}, S_{j}^{\prime} contains w vertices follows from their definitions.

We are now in a position to prove the following.

Theorem 3.6. For each odd integer $d \geqslant 3$ and each even integer n with $3 d+9 \leqslant$ $n \leqslant 4 d+6$ there is a d-set in K_{n}.

Proof. Let $w=n-(3 d+6)$; then w is odd and $3 \leqslant w \leqslant d$. Take the graph $\mathscr{G}_{d}^{w} \vee \bar{K}_{w}$. From Lemma 2.8 and Lemma 3.5 the edges joining \mathscr{G}_{d}^{w} to \bar{K}_{w} can be arranged into $3 d+6$ matchings $M_{1}, M_{2}, \ldots, M_{3 d+6}$ where for each $j=$ $1, \ldots, 2 d+5+w M_{j}$ is matching from S_{j}^{\prime} to \bar{K}_{w}. Recalling that S_{j}^{\prime} is the set of vertices not covered by the matching M_{j}^{\prime} in \mathscr{G}_{d}^{w}, we now form the graph \boldsymbol{H} by taking as its edges the union of the one-factors $M_{j}^{\prime} \cup M_{j}$ on $\mathscr{G}_{d}^{w} \vee \bar{K}_{w}$, for $j=1, \ldots, 2 d+5+w$. Then $\overline{\boldsymbol{H}}$ is a d-regular graph on $n=3 d+6+w$ vertices. It remains to be shown that $\overline{\boldsymbol{H}}$ has no one-factor. To see this, note that the graph \boldsymbol{H} can be considered as being constructed from \mathscr{G}_{d} by replacing the vertex 0_{3} in \mathscr{G}_{d} by w new vertices $x_{1}, x_{2}, \ldots, x_{w}$, replacing each edge $\left(v, 0_{3}\right)$ in \mathscr{Y}_{d} by w new edges $\left(v, x_{1}\right),\left(v, x_{2}\right), \ldots,\left(v, x_{w}\right)$ and then adding some edges to the subgraph spanned by the vertices of $\mathscr{H}_{d} \cup\left\{x_{1}, x_{2}, \ldots, x_{w}\right\}$. In particular then (referring back to the definition of \mathscr{G}_{d}) removing the vertex ∞ from $\overline{\boldsymbol{H}}$ will create an odd component on the vertices $\left(\boldsymbol{Z}_{d+1} \cup\{a\}\right) \times\{1\}$ and a second odd component on the vertices $\left(\boldsymbol{Z}_{d+1} \cup\{a\}\right) \times\{2\}$ (just as happened in $\overline{\mathscr{G}_{d}}$). By Tutte's Theorem $\overline{\boldsymbol{H}}$ therefore contains no one-factor.

Collecting the results of Theorems 3.2,3.3 and 3.6 we get the main result of this section.

Theorem 3.7. For each odd integer $d \geqslant 3$ and each even integer $n \geqslant 3 d+7$ there is a d-set in K_{n}.

Conclusion

Theorems 2.4 and 3.7 together give us the spectrum for maximal sets of one-factors (Theorem 1.0): If n is a positive even integer then a maximal set of k mutually disjoint one-factors on n vertices exists if and only if either $2 \cdot\lfloor n / 4\rfloor+$ $1 \leqslant k \leqslant n-1$ and k is odd, or $\frac{1}{3}(2 n+4) \leqslant k \leqslant n-4$ and k is even.

Acknowledgments

The authors would like to thank J.A. Bondy for his proof of Lemma 2.8. The first author is supported in part by NSERC grant $P 36507$.

References

[0] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
[1] L. Caccetta and S. Mardiyono, On maximal sets of one-factors, in: Proc. 15th Australian Conf. on Combinatorial Maths. and Combinatorial Computing, to appear.
[2] L. Caccetta and W.D. Wallis, Maximal sets of deficiency three, Congr. Numer. 23 (1980) 217-227.
[3] A.G. Chetwynd and A.J.W. Hilton, Regular graphs of high degree are one-factorable, Proc. London Math Soc. (3) 50 (1985) 193-206.
[4] E.A. Cousins and W.D. Wallis, Maximal sets of one-factors, Lecture Notes in Math., Vol. 452, Combinatorial Mathematics III (Springer, Berlin, 1984) 90-94.
[5] J. Folkman and D.R. Fulkerson, Edge colorings in bipartite graphs, in: Bose and Dowling, eds., Combinatorial Mathematics and its Applications (Univ. N. Carolina Press, 1969) 561-577.
[6] E. Mendelsohn and A. Rosa, One-factorizations of the complete graph-a survey, J. Graph Theory 9 (1985) 43-65.
[7] J. Petersen, Die Theorie der regulären Graphs, Acta Math. 15 (1891) 193-220.
[8] A Rosa and W.D. Wallis, Premature sets of one-factors, or, how not to run a round-robin tournament, Discrete Appl. Math. 4 (1982) 291-297.
[9] W.D. Wallis, The smallest regular graphs without one-factors, Ars Combin. 11 (1981) 21-25.

