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1. INTRODUCTION 

Let f be a meromorphic function of finite order A satisfying the condition 
j(O) = 1. The sequence of zeros off, in their order of increasing magnitude, 
will be denoted by (a,); the sequence of poles by (6,). Let 

n(r, a>, N(r, a), m(r, a), w-2./-), w-Yf), J(a), (1) 

be the usual symbols of Nevanlinna Theory associated withf: In addition put 

n(r) = n(r, 0) + n(r, a), N(r) = N(r, 0) + N(r, 00 1, (2) 

and let 

m,k WI = , 2x ~~ “1‘ 1 w(reie)lP dB( (W=l~i?Ifl, l<P< 00). (3) 

Thus 

log M(r, j) = lim m,(r, w + ) 
D-m (4) 

and 

m I (r, w> = 2W-, f> - N-1 (5) 

by Jensen’s formula [ 15, p. 1251 sincef(0) = 1. 
When A is not an integer, the order of each of the functions in (I), (2), and 

(3) is at most A. Furthermore, comparison of the growth of any of these 
functions as r + co leads to non-trivial inequalities. The problem of obtaining 
best possible inequalities for limits of ratios of such functions is of great 
interest and difficulty. The known results about such problems may be 
summarized as follows: 
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Denote by .A =&A the class of all memomorphic functions having finite 
non-integral order ,I. Let B be the subclass of entire functions belonging to 
.N and let 9 be the subclass of entire functions having only real negative 
zeros. Let vn be the 2n-periodic function defined by 

vA(e) = d csc d cos Ie, -7T<e<n, (6) 

and use m,(vn) to denote its L@c, rc) mean. 
For each fixed p (1 < p < co) and for each class G? = (J?, 8, <%‘) of 

functions. define two constants 

K(P, @> = K(P, 1, fl> = w{lifn_~f(m,(r, w)/W-))I (7) 

where w = log If], and the sup is taken over all f E CT; 

k(p, 9) = k(p, A 9) = inf{liy+gp(m,(r, w)/N(r))l (8) 

where w = log ]f] and the inf is taken over all f E 9. 
With the above notation, one of the problems mentioned in the previous 

paragraph takes the following form: 

PROBLEM 1. Determine exact values of the constants defined in (7) 
and (8). 

The first results concerning Problem 1 were obtained by Edrei and Fuchs 
[5]. From their results we can deduce 

K(L 4.4 = m,(vn) (O<A< 1). (9) 

Hellerstein and Williamson [8] obtained the second result: 

K(1, A 9) = m,(v,J. (10) 

Miles and Shea [lo] completely settled the L, case: 

K(LA ~4 = m,(yl,). (11) 

Using (1 l), they were able to get the best bound known yet for K( I, 1, M). 
The L, case was considered by Abi-Khuzam [2], who obtained 

K(P, A 8) = q&J (O<IE<l,l<p<co). (12) 

Evaluation of the constant k(p, 1, B?) proved much easier. Thus Abi- 
Khuzam [2] obtained 

k(p, 4 9) = m,(v,J (1 <P < 00). (13) 
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The special case of (13) corresponding to p = 1, was obtained earlier by 
Ostrowski [ 131; see also [8]. The limiting case of (12) obtained by letting 
p + co, is the following old result of Valiron [ 161: 

KC% 4 8) = m,(w,J (O<l< 1). (14) 

We remark that, in each of the results mentioned above, equality is 
realized by canonical products of order L having regularly distributed real 
negative zeros [ 11. 

It will be noticed that all results stated above have the common 
assumption that L is not an integer. This is sort of necessary, since when L is 
an integer, the function N(r) may vanish identically and all previous 
inequalities, properly stated, will be trivial. 

If N(r) does not vanish, or even if N(r) has order & the ratio 
N(r)/m,(r, w) may still tend to 0 as r + co, when L is an integer. On the 
other hand, results of Edrei and Fuchs [6] imply that, if L is a positive 
integer, it is still possible to obtain good comparison theorems for m,(r, w); 
not with N(r) but, at any rate, with a function closely related to the zeros 
and poles off: The results of Edrei and Fuchs having been obtained under 
the assumption 6(O) + &co) = 2, it is natural to ask whether comparison 
theorems can be obtained in general. 

In this paper we propose to formulate and solve the analogue of 
Problem 1 for integral orders by employing, instead of N(r), a function S(I) 
defined in terms of N(r) only. Using S(T) we shall obtain 

(i) Comparison theorems for m,(r, w). 

(ii) Abelian theorems for log If 1, where f E 9. 

(iii) A characterization of sets of zeros and poles that have maximal 
deficiencies. 

(iv) Some remarks about the structure of the Taylor series of 
functions with real negative zeros. 

The function S(T) mentioned above is found as follows: Starting from the 
Fourier series representation 

w(re’“) = log ]f(re’“)l = F c,(r) eimO (15) 
m=-cc 

where f is a meromorphic function of positive integral order A, we find that 
the coefficient cl(r) behaves, in many instances, very much like a certain 
function s(r) and is in all cases dominated by S(I). For lrnl # A, we will have 
at a suitably chosen sequence r,, tending to co 

I Gdrl = 4sP)) (r=rn+ co). (16) 
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We thus conclude that w(re’“) behaves like s(r) ei” and obtain the 
comparison between m,(r, w) and s(r). As might be expected, restrictions on 
the zeros and poles offallow us to make the above analysis sharper, and we 
obtain new abelian theorems rather simply, as well as results on the 
deficiencies of functions whose zeros and poles are confined to certain 
sectors of the plane. 

2. STATEMENT OF RESULTS 

Let f be a meromorphic function of positive integral order q. Let A(N) be 
the order of the function N defined in (2). There are four distinct cases that 
may arise: 

(a> W) < 9; 

(b) A(N) = q, lm t-9-‘N(t) dt < +co, liin&frP9T(r,f) > 0; 

(c) A(N) = q, lrn tP9P’N(f)& < +co, liin&fY9T(r,f) = 0; 

(d) l(N) = q, ca, t-q-‘N(t) dt = 00. 

If f satisfies one of the conditions (a) or (b), then it is easy to show that 
N(r) = o(T(r, f)) as r + 00. This is a well-known case, thoroughly 
investigated by Edrei and Fuchs [6]. The results of Edrei and Fuchs [6] 
give, among other things, 

m,(r, w) - r9 I c(r)1 m,(cos qe> (r+ahl<p<co), (2.1) 

where 

(2.2) 

and oq is defined by the Taylor expansion 

logf(z) = f a,z” (2.3) 
n=, 

of logf(z) near 0. 
This paper is devoted to the study of the remaining cases (c) and (d), and 

we start by modifying our definitions of the classes A, 8, 9 of functions. 
Fix the positive integer q and denote by .k the class of all meromorphic 

functions f satisfying the following: 
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(i) f(0) = 1. 
(ii) order f = q. 

(iii) f satisfies exactly one of the above conditions (c) or (d). 
(iv) Near 0, iogfis given by (2.3). 

We denote by 8’ the subclass of entire functions belonging to .k and by 
5%’ the subclass of entire functions with only real negative zeros belonging to 
8. We always write w = log Ifi and retain the symbols defined in (1) (2) 
(3), as well as the symbol C(T) defined in (2.2). The conditions (c) and (d) 
stated al the beginning of this section will be referred to repeatedly. We 
introduct, in addition, a function S(T) as follows: 

s(r) = a”(r) = qt.9 Jrn t +‘N(t) df if f f .H and satisfies (c); 
r 

(2.4) 

= a(r) = qrq 1’ t-@N(t) dt 
fl 

if f E .A? and satisfies (d). 

We are now ready to state our results. 

THEOREM 1. For each f E .A and for each fixed p (1 < p < co), we 
have 

lilm_ zf { Qr, w)/s(~)} < m,(cos q0). (2.5) 

Furthermore, this inequality is sharp. 

Complementary to Theorem 1 we have 

THEOREM 2. For each f E 9 and for each fixed p (1 <p < co), we 
have 

lim sup {m,(r, w)/s(r)} > m,(cos 48). 
r-rm 

(2.6) 

For functions f in the class 9, it is even possible to obtain the asymptotic 
behavior of log 1 f 1 on a sequence of circles tending to infinity: 

THEOREM 3. Let f E 9. Then there exists a sequence {x,, } of real 
numbers increasing to infinity such that: 

(i) iff satisf?es (c) then, as x, -+ 00, 

log /f(x,e”)l = { (- 1 )*+ ’ cos qS] s(x,) + o(s(x,)) (2.7) 

uniformly in --n + 6 < 8 < 71 - 6, where 0 < 6 < IZ. 



THE GROWTH OF MEROMORPHIC FUNCTIONS 461 

(ii) iff satisfies (d) then, as x, + 00, 

log If(x,eie)l = { (-l)q cm 94 4%) + 4S(X”)) (2.8) 

uniformly in -Z + 6 < e < II - 6. 

Let 

f(z) = 5 “fx (2.9) 
n=o 

be the Taylor’s series expansion about the origin of a function f E 9. As an 
immediate consequence of Theorem 3 we have: 

THEOREM 4. Let f E 9 be of order q. If f satisfies (c) and q is even or, 
iff satisfies (d) and q is odd, then the coeflcients f, off change their sign 
infinitely often. 

Shea [ 141 has shown that entire functions with only real negative zeros 
and positive integral order have only one possible deficient value, namely 
zero. We extend Shea’s result to meromorphic functions by allowing the 
zeros and poles to lie in certain sectors. 

THEOREM 5. Let f E d be of order q. Assume that the zeros off belong 
to the set D,(Q q) and that its poles belong to the set D,(v, rp), where 0 < 
rl < z/29, a, E [0,27r) and 

D,@LP)= 6 lz: Iargz-v-7c(W)l<vl 
j=O 

q-1 

D&L v> = u {z: larg z - v1- 743 + l)/ql < ~1. 
j=O 

(2.10) 

Then 0 and 00 are the only possible deficient values off: 
If, in addition, as r + co 

N(r) - rqL(r) (2.11) 

where L is a slowly varying function, then 

m,(r, w) - rq I WI m,(cos s@ (2.12) 

and 0 and co have each deficiency 1. 

The implication (2.11) =c- (2.12) above, generalizes an Abelian theorem in 
[I]. Our next result represents a stronger form of this theorem: 
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THEOREM 6. Let f be as in Theorem 5 and let s(r) and c(r) be the 
functions defined in (2.4) and (2.2). Let the assumption (2.11) be replaced by 
the weaker assumption 

s(r) - rqL(r) (2.13) 

where L is a slowly varying function. Then, ]c(r)] is a slowly varying 
function, (2.12) holds true, 0 and US are maximally deficient values off and, 
iff E P, 

log Wr,f) - rq lc(r>l (r + 00). (2.14) 

An Abelian theorem of Bowen [3] asserts that if f E 9, and satisfies 
(2.1 l), then s(r) is regularly varying and the conclusions of our Theorem 3 
hold globally. We can give a stronger result as follows: 

THEOREM 7. Let f E .W and assume that s(r) satisfies (2.13). Then the 
conclusions of Theorem 3 hold true for every sequence {x,) tending to 
infinity. 

It is natural to inquire whether a condition weaker than (2.11) can still 
make 0 and co maximally deficient values off. Our next Theorem charac- 
terizes those sets of zeros and poles that have maximal deficiencies. 

THEOREM 8. Let f be a meromorphic function of finite order A 
(1 < ,I < CD) and satisfying f(0) = 1. Let {a,,}, {b,} be the zeros and poles of 
f Put q = [A] and define c(r) by (2.2). A necessary and suflcient condition 
for 0 and CIO to be maximally deficient values off is that the following two 
conditions hold true: 

(i) ]c(r)] is a slowly varying function; 
(ii) N(r) = o(rq ]c(r)]) (r -+ 00). 

In particular, under (i) and (ii), f is of positive integral order q and (2.12) 
holds true. 

3. A GROWTH LEMMA 

Let f E .H and let N be the associated function defined in (2). Recall that 
the order of N is a positive integer q, and put 

b(r, m) = rm Ji t-“-IN(t) dt (m integer, r > 0). (3.1) 

Thus the function a(r) defined in (2.4) satisfies a(r) = qb(r, q). 
The following Lemma is fundamental to the proofs in this paper. 
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LEMMA 1. 

(I) If sr CC-%(~) dt = +a~, then there exists a sequence (r,, } 
increasing to infinity such that 

N(r) = o@(r)) (r=r,-+ a); (3.2) 

b(r, 4 = oW>> (r = r, -+ 00, 1 < m < 9, 4 > 2). (3.3) 

(II) If j: tw9-‘N(t) dt < + co then, in addition to a sequence {r,} 
satisfying (3.2) and 3.3), there exists a (possibly dzfirent) sequence {t,) 
increasing to infinity such that 

N(r) = o(a *(r)) 

b(r, m) = o(a*(r)) 

(r = t, + 03); 

(r = t, -+ 00, 1 < m < q, q > 2). 

(3.4) 

(3.5) 

Proof of (I). Since f E A, the function N has order q and so the function 
a(r) has order q. By a well-known result on proximate orders [9, p. 35, 
Theorem 161, there exists a slowly varying function L and a sequence {r,} 
increasing to infinity such that 

a@-,> = rWr,), a(r) < r9L(r) (r > 0). 

Thus 

I 
r 
or- qp ‘N(t) dt < L(r) if r>O 

= L(r) if r = r,. 

Let cr > 1 be fixed. Then (3.6) and the slow variation of L imply 

j 
;rt+N(t)dr- j;t-q-lN(r)df 

from which follows 

(r=rn+ CO) 

I 

or 

tF-lN(t)dt=o t-q- ‘N(t) dt 
r 

Consider now the inequalities 

1 I..,, t-q-1 N(t) dt Q rpqN(r) qel(uq - 1) < uq J, teq-‘N(t) dt. 

(r=rn+ co). (3.8) 

(3.6) 

(3.7) 

(3.9) 

4091 IO2/2- 12 
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Combining (3.8) and the second inequality of (3.9) we obtain in view of the 
definition of b(r, q): 

rqN(r) = o(r-qb(r, q)) = o(r-“a(r)) 

Now (3.2) follows immediately from (3.10). 
The first inequality in (3.9) and (3.10) give 

J ;-I. t- “-‘N(t) dt = o(Pb(r, q)) 

and this in turn implies 

.a-‘r 
! 0 

t-vv(t)dt- o’tmv(t)dt 
J 

(r=r,-, co). (3.10) 

(r=r,+ al), (3.11) 

(r=r,- 00). (3.12) 

We now prove (3.3). Since b(r, m) < b(r, q - 1) for 1 6 m < q and q > 2, 
it suffkes to prove (3.3) for m = q - 1. Starting from req+‘b(r, q - l), where 
q > 2, an integration by parts together with some obvious estimates gives 

r-q+‘b(r, q - 1) 

r 
r = 

I 
tCqN(t) dt = r 

0 I 
o tpq--IN(t) dt - j; [j; s-q-‘N(s) ds] dl 

~rjorfU-‘N(i)di-(l-o~‘)rj”~‘r~~q-l.lr(s)ds. (3.13) 
0 

From (3.12) and (3.13) we conclude that 

w,>q- 1) <a-l 

liy2ip b(r,, q) ’ (a > 1, 4 > 2). (3.14) 

Since o > 1 was otherwise arbitrary, (3.14) implies 

W, 4 - 1) = o(W, 4)) = o@(r)) (r=r,-t co). (3.15) 

This completes the proof of (3.3). 

Proof of (II). Suppose that J”: teq-‘N(t) dt < +a~. An easy differen- 
tiation shows that the function rq j”y t-q-‘N(t) dt is increasing and the ine- 
qualities 

q-‘N(r) < rq jm t-q-lN(t)dt < rq jm t-q-lN(t)dt, 
I 0 

imply that it has order q, since N has order q. Applying Edrei’s Lemma [4, 
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p. 861 to rq iy t-4-1N(t) dt, we conclude that there exists sequences {r,) 
and {t,} increasing to infinity, and a positive sequence {<,} such that 

r =tmJK m 9 t,--+oO, cm-0 (3.16) 

and such that 

s 
m 

s +W(s)ds < (1 + C-)!‘a s--V(s) ds (t, < t < rm), (3.17) 
t pm 

and 

(t, < t < r,,J. (3.18) 

We propose to show that the sequence {tm} satisfies (3.4) and (3.5). 
From (3.17) and the fact that j? s~~-‘N(s) ds is decreasing we conclude 

that 

( 

00 
s-~- ‘N(s) ds - S-~-IN(S) ds (m + al). (3.19) 

tnl 

For 0 < t < r, the equality 

i 

cc 
t s -q-2N(s) ds 

t 

I 
Cc 

= s-q-1N(s) ds - t s-q-lN(s)dsj du, (3.20) 
t 

together with some obvious estimates, gives 

i 

cc 
t s -q-2N(s) ds 

t 

I 

Cc 

0 

cc 

< s-q-lN(s)ds-t ~-~-lN(s)ds (-r-l + t-‘). (3.21) 
t r 

In (3.21), put t = t,, r = rm and then divide by i,“, s-~-‘N(s) ds. In view of 
(3.19) and (3.16), this gives 

I 

co 00 
t s-q-2N(s)ds=o S-~-IN(S) ds) (t = t, + co). (3.22) 

t 

Now the inequality q-‘reqN(r) < r J”? s-~-‘N(s) ds, where q > 2, the 
definition of a*(r) and (3.22) imply (3.4). 
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To prove (3.5) it suffices, once again, to consider only the case m = q - 1, 
where q > 2. Starting from the equality 

1 
1 

I 
cc 

s 4N(~) ds = -t s-q-‘N(s) ds + s-q-1N(s) ds) du, (3.23) 
0 t 

we put t = t, and apply (3.17) and (3.18). This gives 

1 

trn 

I 

cc 
s-N(s) ds < -t, SC--IN(s) ds 

0 ftrl 

u 
m 

+o s -“-‘N(s) ds). 
r!n 

(3.24) 

Dividing both sides by t, s,“, S-~-IN(S) ds, and noting that, by (3.16), 
(r,/t,)“m + 1 as m + co, we obtain in view of (3.19), 

I 

1, 

t I’ 

cc 

scqN(s) ds = o t, s-q-‘N(s) ds (m-, co). (3.25) 
0 1, 

Now (3.5) follows immediately from (3.25). This finishes the proof of 
Lemma 1. 

Remark. The conclusions of part (I) of Lemma 7 hold true if the 
sequence {r,} there is taken to be a sequence of polya peaks of a(r). The use 
of proximate orders there appears necessary for one of the conclusions of 
Lemma 5 of the next section. 

4. THE FOURIER COEFFICIENTS 

In this section we present some results for the Fourier coefficients 

w(re’“) eeime dB 
7t 

of w(re’“) = log If(re’“)l. 
Let f E A and recall that logf(z) = Cz,r a,zm for z near 0. For 

positive real I and integral m the function 

b(r, m) = r”’ j: t-“-lN(t) dt, (4.1) 
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was introduced in Section 3. Using this function we define a sequence 
{y,(r)}:=, as follows: 

y,(r) = fm{b(r, m) - b(r, -m)} + N(r) (4.2) 

J 

cc 

y,(r) = +mb(r, -m) + jmr” 
r t- 

“-‘N(t) dt - N(r) (m > s>- 

Our first lemma in this section is an important observation of Miles and 
Shea [lo, 111. 

LEMMA 2. With the above notation, we have 

I c&>l G Wr). 
Mr>l G f la, I rm + y,(r) (1 < m < 4). 
IcA9 G y&-> (m>s+ 1). 

c-,(r) = c,(r) (m > 0). 

(4.3 ) 

Furthermore, the sequence {y,,,(r)} satisfies 

Cm + 1) Ym+ ,(r> G my,(r) (m>q+ 1). (4.4) 

Proof. The proof of (4.3) is given in [ 10, p. 3801. The proof of (4.4) is 
given in [ 181, p. 141. Clearly, (4.4) implies that {y,(r)},>, is, for each fixed 
r > 0, a decreasing sequence. In this connection, it may be of interest to 
point out that it is in fact a convex sequence. 

Our next lemma concerns the coefficient c&r). 

LEMMA 3. Let f E A? be of order q. 

(I) Iff satisfies (d), then 

IQ9 < SW + oMr>) + WW) (r--t co). (4.5) 

(II) rff satisfies (c), then 

IQ9 G h*(r) + WW-1) (r -+ a~). (4.6) 

Proof of (I). If f satisfies (d), then j: t Cm ‘N(t) dt = co, and so, by 
(4.3), 

Ic,W < oMr>> f y,(r) 
= o(a(r)) + fa(r) - fqb(r, -q) t N(r). 

(4.7) 
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Now (4.5) follows from (4.7) and the inequality 

b(r, -4) = req 
I 

r tq-‘IN(t) dt < q- ‘N(r). 
0 

Proof of (II). If f satisfies (c), then the constant a9 defined in (2.3), is 
given by 

-qa, = x a;9 - 1 b;q 
n=1 n=l 

(4.8) 

both series being absolutely convergent. Now cq(r) is given by [lo, p. 3791 

(4.9) 

Thus if we use (4.8) in (4.9), do an obvious simplification, and then apply 
the triangle inequality as in [lo], we obtain 

(4.10) 

where n(t) = n(t, 0) + n(t, co). Integrating twice by parts and doing some 
obvious estimates we arrive at (4.6). 

Further improvements of (4.5) and (4.6) are possible if the zeros and poles 
are suitably restricted. 

LEMMA 4. Let f E 9 be of order q. 

(I) Iff satisfies (d), then 

I2c,W - C-1)’ a(r)I = oW>> + W(r)) (r + as). (4.11) 

(II) If f satisfies (c), then 

12c,(r) - (-l)q+l a*(r)1 = O(N(r)) (r -+ m). (4.12) 

Proof: Since f E 2, only the sum involving a, appears in (4.9). Writing 
the sum as a Stieltjes integral we obtain 

1 
es(r) = T aq r4 + yj-1 1 (;I” - (;jq/ dn(t) (4.13) 
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and this simplifies, as in Lemma 3, to 

cq+-yjrm 1 (;I’- (;)‘I dn(t) (4.14) 

if f satisfies (d). 
Now (4.11) and (4.12) follow easily from (4.13) and (4.14). 
We next compare the growth of the coeffkients C,(I) of w with the growth 

of S(T) at the sequences (r, } and ( fn } of Lemma 1. 

LEMMA 5. Let {r,} and {t,} be the sequences obtained in Lemma 1. 

(I) Iff satisfies (d), then 

I M9l= o@(r)) (lmlfq, r=r,+a), (4.15) 

and 

lim sup Icqcr)’ < -!l- (4.16) 
T=r”-+* a(r) 2 ’ 

(II) Iff satisfies (c), then 

Iem = o@*(r)) (Iml f 4, r = t, 4 a,), (4.17) 

and 

lim sup ‘cq(r” < -!- 
r=t,+m a *o’ 2’ 

(4.18) 

ProoJ: The assertions in (4.16) and (4.18) follow immediately from (4.5), 
(4.6) and (3.2) and (3.4). 

For 1 < 1 m I < q and q > 2, the assertions (4.15) and (4.17) follow 
immediately from Lemma 2, (4.2) and (3.3) and (3.5). 

Suppose next that Irnl > q. By Lemma 2, we have 

BY (4.2), 

IcArl G h&9 G yq+ k9. (4.19) 

qt1 m 
i r t- 

q- *N(t) dt. (4.20) 

Iff satisfies (c), then (3.4) and (3.22) applied in (4.20) imply 

y,+,(r)= o rqja tpq-‘N(t) dt) (r= t,-, co). (4.21) 
I 

For lrnl > q, (4.17) now follows from (4.19) and (4.21). 
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If f satisfies (d), then (4.20) still holds true, but the integral appearing 
there is estimated by use of (3.6). Integrating by parts and using (3.6) we get 

I 

cc 
r4+1 s-~-~N(s) ds 

r 

t 
=-b(r,q)+rq+’ 

0 

s-q- ‘N(s) ds) dt 

,<-b(r,q)+rq+ljk(t)dt. (4.22) 
r 

Putting r = rn and dividing by b(r,,q) = (l/q) r$!,(r,) we see [7, p. 2731 
that the left-hand side of the resulting inequality approaches -1 + l/ 
(l-2 t 1 tOl)=O. F rom this, (3.2) and (4.20) we conclude that 

yq + I(r) = 44r)> (r=r,+ co). (4.23) 

For Im( > q, (4.15) now follows from (4.19) and (4.23). This finishes the 
proof of Lemma 5. 

5. PROOF OF THEOREM I 

Let f E A. Write 

w(re”) = log ] f (re’“)l - Y 
m=---m 

c,(r) eime 

and put 

G(re”) = w(re’“) - 1 c,(r) eimo. 
1ml<4 

Using the fact that the L,(-z, z) norm is a non-decreasing function of p 
together with Parseval’s identity, (4.3) and (4.4), we obtain, when 1 < p < 2, 

m,(r, a) Q m,(r, 6) = 1 ,S>, lM)l’~ 1’2 Q 1 ,lz, It(r)/ 1’2 

cJz(q+L)yq+~(r)~~~~m’jli2. (5.1) 
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If 2 < p < co, we apply the Hausdorff-Young theorem together with (4.3) 
and (4.4) to obtain 

m,(r, @,) < 2 (l’P’)(q + 1) &+Jr) 
1 

2 m-l. j ‘lP’ (5.2) 
m=l 

where I/” + l/p’ = 1. 
Let (u,} be the sequence defined as follows: 

24, = t, if f satisfies (c) 
P-3) 

=Y ?I if f satisfies (d). 

(This sequence will be used again and again in all subsequent proofs.) 
In (5.1) and (5.2) put Y = u,, divide by s(u,) and let U, -+ co. By 

Lemma 5, it follows that for 1 < p < co, 

1 1 & : I w(re’“) - c9(r) eiqe - Cqo epiqe Ip dO/ I” = o@(r)) (5.4) 
?I 

If cJu,) = 0 for all n > ‘t,, then (5.4) would imply that mO(r, W) = o@(r)) 
as r = U, --f co, and the conclusion of Theorem 1 will be true. Otherwise, we 
may select a subsequence, also denoted by {u,}, such that c,(u,) f 0 for all 
n. If we write Q(u,) for one of the determinations of the argument of c,(u,), 
then (5.4) takes the form 

(1 <P < 00) (5.6) 

as r= u,-+ co. 
Now Minkowski’s inequality, (5.6), (4.16) and (4.18) give (2.5). 

6. PROOF OFTHEOREM 2 

Letf f 9, then (5.4) holds true for w = log lfl. Inside the absolute value 
signs in (5.4), add and subtract (-1)9+’ a*(r) cos qB or (-1)9 a(r) cos q8 
according as f satisfies (c) or (d). If we then apply Minkowski’s inequality 
and Lemma 4, we obtain 

1 
?t 

I w(reie) - (-1)” a(r) cos qBIp dS[ I” 

< 4W) + 4w + wv)) (r = r, + 00 ) (6.1) 
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iff satisfies (d); while if f satisfies (c), we obtain 

i J 
&- 1 

II 
Iw(re’“) - (-l)q+’ u*(r) cos qBIp dfzf I” 

= o@(r)) + %w)) (r=t,+m). (6.2) 

Now another application of Minkowski’s inequality, (6.1), (6.2) and 
Lemma 1 lead to 

mp(r, w> - s(r) m,(cos se> (r=u,+co, l<p< co). (6.3) 

This implies (2.6) and proves the sharpness of (2.5) at the same time. Note 
that (6.3) is much stronger than (2.6). 

7. PROOF OF THEOREM 3 

Let f E 9 and write 

w(re’“) = log If(re’“)l = 5 c,(r) eime 
In= -cc 

For m > q, the sequence {c,(r)} is given by [lo] 

c,(r) = (- 1)” + ’ v,(r), 

where {y,(r)} is defined in (4.2). 

(4 < e < 77). (7.1) 

(7.2) 

Since, by Lemma 2, {y,(r)},,,>, is a non-decreasing sequence, it follows by 
partial summation that 

~~q2hklcosm~I <2i,,,i$ji yq+b-) (0<0<2n). (7.3) 

From (7.3), (7.2) and c-,(r) = c,(r) we get 

1 ,z, dWme / < 2 I csc (;j 1 ~~+dr) 

(-~+6<e<7c-d8,00k~). (7.4) 

Let {u,} be the sequence defined in (5.3). Then (7.1), (7.4) and Lemma 5 
give 

w(re’“) - cq(r) eiqe - cq(r) eCiqe = o@(r)) (7.5) 

as r = u,, tends to infinity, uniformly in --71 + 6 ( 6’ < 7~ - 6. Now (2.7) and 
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(2.8), with x, = u,, follow immediately from (7.5), Lemma 4, and Lemma 1. 
This finishes the proof of Theorem 3. 

Proof of Theorem 4. Let f satisfy the assumptions of Theorem 4, and 
suppose, to get a contradiction, that the coefficients f,, in its Taylor series 
(2.9) have a fixed sign from some point on, i.e., that there exist an integer 
‘1, > 0 such that 

f, is constant in sign for all n > n,. 

Then it is easy to see that, on 1 z\ = r, 

If (z)I G Kr”’ + If WI (r > Oh 

where K is a constant independent of r. 
Taking logarithms on both sides of (7.7) we obtain 

log If (z)l < log+ Kr”O + log ’ I f(r)1 + log 2 (O<r=izI). 

Under the assumptions of Theorem 4, (2.7) and (2.8) imply 

Wf(x,I= --s&J + ~W,)) (xn -+ 00). 

Now (7.9) and (7.8) imply that the maximum modulus off satisfies 

Wr, f) < K, rno (r = x,, K, = constant), 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

which is impossible since f is transcendental. Hence (7.6) is false and the 
coefficients f,, change their sign infinitely often. 

8. PROOF OF THEOREM 5 

Let f E A be of order q and assume that its zeros {a,) and poles {b,} 
satisfy 

1% I= Dl(% v>, P, I = DA% v> (8.1) 

where D, and D, are defined by (2.10). 
We shall prove that 

(8.2) 

Once (8.2) is shown, we prove that 0 and co are the only possible deficient 
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values off by an argument analogous to that used by Shea [ 14, p. 2051: We 
start with the classical estimate [ 12, p, 2561 

where the c, are any p (2 3) distinct complex numbers. This inequality 
implies that 

Choosing c, = 0, c2 = 00 and using Nevanlinna’s first fundamental theorem 
we obtain 

where 6(c,f) is the Nevanlinna deficiency of the value of c. This last 
inequality together with (8.2) clearly implies that @c, f) = 0 for all values of 
CfO, co. 

Let us now prove (8.2). 
If f satisfies (c) and c4(r) is its qth Fourier-coefficient, then cJr> is given 

by (4.9) and simplifies, by (4.8) to 

c&> = - & C (r/aJq - & 1 (r/tin)-” 
IQ,1 >r la,l<r 

+ $j C W4J9 + & C WUq. 
lb,1 >r lb,, <r 

In view of (8.1) and (2.10), (8.3) gives 

(8.3) 

) c,(r)1 = 1 -cq(r) eiqv 1 > 7 

tmqmiN(t) dt + qreqjr tq-‘N(t) dt - 2N(r)/. (8.4) 

In (8.4) put r = t, where (t,) is the sequence defined in part (II) of 
Lemma 1. In view of (3.4) and (3.5), this gives 

I c,(r)\ 2 (F) u*(r){ 1 + o(l)} (r = t, + co). (8.5) 

Now (8.5) and (3.4) give N(t,) = o(i cq(fn)]) which, with Ic,(r)j < 
2T(r, f) - N(r), gives (8.2). 
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Suppose next that f satisties (d). Then 

Re(a, eiqV) + q cos qq Ji t-q-'N(t) dt - q cos qqi' t-vv(t) dt. VW 
0 

By (4.9), (8.1) and (2.10) we have 

1 c,(r)1 > + Re(cr, rqeiqrp )+cosqq )+j;[ (f)‘-(fj”] qQdt+N(r)i 

- ;cos q?j 
i 

as r (= P,,) tends to infinity through the sequence {r,} of Lemma 1. 
By (3.2), this shows that N(r,) = o(lcJr,)() from which we conclude that 

(8.2) holds true. This finishes the proof of (8.2) and completes the proof of 
the first part of Theorem 5. 

The second part of Theorem 5 will follow from Theorem 6, since the 
condition N(r) - rqL(r) implies that s(r) - rqL,(r) where L and L, are 
slowly varying functions. 

Proof of Theorem 6. Let f E.A be of order q and suppose that it 
satisfies (8.1). Let s(r) and c(r) be the functions defined in (2.4) and (2.2) 
and assume that (2.13) holds true. 

If we introduce the notation 

s(r; g) = qrq Jr t-“-‘g(t) dt 
0 

= qrq ix t-“-‘g(t) dt, 
r 

then an integration by parts gives 

N(r) + s(r; N) = s(r; n) if f satisfies (d), 

--N(r) + s(r; N) = s(r; n) if f satisfies (c). 
@8) 

We are assuming that s(r; N) - FL(r). This implies that syr z-~~‘N(~) dt = 
o(reqs(r; IV)) for each fixed u > 1. By (3.9) this implies that N(r) = 
o(s(r;N)), which when used in (8.8) gives 

s(r; n) - s(r; N) - rqL(r) (r + co). (8.9) 

But then repetition of the above arguments for s(r; n) shows that 

n(r) = o(s(rr n)) = o(s(r; N)) (r-+ m>, (8.10) 
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and 

I 

oi- 
t-“-‘n(t) dt = o(s(r; n)) (r+al,u> 1). (8.11) 

i- 

If we take (8.4) and (8.7) into consideration, together with (8.10), it 
follows that 

w-1 = 4 c&>lX 4r) = 4 qr>i> (r+ co). (8.12) 

But, by (4.9) 

Therefore 

(2c,(r) - r”c(r)l < q-In(r). 

and 

I c,(r)l - 9’ I c(r>l (r+ a), 

N(r) = ok4 I 49 > (r -+ 00). 

(8.13) 

(8.14) 

We now show that c(r) is a slowly varying function. 
Fix u > 1. Then, by (2.2), 

I C@r) - c(r)1 < q- ’ 1:’ t-* dn(t) 

=9 -’ 1 t-“n(t)l;” + qjrur t--‘n(t) dti . (8.15) 

Using (8.9) and (8.10) in (8.4) and (8.7), we see that 

I c,(r>l2 F {s(r; n) + o(s(r; n))} 

which, in view of (8.13), implies that 

fr4 Ic(r)l > 4 cos qrf{s(r; n) + o(s(r; n))]. 

In (8.15), if we divide by /c(r)1 and take into account this last inequality and 
then (8.10) and (8.11) we arrive at 

= lim 
aPn(or) s(ur; n) 

r-r00 s(ur; n) s(r; n) = 
0 

(8.16) 

by (8.10) and regular variation of s(r; n). 
This shows that Ic(r)l is a slowly varying function. 
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To prove (2.12), note that by (8.14) and slow variation of ]c(r)] and 
properties of slowly varying functions, we have 

and 

I Gn(r)l = 4rq I cP>l> (mm, l<m<q‘q>2) (8.16) 

Yq+ 1(r) = OF” I4rN (r+ 4 (8.17) 

where {c,(r)} are the Fourier coefficients of w = log If], and yq+ l(r) is 

(5.2). 
defined in (4.2). 

Now (2.12) follows from (8.16), (8.17) and (5.1) and 
As a particular case of (2.12) we have 

Wr, f> - N(r) - rq I c(r>l ml (~0s s@, 
which, with (8.14), implies 

V, f) - irq I c(r)1 m,(cos 40) 

and hence 

W = 4% f)> (as r+ a). 

This shows that 0 and co have maximal deficiencies. 
The proof of (2.14) may be obtained by a very slight modification of [ 17, 

p. 5101, and we omit it. This completes the proof of Theorems 6 and 5. 
The proof of Theorem 7 follows immediately from (7.1), (7.4), Lemma 4 

and properties of slowly varying functions. 

9. PROOF OF THEOREM 8 

The necessary part in Theorem 8 is a well-known theorem of Edrei and 
Fuchs [6, p. 2611. For the sufficiency let f be a meromorphic function of 
tinite order 1 (1 < R < co) and assume that conditions (i) and (ii) of 
Theorem 8 are satisfied. We first show that 1 must be an integer. 

Suppose that A is not an integer, then the order of N equals A which is 
impossible since, under (i) and (ii), N has order < q. Thus ,I = q. 

If cq(r) and c(r) are defined by (4.9) and (2.2), respectively, then for E > 0 
there exists r. such that 

I2c,(r) - r”c(r)l < q-In(r) < K,N(2r) 

< K, &(2r)q I c(2r)j < K, wq I c(r)1 (r > rJ, (9.2) 

where K, and K, are constants independent of r, and we have used 
conditions (i) and (ii) of Theorem 8. 
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It follows from (9.2) that 

so that 

W) = 4 c,(d) (r-+ co). (9.3) 

Now the inequality Ic,(r)l Q 2T(r) -N(r) and (9.3) imply that N(r) = 
0(7’(r)). Thus 0 and co are maximally deficient values of J The other 
conclusion of Theorem 8 now follows from (8.16), (8.17), (5.1) and (5.2). 
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