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Abstract

We prove that if two finite group& and G’ have isomorphic Burnside rings, then there is a
normalized isomorphism between these rings, that is, a ring isomorghi$htG) — B(G’) such
that 6(G/1) = G'/1. We use this to prove that if two finite groups have isomorphic Burnside
rings, then there is a one-to-one correspondemteden their familiesfosoluble subgroups which
preserves order and conjugacy class of subgroups.
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1. Introduction

A very important algebraic invariant that can be associated to any finite grdapts
Burnside ringB(G), which we define in Section 2. This object has been studied from many
different perspectives. As a commutative ring, much has been proved about its internal
structure (see [14,15,22,23]). The Burnside ring encapsulates information abous#is
of the group, which carry a lot of combinatorial information, and at a deeper level, it
also lends itself for the analysis of more sophisticatedets such a&-posets, or more
generally, simpliciatz-sets (see Quillen’s articles [17,18]). Many induction theorems have
been proved about the Burnside ring using its prime spectrum and primitive idempotents
(see Dress’s work in [6]). The functoriality &f(G) has also been exploited, and authors
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such as Bouc, Thévenaz, and Webb have studied it from the point of view of Mackey
functors and Green functors (see [2,21]).

A natural question to ask is whether non-isomorphic groups can have isomorphic
Burnside rings. Although the answer is negative when both of the groups are abelian, or
more generally, Hamiltonian (see [19]), this question has been settled by Thévenaz in [20],
where he constructs infinitely many examples of non-isomorphic groups with isomorphic
Burnside rings. More examples were later provided by Kimmerle and Roggenkamp in [10].
In all the known examples, the non-isomorphic groups had isomotphies of marks
(defined in Section 2). It is easy to prove that groups with isomorphic tables of marks
must have isomorphic Burnside rings, but it is still an open problem to determine whether
groups with isomorphic Burnside rings must have isomorphic tables of marks (see [13]).
It is a simple computation to prove that two grouisand G’ have isomorphic tables
of marks if and only if there is a ring isomorphisth: B(G) — B(G’) such that for
every subgroug/ of G, ¥(G/U) is of the formG’/U’ for some subgroup/’ of G’;
in this case|U| = |U’|. One step towards this direction is to construch@malized
isomorphism between the Burnside rings, that is, a ring isomorphisB{G) — B(G’)
such thatd(G/1) = G’/1, where 1 denotes the trivial subgroup. In this paper we
prove that if two finite groups have isomorphic Burnside rings, then there exists a
normalized isomorphism between them. The existence of a normalized isomorphism
already implies that several invariants of the groups must be preserved, for example,
the number of soluble subgroups (see Section 5), which are in an order-preserving cor-
respondence.

In Section 2 we define Burnside rings and introduce all the basic concepts that we
shall later need. In Section 3 we review some results about automorphisms of Burnside
rings which were developed in Nicolson’s paper [16]. Our own results are adaptations of
Nicolson’s ideas. In Section 4 we prove our main theorem and we apply it in Section 5 to
generalize a theorem of Kimmerle's aRdggenkamp’s (namely [11, Proposition 2.2]).

2. Burnsiderings

In this section we introduce the basic concepts and notation that we shall use in this
paper. Our presentation is very terse. For a fuller account of Burnside rings, we refer the
reader to [1,3-5,9].

Let G be a finite group. AG-setis a finite setX whereG acts on the left via a group
homomorphism into the group of permutationsXdf Two G-sets aréasomorphicif there
exists a bijection between them which preserves the actiai. athe disjoint union and
the Cartesian product af-sets can be given naturally a structure(®fset. With these
operations, the isomorphism classesGekets form a commutative half-ring, ™ (G). Its
associated ring is thBurnside ringof the groupG, denoted byB(G) (some authors write
£2(G) for the Burnside ring).

Each transitive5-set is isomorphic to a set of left cose&fg U for a subgrougd/ of G,
and theG-setsG/U and G/T are isomorphic if and only iU and T are conjugate
subgroups o&;. Moreover, the family{ G/ U} whereU ranges over a set of representatives
of conjugacy classes of subgroups @f is a basis forB(G) as an abelian group. For
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each subgrouy of G and everyG-setX, let ¢y (X) denote the number of elements of

X which are fixed by all the elements 6f, and use the same notation for the function
oy - B(G) — Z which is its natural extension to the Burnside ring. The following formula
will be useful:

Ng(U
ou(G/T) = %ﬂw, 7).

whereg (U, T) is the number of subgroups &fwhich areG-conjugate td/. We have that

oy = ¢r if and only if U andT are conjugate. The square matrix whose entries are the
numberspy (G/T), whereU andT range over representatives of all the conjugacy classes
of subgroups of5, is called theable of mark®f the groupG. Two groups are said to have
isomorphic tables of marks if there is an ordering of their conjugacy classes of subgroups
such that their resulting tables of marks are identical. Moreover, the functipmsduce

an embedding

¢:B(G) — ]_[ Z,
C(G)

whereC(G) is the family of conjugacy classes of subgroupofThe latter ring is called
theghost ringof G and is denoted b (G). Thus, we sometimes regard the Burnside ring
as a subring of the ghost ring. Since the ghost ring is a product of copies of the ring of
integers, its primitive idempotents are in correspondence with the fahody; for each
subgroupU of G, we denote byzg = ey the primitive idempotent of3(G) associated

to U. There is an explicit formula fofg in terms of theG /T (see [8]):

1
G
eG=—" 3" W(T.UTIG/T.
v |NG(U)|T;]“ /

whereu is the Mdbius function of the subgroup lattice @f We define

xg=[U: D(U)]Oweg,
U]

whereD(U) is the derived subgroup @f andng denotes the product of all prime divisors
of the integen. As with ¢, we have that = x£ ifand only if U is conjugate t@ in G.
It is known thatxg is the least multiple otzg that belongs taB(G). This fact was proved
by Nicolson in 1978 (see [16]) and later given different proofs by various authors such as
Kratzer and Thévenaz (see [12]), or Dress and Vallejo (see [7]), who gave a very simple
proof using Dress congruences.

Note also that an isomorphism between two Burnside riBgS) and B(G’) sends

eachxg to somexg,', establishing a bijectiot/ — U’ between the conjugacy classes of
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subgroups of7 and the conjugacy classes of subgroup&afSince for eacbcg we see
that

(x(;)z: NG (U)]

U [U: D]

U]
it follows that in this bijection
INg(U)| INg' (U, ., /
#[U D), = (|’U7,I[U : DU,

Itis easy to see that for a subgroUpof G, we have that

ING(U)]

0 [U:DW)],=1G]

ifand only if INg(U)| = |G| and|U| = [U : D(U)]o, that s, if and only ifU is an abelian
normal subgroup oG and the order o/ is square-free. Since groups with isomorphic
Burnside rings must have the same order, it follows thas an abelian normal subgroup
of G of square-free order if and only if so &, that is, the families of abelian normal
subgroups of square-free order@fandG’ correspond under this bijection.

These special subgroups play a very important role in the study of the isomorphisms
between two Burnside rings. The trivial subgroup is one of such special subgroups, which
means that an isomorphism froB(G) to B(G’) must sendc{ to somex$, with U’ an
abelian normal subgroup @’ of square-free order. Not any choice of abelian normal
subgroup ofG’ of square-free order is possible as the imagel‘bfln this paper we prove
that the only possible choices are precisely the st thatng can be the image od‘lG
under anautomorphisnof B(G’); these subgroups have been characterized by Nicolson
in [16]. Hence, by composing with the inverse of such an automorphism, we shall be able
to create a normalized isomorphism frahiG) to B(G').

There is a certain kind of reversed duality which we use when we normalize an
isomorphism fromB(G) to B(G"). Just as the image of¢ is anx§, with U’ a certain

abelian normal subgroup @i’ of square-free order, the pre-imagextff is anxVGV with W

an abelian normal subgroup 6f of square-free order. The correspondence induced by the
isomorphism establishes a bifam between the families of subgroupsWfandU’. Each

of these subgroups is characteristic in its par@ntof U’) since it is the only subgroup of

its order, and so it is also an abelian normal subgrougi(ef G’ accordingly) of square-
free order. This correspondencetiveen the families of subgroups #f andU’ reverses
inclusions, which is to be expected, sindecorresponds to 1 and 1 correspond#&’to

3. Automorphismsof Burnsiderings
In this section we quote without proof the most important results from Nicolson’s paper

on automorphisms of Burnside rings [16]. Our own results are adaptations of Nicolson’s
ideas, with the added complication that we have to work on two different rings. The gist of
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Nicolson’s paper is to determine when a subgraupf a finite groupG is in the orbit of
the trivial subgroup under the automorphism group of the Burnside ring, that is, whether
there exists an automorphissmof B(G) such thatr (xf) = xg. All of these results will
later be used in our proofs.

The following result links divisibility in the Burnside ring with the internal structure of
the lattice of subgroups @. DenotexUx 1 by *U.

Lemma 3.1 (Proposition 3.1)Let G be a finite group and lel/, T be subgroups of;. Let
p be a prime number. I dividesx$ +x$ in B(G) with U # T, then one of the following
cases holds

(i) there exists: € G such that'U is a normal subgroup of of indexp;
(ii) there existy € G such tha# T is a normal subgroup of/ of indexp;
(iii) there existr, g € G such thatU N 8T is a normal subgroup ot/ of indexp and
*U N T is anormal subgroup of of indexp.

Remark 3.2. Note that in the previous lemma we conclude thahust divide the order of
U or the order off.

As a special case of the previous lemma, we can characterize the cyclic subgroups of
orderp of G by arithmetic properties.

Corollary 3.3 (Corollary 1).Let G be a finite group angy a prime number. LetU be a
nontrivial subgroup of5. Thenp dividesx_ +x{ in B(G) if and only ifU has orderp.

The following result explores some of the properties of abelian normal subgroups of
square-free order.

Lemma 3.4 (Lemma 3.2)Let G be a finite group. LeV be a subgroup of; such thatU |
is square-free. IV has an abelian normal subgroup of prime index, then the coefficient of
G/1lin xg is (—1)*, wheres is the number of primes ifU| (that is, the M&bius function

n(UD)-

Next we encounter one of the “elementary” automorphism®@¥). Note that this
particular automorphism has order two and that when restricted to certain subfamilies of
the lattice of subgroups, it is order-preseryiwith respect to the partial order given by
inclusion of subgroups.

Lemma 3.5 (Proposition 3.4)Let G be a finite group and lep be a prime divisor ofG|.
If G has a unique subgroulg of order p, then there is an automorphissmof the Burnside
ring B(G) such that

x$,, if p does not divideT|,
o(x§)=1x§, if T =RU andp does not divid¢r]|,

x&,  otherwise.
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The case when the abelian normal subgroupdtpare-free order divisible by two has
to be dealt with separately in the following two lemmas.

Lemma 3.6 (Part (b) of the poof of Proposition 3.5)Let G be a finite group and/ a
subgroup of orded. Then there exist non-trivial subgroufs which are not conjugate
to U, and integers;; such tha#4 divides2x; + Zaix% +x§ and2 divideng + x§ for
all i.

Lemma 3.7 (Part (c) of the proof of Proposition 3.9)et G be a finite group and/ a
normal subgroup of orde®. If for a subgroupT of G there exist subgroupg; of G and
integersh; such that4 divides2x$ + 3" b; xR +x5.2 d|V|desxR +x§ forall i, andU
is not conjugate to any of the;, thenU is a subgroup of andT has order4.

The following two theorems are the core of Nicolson’s article.

Theorem 3.8. Let G be a finite group and leU be an abelian normal subgroup @f.
Assume that the order @f is odd and square-free. Theh has no other subgroup of the
same order a¢/ if and only if there is an automorphism B8{G) sendingxg to le.

Theorem 3.9. Let G be a finite group and let/ be an abelian normal subgroup ¢f.
Assume that the order @&f is even and square-free. Then the following are equivalent

(i) G has exactly one subgroup of orderfor every odd prime divisop of |U|, and the
Sylow2-subgroup ofU is contained in every subgroup 6f of order4.
(i) There is an automorphism &f(G) sendingr$ to x{.

The following result is proved implicitly ilNicolson’s article. We quote it here with an
explicit proof for the reader’s convenience.

Lemma 3.10. Let G be afinite group, let/ be an abelian normal subgroup 6f of square-
free order, and letp be an odd prime dividingU|. If T is a subgroup of5 such thatp
dividesx$ +x¢, thenT = 0P (U).

Proof. By Lemma 3.1, we have one of the following three cases:

(i) T is conjugate to a subgroup bf of index p. SinceU is an abelian normal subgroup
of G of square-free order, this implies thats O (U).

(ii) U is a normal subgroup df of index p. We notice thap divides the coefficient of
G/Uin xg, namely,|U|. On the other hand, the coefficient@f U in xT is

\U| [T : D(T)]o
—[T: D)y = ———22,
[7: DD P

which is not divisible byp, hencep cannot dividex| +x¢, which is a contradiction.
(i) U N T is a normal subgroup df of index p, andU N T is a normal subgroup
of U of index p (where we may have to repladeby a conjugate). By Lemma 3.4, the
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coefficient of G/1 in x5 and inx¥ is (—1)*, wheres is the number of prime divisors
of |U|. But p is an odd prime, which cannot dividg-21)*, contradicting the fact that
dividesx +x£. O

4. Isomorphisms between Burnsiderings

In this section we extend Nicolson’s results on automorphisms of Burnside rings to
isomorphisms) between Burnside rings of different grougsandG’.

We begin by establishing properties of a subgrétipf G’ such thahp(xf) =x
is curious that the information we obtain fraif has an effect o067, not onG’.

’
g

Proposition 4.1. Let G, G’ be finite groups and): B(G) — B(G’) an isomorphism
between their Burnside rings. Assunféx{’) = x5, (so thatU’ is an abelian normal
subgroup ofG’ and |U’| is square-frel

(a) If p is a prime number which divides the orderidf, then there is a normal subgroup
of G of order p.
(b) If p is an odd prime divisor ofU’|, thenG has a unique subgroup of order.

Proof. (a) LetU,, be the Sylowp-subgroup ofU” and letT, U, be subgroups of; such
thaty (x$) = x¢, lﬁ(xgp) = x§, . Note thatU}, is non-trivial, which implies thaf” and
U, are not conjugate. Note also thHAtand U, must be abelian normal subgroups@®f
of square-free order. Sindg, has orderp, by Corollary 3.3,p dividesx{" + xgp The

isomorphismy —1 preserves divisibility, and therefopedivideSxf —i—xgp. By Remark 3.2,
we must have thap divides the order of” or the order ofU,. In either case, the Sylow
p-subgroup of the appropriate subgroup is a normal subgroGpafforder p.

(b) Let 0 andR be subgroups of; of orderp. By Corollary 3.3,p dividesx{ +x§ so

that p dividesx§, +x‘Q;f, wherey (x§) =x‘Q;f. By Lemma 3.100’ is O”(U). Similarly,
we constructR’ and conclude that it is equal t@’, which proves thatQ and R are

conjugate inG. In (a) we proved that there is at least one normal subgroup of grder
which must therefore be the unique subgrougadf orderp. O

The following lemma is a partial converse to Lemma 3.1.

Lemma 4.2. Let G be a finite grouplJ an abelian normal subgroup @ whose order is
square-free, and® a normal subgroup ofs of order p, with p a prime number which does
not divide|U|. Thenp dividesx + x5 p.

Proof. Note thatifU is an abelian group witi/ | square-free, then for any subgrolipf
U we have thap(T,U) = n(|U|/|T|), where the latter M6bius function is the usual one
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defined for the ring of integers. In our case bétrandU P are abelian, with square-free
order. Hence, for any subgroudpof U, it follows that

w(T.UP) = u(UP|/IT)) =pn(UIp/ITI) = —u(UI/IT|) = —u(T. U).

On the other hand,

xj =y wT.UITIG/T,
T<U

xGp= Y w(T UP)T|G/T+ Y w(TP UP)TP|G/TP,
T<U T<U

xg+xfp=p Y wTP.UP)T|G/TP,
T<U

which is divisible byp. O

Remark 4.3. An equivalent way of stating the previous lemma is to say ghakivides
xg +xg,,(U), whereU is an abelian normal subgroup@fwhose order is square-free, and
p is any prime divisor ofU |.

The following proposition establishesartain symmetry between the imagex@f and
the pre-image ofcf/ under a ring isomorphism. The technique used here also yields as
a side result a property of the Sylow 2-subgroup of the imégef the trivial subgroup
of G.

Proposition 4.4. Let G, G’ be finite groups/andp:B(G) e B(G’) an isomorphism
between their Burnside rings. if(x{) = x7, and ¢y 1(x{) = x¥, then|U'| = |T|.
Furthermore, if|U’| is even, there exists an isomorphism fré&(G) to B(G’) sending

x to xgz/ whereU, is the Sylow2-subgroup o’

Proof. Let |U’| = p1ip2...ps be a product of distinct primes. If|{U’| is even, assume
that p; = 2. By Proposition 4.1, for each; there exists a normal subgrodf), of G of
order p;. Let R be the abelian normal subgroup Gfgenerated by th&;. Note that the
order of R is equal to the order df’’.

PutTo =R, T1 = OP1(R), To = OP2(Ty), ..., Ty = OPs(T;_1) = 1. Note that alll; are
abelian normal subgroups of whose orders are square-free. By Remark #;3Jivides
xf +xf  fori=1,..s, so it also divides its image undef, that is, p; divides
x?// +x$,' for some abelian normal subgroups$ of G’ of square-free order. Note that

i i-1
TS/ =U'.

Sincep; is an odd prime that divides the order &f and p, dividesx, +x& ., by
Lemma 3.10 we have th@_, = O?s(Ty), and in particulafl;_, has ordepipz... ps_1.
Now p,_1 is an odd prime dividing both the order @f_; andx;;,’ + xﬂ,iz, so we

. - :
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conclude thatr;_, = O7-1(T,_,) and7,_, has orderp1p... ps—2. Continuing in this
fashion, we prove thaf; has orderp;, and in fact it is the Sylow;-subgroup oftU". If
p1 is odd, we can repeat this step and conclude T§at 1, so in this cas&k = T and
IT|=|R|=|U"|. ,
Assume now thap; is equal to 2. The subgroufy of G’ is such thaﬁ,h(x%) = x?,
whereTy = Up,U,; ... U,,. Since these primes are all odd, by Proposition &,},is the
only subgroup ofG of that order. For eacl; with i > 2, leto; be an automorphism of
B(G) asiinLemma 3.5, and let =0y 0 0510 -+ 002, SO thato (x{') =x{ . LetY be a

subgroup ofG such that (x¢) = x&. Consider the compositiog o o : B(G) — B(G).
Note thaty (o (x{)) = t/f(xg) = x? which proves the last part of the statement.
1

It remains to show thalT| = |U’|. We have thaty (o (x$)) = ¢ (x¥) = x¢". Since
IT{| = 2, by Corollary 3.3, 2 divides¥" + x?l so 2 dividesx¢ + x¥, and again by
Corollary 3.3, it follows thatY has order 2. But the primes=2 p1, p2, ..., ps are all
different, and since (x¢) = x&, by Lemma 3.5, we have thdt= YU,,Up,...Up,, SO

IT| =2p2p3...ps=|U'|. O
Now we can conclude that the properties thainduced onG carry over toG’.

Corollary 4.5. LetG, G’ be finite groups angr : B(G) — B(G’) an isomorphism between
their Burnside rings. Assum,é(xf) = ng, with U’ of odd order. Ifp is a prime divisor of
|U’|, thenG’ has a unique subgroup of order. Furthermore,G’ has no other subgroup
of the same order ag’.

Proof. Combining Propositions 4.4 and 4.1 fgr1, we get the first part. The second part
follows easily from the first. O

The previous corollary completes the case whéad odd order (assuming of course
Nicolson’s results on automorphisms of Baide rings). Our next proposition deals with
the case whefU’| is even.

Proposition 4.6. Let G, G’ be finite groups and} : B(G) — B(G’) an isomorphism
between their Burnside rings. Assumiexy) = ng. If the order ofU’ is even, then the
Sylow2-subgroup oft’ is a normal subgroup of;’ of order2 which is contained in all
subgroups of orded.

Proof. By Proposition 4.4, without loss of generality we may assumelihidtas order 2.
Let T’ be a subgroup of;’ of order 4. We must show that’ containst’. By Lemma 3.6,

there exist nontrivial subgroupg® which are not conjugate t6’, and integers; such that

4divides 28 +3° aixg +x¢" and 2 dividesc§, +x{" for all i. Takingy—, we have now

that 4 divides 2§ + Y aix§ + x§ and 2 dividesc§ + x§ for all i, where the subgroups
T, R;, andR correspond td"’, R}, and 1, respectively. Note th&t is a normal subgroup

of G and by Proposition 4.4, it has the same ordet/aswhich is 2, so by Lemma 3.7
it follows that T has order 4. Sinc& has order 4, once again by Lemma 3.6 there exist
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appropriate subgroups; of G and integer$; such that 4 divideSfo + Zb,»xgi + le
and 2 dividest + x for all i. Takingy, we have that 4 dividesi® + 3" bix ¢, + x5

and 2 dividesc¢, + x$, for all i. By Lemma 3.77” containsl/’. O

Now we can prove our main result: any ring isomorphism between two Burnside rings
can be normalized.

Theorem 4.7. Let G, G’ be finite groups. If their Burnside rings are isomorphic, then there
exists a normalized isomorphism between them, that is, a ring isomorphistG) —
B(G') such tha® (x{) = x¢".

Proof. Lety : B(G) — B(G’) be an isomorphism between the two Burnside rings and let
U’ be the abelian normal subgroup Gf of square-free order such tha*(le) = xg,/. If
the order oftU’ is odd, by Corollary 4.5¢G’ has no other subgroup of the same ordevas
By Theorem 3.8, there exists an automorphismf B(G') such that(x5,) = x{". Take
0=ao.

If the order ofU’ is even, by Proposition 4.4 there exists an isomorphishom B(G)
to B(G') sendingx{ to xgz whereU, is the Sylow 2-subgroup df’. By Proposition 4.6,

U, is a subgroup ofz" of order 2 which is contained in all subgroups of order 4G0f

By Theorem 3.9, there exists an automorphignoef B(G’) sendingxg,’ to xf/. Take
2

0=Bop. O

Remark 4.8. As we said before, normalizing an isomorphism between two Burnside rings
is only the first step in constructing an isomorphism that preserves tables of marks. We
believe this is the first part of an induction process, and that by composing with suitable
automorphisms we shall reatie desired isomorphism.

5. Applications

In this section we generalize a result about automorphisms of Burnside rings to
isomorphisms thereof. We shall use without proof the following lemma, which is Claim 2
in the proof of [11, Proposition 2.2].

Lemma5.1. Let G be a finite group. Then the number of maximal subgroups of ipdex
a multiple ofp if and only if G has no normal subgroups of index

The following is a generalization of [11, &osition 2.2]. We use isomorphisms instead
of automorphisms and our famil§y narrows down the possible subgroups®f that
appear in the expression fo(G/U).

Theorem 5.2. Let G and G’ be finite groups and: B(G) — B(G’) a normalized
isomorphism. For any subgroup of G, let D' denote a subgroup o&’ such that
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0(xp) = xp. Let U be a soluble subgroup of;. Then U’ is soluble, |U’| = |U]|,
INe/(U")| = |NG(U)|, and6(G/U) = G'/ U’ + ¥ 5, arG'/T whereSy is the family
of soluble subgroup® of G’ such thatT'| is a proper divisor ofU/|.

Proof. We shall use induction on the order of the soluble subgiéuphe caseU| =1 is

just the fact thad is normalized. Assume that the result holds for all groGpend G’, for

all isomorphisms and for all soluble subgroups with order less thanThe proof is split
into several steps:

Step 1. Using the formula

xy=[U:DW)],G/U+ > bpG/D,
D<U

a similar formula forxy/, and the fact thaf (xy) = xy7, we get

[U:DW)]#(G/U)=[U": DW"],G' /U + Y crG'/R— Y bpb(G/D).
R<U’' D<U

By induction on the proper subgroupsof U, and using the fact thatp is contained in
Sy if |D| divides|U|, we conclude that we can write

[U: DW)]|0(G/U)=[U": DW"],G /U + > frG'/R+ ) arG'/T,
R<U’ TESU

where the sum ove$y absorbs all possible elements from the other sum. In fact, we shall
later prove that it absorbed all elements from that sum.

Step 2. The groupU’ is not in Sy, because if it were, theti” would be soluble of order
less tharjU|, and by induction we would hay& | = |U’| and it cannot be a proper divisor
of |U|, which is a contradiction. Therefore, the coefficient®¥ U’ in the last formula
from Step 1 iU’ : D(U’)]o, which must be divisible byU : D(U)]o. We can improve
that formula to get

0(G/U)=tG'/U'+ Y frG'/R+ Y arG'/T’

R<U’ TeSy

wherer is [U’ : D(U")]p divided by [U : D(U)]o. Note that this can be applied in any
situation where we have an isomorphism and a soluble subgroup of the same dvder as

Step 3. For any prime numbep dividing [U : D(U)]o, we shall construct a subgrogy/
which is normal of indexp in U’ such thatp does not divideg(M’, U’). SinceU is
soluble and non-trivial, note thgl/ : D(U)]o # 1. Moreover, any prime numberdividing
[U : D(U)]p does not divider, because the highest power pfdividing [U’" : D(U")]o
is pL. Since[U : D(U)]o divides[U’ : D(U")]o, U’ also has normal subgroups of index
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By Lemma 5.1, the number of subgroupsiéfof index p is not divisible byp. Consider
the following two families:

={T
={T

As we have seerj(C1| + |C2| is not divisible byp. Note thatp divides|Cz2|, sinceCz
is a union ofU’-orbits, each of which has size (becauseVy/(T) =T for all T € C»).
Therefore|C1| is not divisible by p. Every element inC; is G’-conjugate to a normal
subgroup ofU’ of index p, so that we can writ¢C1| as a sum of3(M’, U’) for certain
normal subgroups di’ of index p. Sincep does not divideC1 |, then there exists a normal
subgroupM’ of U’ of index p such thatp does not dividegg(M’, U").

<U’ | [U": T]1= p and there existg € G’ such thaf'¢ is normal inU’},
U’ | = p and there does not exigte G’ such thaff'$ is normal inU/}.

Step 4. Let p and M’ be as in Step 3 and fix them for the rest of the proof. We shall
prove thatM’ € Sy, i.e., thatM’ is soluble andM’| is a proper divisor ofU|. Since

M’ is a maximal subgroup d¥’, the only subgrougR of U’ containingM’ is M’ itself.
Evaluatingp,,, on both sides of the formula from Step 2, we get

om(G/U) = o (0(G/U)) = tom(G'/U") + frrom(G'/M") + Z arem (G'/T),

TeSy
which becomes
NG/ (M")| P INg/(M")|
G/U)=t————BM",U Rl el
om(G/U) =t U] B( )+ fm W
Ng/(
+> a |G|T| B(M'.T).
TeSy

If pp(G/U) #0, thenM could be chosen as a proper subgrou@/ofso M would be
soluble of smaller order, and by the induction hypothésisvould be soluble of ordgn/|,
which is a proper divisor ofU/ |, soM’ € Sy;. We may assume then thaf; (G/U) = 0 and
M’ ¢ Sy. The previous formula becomes

|Ng/(M")| T |Ng (M)
O=1t——BM", U+ fyp——=
U’| ( S M|

Multiplying by |U’| and dividing by|Ng/(M")|, we get
0=1BM",U") + fup,
which contradicts the fact that does not divideg(M’, U’). ThereforeM € Sy.

Step 5. By the previous stepy!’ is soluble, and sincé/’ is normal inU’ of index p, it
follows thatU’ is also soluble.
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Step 6. We claim that|U| = |U’|. If |U| > |U’|, sinceU’ is soluble, by the induction
hypothesis we would havé/| = |U’|, so we may assume thdf| < |U’|. Take thep and
M’ from Step 3. Once again we evaluatg: as in Step 4 to get

Ng(M Ng' (M’ Ng/ (M’
D5 41,0 = WD 41, 5 o N gy,
TeSy

Recall that the ternt’’ /M’ appears inside the sum ov&y. Using the fact thatNg (M) | =
INg(M")| (which we know by the induction hypothesis o), we can cancel this out
from all terms and then multiply by/| and|U’| to get

|
IT]

\U'IBM,U) = UtB(M', U") + Z ar BM',T).

TeSy

Now divide everything byM| = |M’| (which is a common divisor ofU/| and|U’|, since
M’ € Sy andM’ < U’) to obtain:

U= —1BM', U —B(M’,
pB(M, U) |M|tﬁ( >+pT§aT|T|/3(

Note that|T'| divides|U|, so all the fractions in the previous formula are integers. Since
does not divideg(M’, U’), we must have thas divides

w1 _
7] S a7

so it follows that|U | = |U’|.

Step 7. SinceU and U’ are both soluble of the same order, we can interchange their
roles to conclude thdt/’ : D(U’)]o = [U : D(U)]o, that is,r = 1 (see the remark at the
end of Step 2). Moreover, every proper subgraupf U’ is soluble and its order divides
|U'| =|U|, soR is in Sy, and we have the desired form G/ U).

Step 8. We know that the isomorphistis such that

ING ()|
Ul

_ INa¢ W)

U:DWU

[U": DU,

Since |U| = |U’| and [U : D(U)]g = [U’ : D(U")]o, we must have thatNg(U)| =
INg'(U"|. O

We can combine our main theorem with the previous one to obtain the following result.



656 A.G. Raggi-Cardenas, L. Valero-Elizondo / Journal of Algebra 277 (2004) 643-657

Coroallary5.3. LetG andG’ be finite groups such that their Burnside rings are isomorphic.
Then there is a one-to-one correspondence between the conjugacy classes of soluble
subgroups o and G’ which preserves order of subgroup and cardinality of the conjugacy
class(so we can also define a bijection beten the families of soluble subgroups®f
andG’).

Proof. By Theorem 4.7, we may assume thagérth is a normalized isomorphism from
B(G) to B(G’). By Theorem 5.2, the assignmebit— U’ is the desired correspon-
dence. O

Hence groups with isomorphic Burnside rings have “the same soluble subgroups.”
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