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Identification of a plant gene encoding glutamate/aspartate-prephenate
aminotransferase: The last homeless enzyme of aromatic amino acids biosynthesis
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In all organisms synthesising phenylalanine and/or tyrosine via arogenate, a prephenate amino-
transferase is required for the transamination of prephenate into arogenate. The identity of the gene
encoding this enzyme in the organisms where this activity occurs is still unknown. Glutamate/aspar-
tate-prephenate aminotransferase (PAT) is thus the last homeless enzyme in the aromatic amino
acids pathway. We report on the purification, mass spectrometry identification and biochemical
characterization of Arabidopsis thaliana prephenate aminotransferase. Our data revealed that this
activity is housed by the prokaryotic-type plastidic aspartate aminotransferase (At2g22250). This
represents the first identification of a gene encoding PAT.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction for the biosynthesis of phenylalanine and/or tyrosine was first re-
The aromatic amino acids biosynthesis pathway is only found in
microorganisms and in plants, and never occurs in animals. This
pathway links the metabolism of carbohydrates to the biosynthesis
of aromatic amino acids involved in protein synthesis, and also to
the biosynthesis of a large diversity of aromatic secondary metab-
olites [1–3]. The aromatic amino acid pathway is thus of central
importance for the growth of these organisms and for their inter-
action with the environment. There is also a strong economic inter-
est in this pathway as a source of natural molecules with high
nutritional or pharmaceutical values and as a potential target of
new antibiotics or herbicides [4].

Depending on the organisms, there are two different routes for
the post-chorismate branch of the pathway leading to phenylala-
nine and tyrosine, the phenylpyruvate/p-hydroxyphenylpyruvate
route, or the arogenate route. The existence of an arogenate route
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ported by Stenmark et al. [5]. It was then shown mainly by the
group of Jensen that depending on the organisms, dehydrogenases
and dehydratases dedicated to tyrosine and phenylalanine biosyn-
theses, respectively, present different specificities for the cyclo-
hexadienyl substrates arogenate or prephenate. Some are
exclusively arogenate dependent [6–9], others exclusively pre-
phenate dependent [10,11], and some are able to use both sub-
strates [11–14]. This alternative explains the observed great
diversity both in terms of organization and regulation in the
post-chorismate branch (for reviews, see [4,15–17]). Until now,
higher plants are the sole documented organisms where both tyro-
sine and phenylalanine are synthesized via arogenate [18–20].
Whatever the situation, in all organisms synthesising phenylala-
nine and/or tyrosine via arogenate, a prephenate aminotransferase
is required for the transamination of the keto acid prephenate into
arogenate (Fig. 1A). Little is known about this prephenate amino-
transferase activity. The enzyme was partially purified and charac-
terized from Nicotiana sylvestris [21] and from Sorghum bicolore
[19] and to apparent homogeneity from Anchusa officinalis [22],
but the identity of the gene encoding this prephenate aminotrans-
ferase in all the organisms where this activity occurs is still
lsevier B.V. All rights reserved.
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Fig. 1. Plant aromatic amino acid pathway and purification of the native and
recombinant A. thaliana prephenate aminotransferase (PAT) (A) Biosynthesis
pathway leading to tryptophan, tyrosine and phenylalanine in plant CM: choris-
mate mutase, PAT: prephenate aminotransferase, TyrA: arogenate dehydrogenase,
ADT: arogenate dehydratase. (B) Purification of native A. thaliana PAT. Proteins were
separated on a 12% SDS–PAGE stained with Coomassie brilliant blue R-250. (Lane 1)
crude soluble extract (35 lg). (Lane 2) 45–75% ammonium sulfate pellet (35 lg).
(Lane 3) heat shock supernatant (35 lg). (Lane 4) pool of the fractions containing
PAT eluted from the Q-Sepharose column (35 lg). (Lane 5) pool of the fractions
containing PAT eluted from the S200 column (35 lg). (Lane 6) fraction containing
PAT eluted from the Q-Sepharose column (1 lg). (C) Purification of recombinant A.
thaliana PAT. (Lane 1) crude soluble protein extract (15 lg). (Lane 2) pool of active
fractions eluted from the EMD DEAE column (10 lg). (Lane 3) pool of active
fractions eluted from the S200 gel filtration (6 lg). MW: Molecular weight markers
(kDa).
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unknown. PAT is thus the last enzyme in the aromatic amino acids
pathway that is not associated with a gene.

In this study we report on the purification, mass spectrometry
identification and biochemical characterization of Arabidopsis thali-
ana prephenate aminotransferase. Our data revealed that A. thaliana
prephenate aminotransferase activity is housed by the prokaryotic-
type plastidic aspartate aminotransferase (At2g22250). This repre-
sents the first identification of a gene encoding a PAT activity.

2. Materials and methods

2.1. Chemicals

Amino acids, prephenate, oxaloacetate, a-ketoglutarate, NADP,
NADH and malate dehydrogenase were obtained from Sigma–Al-
drich (St. Quentin Fallavier, France).

2.2. Protein quantification

Proteins were quantified either by the method of Bradford [23]
for crude extracts with bovine c-globulin as standard or, for pure
proteins, by measuring A205nm [24]. Pure enzyme concentration is
expressed on a monomer basis (45 kDa).

2.3. Purification of native prephenate aminotransferase from A.
thaliana cultured cells

A. thaliana (ecotype Columbia) cell suspension cultures were
grown as previously described [25]. 167 g (wet weight) of cells
were powdered in liquid nitrogen and dispersed in a Potter grinder
in 450 ml of 50 mM Potassium-Phosphate buffer (pH 7.5) contain-
ing 0.1 mM pyridoxal-50-phosphate (PLP), 1 mM EDTA, 1 mM DTT,
20% (v/v) glycerol, 1 mM benzamidine and 5 mM e-aminocaproic
acid. The soluble protein extract (550 ml, 4.2 g) was fractionated
using ammonium sulfate. The 45–75% ammonium sulfate pellet
(2.2 g protein) containing PAT activity was re-suspended in
200 ml of 50 mM KPi buffer (pH 8.0), supplemented as described
above and subsequently heated at 65 �C for 10 min, then placed
on ice for 1 h before centrifugation (30 000�g, 45 min, 4 �C). The
desalted proteins (210 mg) were applied to a Q-Sepharose (Amer-
sham Pharmacia) column (16 � 150 mm2), equilibrated with
25 mM KPi buffer (pH 8.0), 20% (v/v) glycerol and 1 mM EDTA.
The proteins were eluted with a linear gradient of KCl (0–0.75 M,
300 ml). The fractions containing PAT activity (15.3 mg protein)
were pooled and concentrated on macrosep 10 K concentrator (Pall
Filtron) prior to loading on a 26/60 superdex S200 column (Phar-
macia), equilibrated with 25 mM KPi buffer (pH 7.3), 20% (v/v)
glycerol. PAT activity was eluted in the fractions corresponding
to an apparent molecular weight of 90 kDa. The active fractions
were concentrated and loaded (3.4 mg) on a Q-Sepharose column
equilibrated with 10 mM KPi buffer (pH 7.2), 20% (v/v) glycerol.
Proteins were eluted with a linear gradient of KPi (pH 7.2), (10–
75 mM, 150 ml). SDS–Page analysis of the more active fraction
revealed the presence of a single major band migrating with an
apparent molecular weight of 43 kDa.

2.4. Identification of prephenate aminotransferase

The 43 kDa band was cut from the gel and proteins and peptides
were prepared as described in [26]. Nanoliquid chromatography,
LTQ-Orbitrap and bioinformatics analyses were performed as de-
scribed in [27].

2.5. Determination of enzyme activities

Prephenate aminotransferase activity was assayed by coupling
the reaction with purified Tyr-insensitive arogenate-specific dehy-
drogenase from Synechocystis [28] and following the reduction of
NADP at 340 nm. The reaction was carried out at 30 �C in 50 mM
Hepes buffer (pH 8.0) in the presence of 40 nM coupling enzyme,
100 lM NADP and variable amounts of prephenate, aspartate or
glutamate. Activities were calculated using an epsilon for NADPH
of 6250 M�1 cm�1 at 340 nm. Glutamate–oxaloacetate aminotrans-
ferase activity was measured in Hepes 50 mM pH 8.0 at 30 �C by
the spectrophotometric assay of oxaloacetate at 280 nm (e280nm =
550 M�1 cm�1) [29]. Aspartate–a-ketoglutarate aminotransferase
activity was measured using malate dehydrogenase (6 units) and
followed by the decrease of NADH at 340 nm. This assay was also
used to test the potential aspartate–p-hydroxyphenylpyruvate and
aspartate–phenylpyruvate aminotransferase activity of PAT. In all
the assays the reaction was initiated by the addition of PAT.

2.6. Construction of recombinant vector

The predicted positions of the transit peptide cleavage site for
At2g22250 and At4g31990 proteins were identified using ChloroP
program. The cDNA sequences corresponding to the predicted ma-
ture proteins were amplified by PCR using cDNAs prepared from A.
thaliana leaves. The oligonucleotides used contained NcoI and XhoI
restriction sites for cloning of the PCR fragments into pET23 d(+)
vector. Oligonucleotides used for PCR amplification of At2g22250
were At2g22250 50: GAATATGTCATCTAGAACCATGGCTATGGCCA
AACCAAATG and At2g22250 30: CACATTTCTGTGCTCGAGCTGTTAA
ACGGAGAC. An initiating Met is introduced in place of C53. Oligo-
nucleotides used for PCR amplification of At4g31990 were
At4g31990 50: CTAAAAGCAAAGTCTTTTACCATGGTGACTATGACGG
TTGCAG and At4g31990 30: GTCATCTACTGAGACTCGAGCTCA GCT
TACGTTATGG. An initiating Met was inserted at position 41 in



Table 1
Kinetics parameters of recombinant A. thaliana glutamate/aspar-
tate-prephenate aminotransferase (PAT) (At2g22250). Values
given are the average of at least three independent determina-
tions. The differences in each set of data were <10%.

Aspartate aminotransferase kinetic parameters
KAsp

m ðaketoglutarate saturatingÞ 12 000 lM

KGlu
m ðoxaloacetate saturatingÞ 5600 lM

Koxaloacetate
m ðGlutamate saturatingÞ 25 lM

Kaketoglutarate
m ðAspartate saturatingÞ 200 lM

kGlu; oxaloacetate
cat 200 s�1

kAsp; ketoglutarate
cat 65 s�1

Prephenate aminotransferase kinetic parameters
KPrephenate

m ðAspartate saturatingÞ 13 lM

KPrephenate
m ðGlutamate saturatingÞ 14 lM

KGlutamate
m ðprephenate saturatingÞ 1500 lM

KAspartate
m ðprephenate saturatingÞ 2200 lM

kGlu; prephenate
cat 95 s�1

kAsp; prephenate
cat 28 s�1
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place of R41. The recombinant proteins are devoid of their pre-
dicted transit peptides and are produced without any tags.

2.7. Overproduction conditions and recombinant enzyme purification
strategy

Fresh colonies of transformed BL21 (DE3) Rosetta2 bacteria
(Novagen, Darmstadt, Germany) were transferred into 15 ml of LB
media supplemented with the antibiotics and grown at 37 �C. Satu-
rated culture was transferred into 800 ml LB medium supple-
mented with the antibiotics and growth was continued for 3 h at
37 �C. IPTG was added (0.4 mM) at A600nm = 0.6. Growth was contin-
ued for 18 h at 20 �C. Pelleted bacteria were re-suspended in 50 mM
KPi pH 7.5, 1 mM EDTA, 1 mM DTT, 10% glycerol (v/v), 5 mM e-
aminocaproïc acid and 1 mM benzamidine, 100 lM PLP, 10 ml per
litre culture and sonicated for 10 min at 4 �C on a Vibracell disrup-
tor. Streptomycin sulfate (0.1% (p/v)) was added to precipitate DNA
and the solution was centrifuged for 35 min at 30 000�g at 4 �C.
Purification steps were carried out at room temperature. The first
step consisted in an anion exchange chromatography [DEAE EMD
650(M) column 26 � 260 mm2, (Merk, Darmstadt, Germany)],
equilibrated in 50 mM KPi, pH 7.5, 1 mM DTT, 1 mM EDTA, 10%
glycerol (v/v) and 100 lM PLP. Proteins were eluted by a linear gra-
dient of KCl in this buffer. Active fractions were pooled and loaded
on HiPrep 16/60 Sephacryl S-200 column (Amersham Pharmacia)
equilibrated with 20 mM KPi, pH 7.5, 100 mM KCl and 10% glycerol
(v/v). Pure proteins were concentrated using centricon (Pall
Filtron), quickly frozen in liquid nitrogen and stored at �80 �C.

2.8. Kinetic data analysis

Kinetic data were fitted with the appropriate theoretical equa-
tions by using the Kaleidagraph program (Synergy Software, Read-
ing, PA, USA).
3. Results and discussion

3.1. Prephenate aminotransferase activity is housed by the A. thaliana
prokaryotic-type aspartate aminotransferase (At2g22250)

Purification of prephenate aminotransferase from cultured A.
thaliana cells was performed by a set of five steps (Supplementary
Table 1). The specific activity in the more purified fraction was
470 nmol s�1 mg�1 with a purification factor of at least 1500.
SDS–PAGE analyses of the active fractions eluted from the last Q-
Sepharose column revealed the presence of a major polypeptide
with an apparent molecular mass of 43 kDa (Fig. 1B). The corre-
sponding polypeptide band was extracted from the SDS–PAGE
and identified by mass spectrometry, which revealed the presence
of three proteins (see Supplementary Table 2). The more abundant
one (At2g22250, 15 spectral counts) corresponded to an aspartate
aminotransferase (SwissProt accession number, Q9SIE1). The two
other proteins corresponded to a glutamate-1-semialdehyde ami-
nomutase (At3g48730, 8 spectral counts), and an isopropylmalate
dehydrogenase (At1g80560, 3 counts). Only aspartate aminotrans-
ferase (At2g22250) was considered as a putative prephenate ami-
notransferase (PAT) candidate since PAT activity is known to utilize
either aspartate or glutamate as amino donors [19,21,22]. Neither
the glutamate-1-semialdehyde aminomutase, which is known to
be involved in heme and chlorophyll synthesis [30] and does not
display aminotransferase activity, nor the isopropylmalate dehy-
drogenase were further considered.

In order to definitely confirm that this aspartate aminotransfer-
ase carried the prephenate aminotransferase activity, the recombi-
nant protein was expressed in Escherichia coli and purified to
apparent homogeneity by a two step standard chromatography
procedure (Fig. 1C). Biochemical analyses revealed that, when
tested in a coupled assay with a Tyr-insensitive, arogenate-specific
arogenate dehydrogenase (TyrA from Synechocystis [28]), prephen-
ate in the presence of glutamate or aspartate was effectively
transaminated into arogenate by At2g22250 gene product. Produc-
tion of arogenate was confirmed by HPLC according to [21]. In a
direct assay containing only PAT, arogenate could be clearly de-
tected. In addition, in a coupled assay using TyrA, arogenate was
transformed into tyrosine (Supplementary Fig. 1). No activity could
be detected using p-hydroxyphenylpyruvate or phenylpyruvate as
ketoacid or using tyrosine or phenylalanine as amino donors. The
At2g22250 gene product was previously identified as a prokary-
otic-type plastid localized aspartate–a-ketoglutarate aminotrans-
ferase [31]. The plastidic localization of this protein is entirely
consistent with a chloroplastic localization of aromatic amino acids
biosynthesis [16,32]. Kinetic characterizations (Table 1 and Supple-
mentary Figs. 2–4) were then carried out to determine the effi-
ciency of At2g22250 protein for the transamination of the keto
acid prephenate with glutamate or aspartate as amino donor and
to examine how this additional kinetic competence compares with
the originally identified aspartate–a-ketoglutarate aminotransfer-
ase activity.

3.2. Biochemical characterization of A. thaliana PAT activity

Specificity constants (kcat/Km) for the keto acids calculated from
the kinetic parameters displayed in Table 1 indicate that in the
presence of glutamate as amino donor PAT is nearly as efficient
to transaminate prephenate (kcat/Km = 7 lM�1 s�1) or oxaloacetate
(kcat/Km = 8 lM�1 s�1). These results indicate that PAT can operate
both as a glutamate/aspartate-prephenate aminotransferase (PAT)
and as a classical aspartate aminotransferase. Aspartate amino-
transferase activity in A. thaliana chloroplast is represented by
two isoforms. The eukaryotic-type (At4g31990, [33]) and the
prokaryotic-type (At2g22250, [31]). In order to see whether PAT
activity is a fortuitous activity of these aspartate aminotransferases
the eukaryotic-type chloroplastic aspartate aminotransferase
(At4g31990) was produced as a recombinant protein and purified.
This protein displayed an aspartate aminotransferase activity, as
previously reported by [33] but did not display any PAT activity
even in the presence of a high concentration of prephenate
(1 mM). Thus PAT activity is a specific property of the prokary-
otic-type enzyme (At2g22250) in Arabidopsis.
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As PAT is not only competent to function as aspartate amino-
transferase – but also as prephenate aminotransferase, it will be
interesting to compare its structure with that of crystallized specific
aspartate aminotransferases to understand at the molecular level
how the neo-functionalization of PAT occurred during evolution.
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