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ABSTRACT We have studied the structural properties of monounsaturated diacylphosphatidylcholine lipid bilayers (i.e.,
diCn:1PC, where n ¼ 14, 16, 18, 20, 22, and 24 is the number of acyl chain carbons). High-resolution x-ray scattering data were
analyzed in conjunction with contrast-varied neutron scattering data using a technique we recently developed. Analyses of the
data show that the manner by which bilayer thickness increases with increasing n in monounsaturated diacylphosphatidylcholines
is dependent on the double bond’s position. For commonly available monounsaturated diacylphosphatidylcholines, this results
in the nonlinear behavior of both bilayer thickness and lipid area, whereas for diC18:1PC bilayers, lipid area assumes a maximum
value. It is worthwhile to note that compared to previous data, our results indicate that lipid areas are smaller by ~10%. This obser-
vation highlights the need to revisit lipid areas, as they are often used in comparisons with molecular dynamics simulations. More-
over, simulators are encouraged to compare their results not only to x-ray scattering data, but to neutron data as well.
INTRODUCTION

The complex dynamics exhibited by biological membranes—

characteristic of amphiphilic systems—are highly dependent

on the membrane’s structure. It should therefore not come as

a surprise that accurate structural data regarding the various

membrane components are important in determining specific

membrane functions. One such datum is a lipid’s lateral area,

which is commonly understood to influence lipid-lipid and

lipid-protein interactions, and which plays a central role in

the parameterization of the force fields used in molecular

dynamics (MD) simulations (1).

Despite their importance, published lipid areas have been

relatively scarce and, for the most part, inconsistent (2).

Noteworthy are the discrepancies between lipid areas as

determined by x-ray and neutron scattering—arguably two

of the most widely used experimental techniques in struc-

tural biology (3). In both cases, lipid areas are calculated

from bilayer thickness and volumetric information, but the

two techniques happen to be sensitive to different bilayer

‘‘thicknesses’’. The thickness best resolved by x-rays is the

distance between the peaks in the electron density (ED)

profile, which corresponds to the distance between lipid

headgroups (i.e., phosphates), DHH. On the other hand, the

high contrast between the protonated lipid and the deuterated

water in neutron scattering experiments defines the overall

Luzzati thickness of the bilayer, DB. The often underappre-

ciated advantage of DB is that lipid area can be obtained

directly from accurately measured lipid volumes, VL (i.e.,

A ¼ 2VL/DB), making neutron scattering a preferred tech-

nique for determining this property. Despite this advantage,
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due to the lower quality of neutron data in the higher q scat-

tering region, previously accepted lipid areas were almost

exclusively determined using x-ray scattering experiments

(2,4–7) rather than from neutron scattering experiments

(8–10).

Almost two decades ago, the joint refinement of x-ray and

neutron diffraction data to obtain bilayer structural informa-

tion was introduced by Wiener and White (11). Even though

the analysis was applied to partially dehydrated bilayers,

these studies illustrated the challenges faced by the diffrac-

tion method from aligned stacks of bilayers. The main draw-

back of the Wiener and White (11) method was the extensive

number of parameters needed to fit the data. Recently, we

developed a different model for calculating scattering

density profiles (SDPs) in which we decreased the number

of parameters necessary to fit the data to nearly half that

for the original composition-space model (13), and which

we use in simultaneous analyses of x-ray and neutron scat-

tering data (12). By appropriately parsing a lipid molecule

and simultaneously analyzing the different ‘‘contrast’’ data

(i.e., x-ray and different-deuteration neutron scattering

data), we have shown that the precise structure of fully

hydrated fluid bilayers can be determined.

The inconsistencies in lipid areas have also been high-

lighted by the disparate results arising from MD simulations

using different force fields. For example, MD simulations

based on CHARMM potentials are performed at nonzero

surface tension to make them better agree with x-ray scat-

tering data (14), whereas simulations using a combination

of GROMOS and OPLS potentials do not seem to require

this additional ‘‘tweaking’’ (15). Since MD force fields are

considered to be ‘‘well tuned’’ if they are able to reproduce

experimental data (16), much more work needs to be done to
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reconcile simulation and experiment, even in the simplest

case of single-component membranes.

In this study, we report on the effects of acyl chain length

and double-bond position on the structure of fully hydrated,

fluid phosphatidylcholine bilayers containing one double

bond per acyl chain (diCn:1PC, where n ¼ 14, 16, 18, 20,

22, and 24 is the number of acyl chain carbons). Under

biologically relevant conditions, these lipids form highly

disordered structures that closely mimic biological mem-

branes. Our bilayer description is based on volume proba-

bility distributions to which we apply the principle of spatial

conservation. We also report on several different bilayer

thicknesses. For example, the hydrophobic thickness is

important when considering the hydrophobic matching of

proteins with membranes, whereas the steric thickness

determines the interaction between membranes and bioma-

cromolecules. The thickness best resolved by x-rays is

DHH, whereas neutron scattering best provides DB. In con-

junction with volumetric information, these thicknesses are

then used to determine the lateral area/lipid, A, parallel to

the membrane surface. We emphasize that our model only

assumes the functional forms of the probability distributions

and does not assume numerical values for the parameters that

are, and should be, different for different lipid bilayers. The

experimental trends observed are reproduced, with coarse-

grained simulations revealing changes to bilayer properties

through a subtle interplay between acyl chain length and

position of the double bond.

MATERIALS AND METHODS

Synthetic 1,2-dimyristoleoyl-sn-glycero-3-phosphatidylcholine (9-cis, diC14:

1PC), 1,2-dipalmitoleoyl-sn-glycero-3-phosphatidylcholine (9-cis, diC16:1PC),

1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (9-cis, diC18:1PC), 1,2-dieico-

senoyl-sn-glycero-3-phosphatidylcholine (11-cis, diC20:1PC), 1,2-dierucoyl-

sn-glycero-3-phosphatidylcholine (13-cis, diC22:1PC), and 1,2-dinervonoyl-

sn-glycero-3-phosphatidylcholine (15-cis, diC24:1PC) were purchased from

Avanti Polar Lipids (Alabaster, AL) and used without further purification. Uni-

lamellar vesicles (ULVs) 600 Å in diameter were prepared as in a previous study

(17). Samples used in neutron contrast variation experiments were first dispersed

in D2O and, after extrusion, diluted with 18 MU-cm water (Millipore, Billerica,

MA) or D2O to the desired external contrast condition (i.e., 100%, 70%, and 50%

D2O). The total lipid concentration for all ULV samples was ~20 mg/ml, which

guarantees sufficient water between ULVs, and the practical elimination of

interparticle interactions (17).

Small-angle x-ray scattering

X-ray data were taken at the Cornell High Energy Synchrotron Source G-1

station. A 1.234-Å wavelength (l) x-ray beam of dimensions 0.3� 0.3 mm2

was detected using a 1024 � 1024 pixel array FLICAM charge-coupled

device, with 69.78 mm linear dimension pixels. The sample-to-detector

distance was 418.6 mm, as determined using silver behenate. Samples

were contained in 1.5-mm quartz capillaries placed in a temperature-

controlled, multiposition sample holder. Two-dimensional images were

‘‘dezingered’’ using two consecutive 10-s exposures, and were corrected

using calibration files supplied by the Cornell High Energy Synchrotron

Source. Data sets were normalized using the incident beam intensity as

measured by an ion chamber, and background resulting from water and air

scatter was subtracted according to a procedure described previously (17).
Small-angle neutron scattering

Small-angle neutron scattering (SANS) measurements were performed on

the PAXE spectrometer located at the end of the G5 cold neutron guide at

the Orphée reactor (Laboratoire Léon Brillouin, Gif-sur-Yvette, France).

Experiments were carried out at sample-to-detector distances of 1.77

and 5.07 m using a l of 6 Å. This resulted in a total scattering vector

(q ¼ 4p/l sin(q/2), where q is the scattering angle) of 0.03 < q < 0.2 Å�1.

Data were collected using a 64 � 64 mm2 two-dimensional 3He position-

sensitive detector with a 1 � 1 mm2 spatial resolution. Samples were taken

up in standard 2-mm pathlength quartz cuvettes, or 1-mm cuvettes in the

case of contrast variation. The sample temperature was set and controlled

electronically at 30.0 5 0.1�C. Data acquisition time was from 30 min to

1 h per sample, and intensities were normalized for sample transmission.

Background subtraction was performed using a blank sample reference in

accordance with the procedure described previously (17).

Experimental form factors F(q) were obtained from the measured scat-

tered intensities I(q) for both neutrons and x rays, using

FðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IðqÞPLCðqÞ=PTSðqÞ

p
; (1)

where PLC(q) is the Lorentz correction, which for ULVs is equal to q2,

whereas PTS(q) describes their ‘‘sphericity’’ and ‘‘polydispersity’’ (18).

Despite its complicated form, for ULVs with a mean radius of 300 Å and

a polydispersity of 75 Å, PTS is constant over the entire q range (i.e., q >
0.03 Å�1). Thus, the measured intensities multiplied by q2 are directly

proportional to the square of the form factors.

Structural model of bilayer

The SDP model is graphically shown in Fig. 1. Briefly, the component

groups are chosen on the assumption that each group has the same functional

form for all of the different contrast conditions. For example, carbonyl and

glycerol groups are described by a single Gaussian (CG), the phosphate and

part of the choline (CH2CH2N) by another Gaussian (PCN), and the remain-

ing choline (3xCH3) by yet another Gaussian (CholCH3). In effect, three

Gaussians are used to describe the lipid headgroup. The error function repre-

sents the total hydrocarbon region (i.e., sum of CH2, CH, and CH3 groups).

The CH and CH3 groups are each described by a single Gaussian, which are

then subtracted from the error function to obtain the CH2 distribution. The

water distribution is not defined by any particular function, rather it is calcu-

lated based on the ‘‘complementarity’’ requirement, whereby all of the prob-

abilities add up to 1. In this way, the model satisfies the spatial conservation

principle while capturing all of the features of the different SDPs (12).

From Fig. 1, it is obvious that neutrons and x rays are sensitive to different

parts of the bilayer. For example, in the case of x rays, the electron-dense

phosphate groups contrast very well with the less electron-dense hydro-

carbon region. Thus, x-ray data are well suited for the refinement of the lipid

headgroup and hydrocarbon chains. On the other hand, the high neutron-

scattering-length density (NSLD) of D2O, which is often used in neutron

experiments instead of H2O, permits neutron scattering to accurately deter-

mine the total bilayer thickness and, as a result, lipid area.

Previous models have divided the lipid bilayer into four or five structural

components consisting of the terminal methyl groups, methylene groups

(with an occasional separation of a double bond), and the combined

carbonyl/glycerol and phosphate/choline groups (14,19). However, as dis-

cussed in a previous work (12), such models are only valid for fitting

x-ray data, or neutron data, from bilayers with deuterated cholines. We

find that although the SDP model is frugal with regard to the number of

parameters, it is still capable of simultaneously describing both NSLD and

ED profiles. Although the SDP model is designed to obtain structure from

x-ray and neutron scattering data, the primary description is in terms of

neither ED nor NSLD. Instead, it is described by volume probability distri-

butions, which should satisfy the spatial conservation principle whereby

volume is conserved. Compared to previous models based on global spatial

conservation (20), the novel feature of the SDP model is that it imposes
Biophysical Journal 97(7) 1926–1932
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spatial conservation locally. Therefore, the volume probabilities of the

component groups in the SDP model sum up to unity at each point, z, along

the bilayer normal. In contrast, for models where spatial conservation was

not rigorously incorporated, deviations of up to ~15% were required to fit

the data (14,21).

Determination of lipid area, A

The detailed determination of area/lipid, A, is explained in a previous article

(12). A follows from the volume probability, which gives the Gibbs dividing

surfaces for the water (i.e., DB/2) and hydrocarbon chain (i.e., DC) regions

shown in Fig. 1. For example, the mean position of the water distribution

is defined by the equality of the integrated water probabilities to the left

of the Gibbs dividing surface and the integrated deficit of water probabilities

to its right (Fig. 1, shaded areas). In other words, it is the position that would

correspond to the edge of the distribution if it were represented by a simple

box model, making it equivalent to Luzzati’s division of two component

systems consisting of water and lipid. The criterion of the dividing surface

is written as

Z DB=2

0

PWðzÞdz ¼
Z D=2

DB=2

ð1� PWðzÞÞdz; (2)

where D/2 is a point beyond which the water probability PW(z) ¼ 1. From

this, DB can be expressed in the form (12)

DB ¼ D� 2

Z D=2

0

PWðzÞdz: (3)

The latter integral is equivalent to the integrated deficit of the lipid proba-

bility, which is equal to (D/2 � VL/A). Equation 3 then yields the first of

two equalities, where lipid area is (12)The second equality in Eq. 4 follows

FIGURE 1 SDP model representation of a lipid bilayer (diC18:1PC).

(Upper) Electron densities (left) and neutron scattering-length densities

(right) of the various component distributions in a lipid bilayer, including

the total scattering density (heavy gray lines). (Lower) Volume probability

distributions, with the total probability equal to 1 at each point across the

bilayer. The concept of the Gibbs dividing surface is shown for the water

distribution, whose mean position is defined by the equality of the two

shaded areas.
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from the equivalent derivation applied to the dividing surface between the

hydrocarbon and headgroup regions.

Even though the experimentally obtained F(qz) contains information

about the bilayer’s structure in the z direction (along the bilayer normal),

Eq. 4 also allows for the evaluation of structure in the lateral direction,

namely A. It should be emphasized that although the latter part of this equa-

tion has been widely used in previous models, in the case of neutron scat-

tering, the first equality has important implications. For protonated lipid

bilayers dispersed in D2O, neutrons are particularly sensitive to the overall

bilayer thickness, DB. Equation 4 thus directly yields lipid area when VL

is known.

It is important to note that A becomes the central parameter in the SDP

model for all of the lipid component distributions. This enables the calcula-

tion of absolute scattering intensities (model), which in turn allows for the

arbitrary scaled experimental data to be put on an absolute scale (12).

MD simulations

The recently developed MARTINI coarse-grained model (22) describes

small groups of atoms as beads, allowing for simulation times in the range

of microseconds while practically retaining atomic-resolution detail. The

model reproduces a variety of structural, dynamic, and thermodynamic

membrane properties on a semiquantitative basis. In this study, MD simula-

tions using GROMACS (23) were performed for monounsaturated diacyl-

phosphatidylcholine bilayers with varying hydrocarbon chain lengths. The

system details were chosen to match the experimental conditions as closely

as possible, taking into account the relative position of the double bonds.

The bead compositions used were c1-c1-c3, c1-c1-c3-c1, c1-c1-c3-c1-c1,

c1-c1-c1-c3-c1-c1, and c1-c1-c1-c1-c3-c1-c1, corresponding roughly to

diC12:1PC, diC16:1PC, diC20:1PC, diC24:1PC, and diC28:1PC, respec-

tively. Every bead represents four methylene groups, and c3 is the position

of the unsaturated bead. Additional simulations were performed using lipids

with the position of the double bond fixed with respect to either the head-

group or methyl terminus. Tension-free bilayer patches containing 128 lipids

and excess water (40 waters/lipid) were simulated at T ¼ 298 K over time

periods of several microseconds for each lipid. Standard simulation param-

eters were used as described in Marrink et al. (22).

RESULTS AND DISCUSSION

The SDP model with only one set of parameters was used to

simultaneously fit up to four data sets obtained under

different contrast conditions. Besides x-ray and neutron

data from protonated bilayers dispersed in 100% D2O, other

contrast conditions include neutron scattering experiments

performed with bilayers dispersed in 70% and 50% D2O

solutions in the case of diC14:1PC, diC18:1PC, and

diC22:1PC bilayers. Fig. 2 shows all of the experimental

data together with the best-fit results.

Fits to the x-ray form factors are shown in Fig. 2 and are in

very good agreement over the entire q range (q < 0.65 Å�1).

Such high-quality data typically result in high-resolution

profiles revealing detailed structural features. In contrast,

the figure shows neutron scattering data restricted to the

low-q region (q < 0.2 Å�1), typical for SANS data from

liquid crystalline bilayers in solution. Nevertheless, these

low-q region data reflect the large scattering contrast

between the lipid bilayer and the solvent, and contain robust

information regarding the distribution of water and bilayer

A ¼ 2VL=DB ¼ ðVL � VHLÞ=DC: (4)
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FIGURE 2 Unconstrained area fits to x-ray and neutron

scattering form factors, F(q), for the various diCn:1PC bila-

yers at 30�C using the SDP model (solid red lines) and the

fits using the areas/lipid from Lewis and Engelman (5)

(blue dashed lines). The lower portions of the graphs

display results of x-ray scattering experiments, whereas

the upper portions present neutron scattering data. For

some lipids (i.e., n ¼ 14, 18, and 22), 100% D2O measure-

ments were complemented with 70% and 50% D2O

measurements. The graph for diC24:1PC x-ray data shows

the results of two different fits corresponding to symmetric

(minima ¼ 0) and asymmetric profiles of ED distributions.
thickness. It is no surprise that the most intense scattering

occurs from fully protonated bilayers in 100% D2O, whereas

the least intense scattering is observed from bilayers

dispersed in 50% D2O.

The x-ray data shown in Fig. 2 contain at least three

distinct scattering lobes over the measured q range. These

lobes shift to lower (thickening) or higher (thinning) q
values, depending on the thickness of the bilayer. The

same effect is also seen in neutron scattering data, although

only the beginnings of the second lobe were observed, and

then only for the longer-chain lipids. Despite their lower

resolution, neutron data proved to be most important for

determining lipid area (12). The sensitivity of the SDP model

to various contrast scattering data is summarized in the Sup-

porting Material.

X-ray scattering data from diC24:1PC bilayers reveal an

interesting feature (Fig. 2). The minima between the lobes

do not decay to zero intensity as they do for the other bila-

yers. We have previously observed something similar while

studying charged lipid systems (17). We concluded that this

‘‘lift off’’ of the scattering minima indicates an asymmetric

bilayer, most likely caused by bilayer curvature. We have

also conclusively shown that similar-sized neutral, single-

species lipid ULV bilayers are not affected by curvature.

Nevertheless, it is possible that bilayers are more susceptible

to this effect as their thickness increases. As a result, we have

carefully analyzed the x-ray data shown in Fig. 2 (diC24:

1PC) with a modified SDP model, allowing for the possi-

bility of an asymmetric bilayer. Although one might fret
over the manner in which the background was subtracted,

the best fits to the data strongly suggest that it was robustly

done. The use of the asymmetric model improved the best fit

considerably (see Fig. 2), and the calculated ED profile

shown in Fig. 3 reveals a substantial deviation from

a symmetric bilayer.

Bilayer asymmetry mainly affects distributions in the polar

headgroup, i.e., the region of high electron density. As a result,

x-ray scattering form factors are quite sensitive to this struc-

tural feature. On the other hand, as was discussed, neutron

scattering is mostly sensitive to the distribution of water and

is rather insensitive to intrabilayer structure. As expected,

FIGURE 3 Comparison of symmetric and asymmetric ED profiles as

obtained from fitting the SDP and modified SDP models to diC24:1PC

x-ray scattering data.
Biophysical Journal 97(7) 1926–1932
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the fitting analysis allowing for asymmetric bilayers did not

change the neutron result. Since the overall bilayer parameters

(A and DB) are not affected by bilayer asymmetry, we also

evaluate A and DB for diC24:1PC bilayers.

Lipid bilayers, especially fully hydrated fluid-phase bila-

yers, are highly disordered systems that are best described

by broad distributions rather than sharp d functions (2). How-

ever, structural parameters averaged over the entire sample

can be well defined. Here, we adopt the concept of the Gibbs

dividing surface (as explained in the Materials and Methods

section) to define these parameters. One of the important

structural parameters when considering the hydrophobic

matching of lipids and proteins is the hydrocarbon chain

thickness, DC. The SDP model defines DC at the center of

the error function, i.e., the hydrocarbon chain distribution

(see Fig. 1). Another important parameter is the total bilayer

thickness, DB, which we define as the Gibbs dividing surface

for the water region (i.e., DB/2). As mentioned, and carefully

explained previously (12), DB is robustly determined by

neutron scattering and leads to the determination of A (i.e.,

A ¼ 2VL/DB), assuming that lipid volume is already known

(24). On the other hand, x-ray scattering is highly sensitive

to electron-dense lipid headgroups, providing the head-to-

head distance, DHH. All four parameters that describe the

overall bilayer structure are shown in Table 1 (see the Sup-

porting Material for more complete details).

In a pioneering work, Lewis and Engelman (5) studied

three of the lipids described in this study (i.e., n ¼ 18, 22,

and 24) using small-angle x-ray scattering (SAXS) and pau-

cilamellar vesicles. Compared to the Lewis and Engelman

data, we find our DB values to be ~2 Å larger (though they

follow a similar trend), whereas our lipid areas are smaller

by as much as 6 Å2 (Table 1, last column). A recent x-ray

study (4) supported the Lewis and Engelman results for

n ¼ 18 and 22 bilayers, whereas recent neutron scattering

data have suggested much smaller areas (25,26). It has

been thought that this inconsistency between SANS and

SAXS data was a result of the rudimentary models used to

analyze SANS data. However, recently it was discovered

(12) that although SAXS is more suitably applied to deter-

mine the internal structure of lipid bilayers, it can underesti-

TABLE 1 Head-to-head distance, hydrocarbon thickness,

bilayer thickness, and lateral area for the monounsaturated

diacylphosphatidylcholines studied at 30�C

DHH (Å) DC (Å) DB (Å) A (Å2) ALE (Å2)

diC14:1PC 29.6 11.7 33.7 64.2

diC16:1PC 32.1 13.1 36.2 65.8

diC18:1PC 36.8 14.5 38.9 66.9 73.0 5 2.7

diC20:1PC 38.9 16.3 42.5 66.6

diC22:1PC 45.5 18.2 46.4 65.7 70.1 5 2.0

diC24:1PC 47.9 20.8 52.2 62.7 66.0 5 1.9

Area uncertainty was estimated at 51 Å2, leading to a thickness uncertainty

of ~2%. DHH, head-to-head distance; DC, hydrocarbon thickness; DB,

bilayer thickness; A, lateral area; ALE, temperature-corrected area, from

Lewis and Engelman (5).
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mate DB and A by as much as 10%, and that such estimation is

thus a task better suited to SANS measurements. Consistent

with previous findings, Fig. 2 shows that form factors calcu-

lated using previously reported areas (5) agree well when

compared to appropriate x-ray scattering data (i.e., form

factors), but not so well when compared to neutron scattering

data. It is noteworthy that by combining both techniques in

one analysis, the various bilayer parameters can be more accu-

rately determined.

Fig. 4 shows the dependency of the bilayer structural

parameters on hydrocarbon chain length, n. Both the hydro-

carbon chain thickness, DC, and the overall bilayer thickness,

DB, increase with n, exhibiting a small, but not negligible,

deviation from linear behavior. Perhaps a more surprising

result is how lipid area changes as a function of n (Fig. 4,

lower). It increases first and then decreases with a maximum

near n ¼ 18. Although surprising at first, this behavior is

consistent with the accepted notion that the volume of the

individual lipid components is independent of the number

and position of double bonds, and of the length of the acyl

chains, and that the total volume is in fact linearly dependent

FIGURE 4 Bilayer structural parameters obtained through the simulta-

neous analysis of x-ray and neutron scattering data. Structural parameters

of hydrocarbon thickness, DC, overall bilayer thickness, DB, and area/lipid,

A, are plotted as a function of chain length, n. Data were fitted with a quadratic

function.
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on the number of carbons (24,27). As lipid volume is the

direct result of lipid area and bilayer thickness, it follows

that if bilayer thickness increases nonlinearly, the changes

in area with changes in n will also be nonlinear.

The nonlinear behavior of bilayer thickness and lipid area

can be explained in terms of double bond position. For bila-

yers of n¼ 14, 16, and 18, the double bond is at the 9-cis posi-

tion, whereas for n¼ 20, 22, and 24 bilayers, the double bond

is at the 11-cis, 13-cis, and 15-cis positions, respectively. As

discussed by Karlovská et al. (28), increased hydrocarbon

chain length results in increased van der Waals attraction,

which in turn leads to an ordering of the hydrocarbon chains

that effectively reduces the area/lipid. However, lipid chain

disorder also depends on double bond position, and it presum-

ably has the largest effect when the double bond is located in

the middle of the hydrocarbon chain (29). Of considerable

importance, this indicates that lipid area, the result of a fine

balance between intrabilayer forces, is a good indicator of

the lateral interactions within the bilayer.

We have compared our experimental results to those

obtained from MD simulations. Bilayer simulations based

on the MARTINI model (22) reproduced the nonmonotonic

trend of lipid area dependence and qualitatively predicted

the same effect of double bond position on lipid area. The

black solid circles in Fig. 5 are the results for six lipids similar

to those used in the experiment. However, due to the coarse-

grained nature of the MARTINI model, the mapping between

total number of carbons is somewhat arbitrary (i.e., an n¼ 20

hydrocarbon chain can also be an n¼ 18 hydrocarbon chain).

FIGURE 5 Area/lipid obtained from coarse-grained MD simulations. The

bead compositions were chosen to match the experimental conditions as

closely as possible, taking into account the relative position of the double

bonds. Results displayed with black solid dots roughly correspond to

systems of diC12:1PC, diC16:1PC, diC20:1PC, diC24:1PC, and diC28:

1PC. Green plus signs represent lipids with the double bond position fixed

at the third bead from the headgroup; cyan crosses show results from simu-

lations where the double bond was fixed with respect to the methyl terminus

(u6 position). Dashed arrows indicate points where double bonds were

shifted away from the lipid headgroup region, toward the bilayer center.

All points are labeled with the double bond position.
As a result, we focused on the relative changes caused by the

position of the double bond. It is clear that A increases with

increasing chain length when the double bond’s distance

from the lipid headgroup remains constant (e.g., n ¼ 12–20

in Fig. 5), in good agreement with our experimental results.

For long chain lipids (n ¼ 20–28 in Fig. 5), the distance of

the double bond from the bilayer center was fixed, resulting

in a decrease in lipid area as a function of increasing hydro-

carbon chain length. Although this effect is not as pronounced

as that observed experimentally, the softened behavior is most

likely due to an underestimation of the enthalpic attraction

between the tails in the coarse-grained simulations. Neverthe-

less, overall, these data support our experimental findings.

Additional simulations were performed to directly confirm

the influence of the double bond’s position, which was shown

experimentally to be an important parameter (30). In simula-

tions of n ¼ 20, 24, and 28 bilayers, the double bond was

shifted away from the lipid headgroup (Fig. 5, dashed arrows).

This movement of the double bond resulted in a smaller area/

lipid due to less disorder within the hydrocarbon chain region.

It is obvious that changes in area follow a nonmonotonic trend,

which levels off as the double bond gets closer to the head-

group. Qualitatively, the same results were observed by

Martinez-Seara et al. (29,31). Further, when the double bond

position was kept at a fixed distance from the headgroup

(9-cis), the simulations showed an increase in area over the

entire range of chain lengths, n ¼ 12–28 (Fig. 5, green plus
signs). On the other hand, lipid area decreased over the range

n ¼ 16–28 when the double bond position was fixed, with

respect to the methyl terminus, at the u6 position (Fig. 5,

cyan crosses). This nonunique response of lipid area to the

changes in acyl chain length confirms the importance of the

double bond position, and suggests that much more work

needs to be done to achieve a better understanding of the

highly complex behavior of biological membranes.

CONCLUSIONS

In conclusion, recent developments in structural biophysics

have allowed for the more precise determination of biomem-

brane properties. Through the simultaneous analysis of high-

resolution x-ray and neutron scattering data, we were able to

obtain robust bilayer structural parameters for a series of mono-

unsaturated diacylphosphatidylcholines. Our experimental

results show that as a function of increasing hydrocarbon chain

length, bilayer thickness exhibits a nonlinear behavior. Of

particular interest, area/lipid, in the case of commonly avail-

able monounsaturated diacylphosphatidylcholines, assumes

a maximum for bilayers of length n ¼ 18. This observation

was corroborated with MD simulations that show the double

bond’s influence. With increasing n, the fine balance between

attractive and repulsive intrabilayer forces results in an

increase in area when the double bond’s distance is fixed rela-

tive to the lipid’s headgroup, whereas it decreases when the

double bond is fixed relative to the bilayer center.
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The results presented here can be used to better understand

membrane-protein interactions that are known to depend on

bilayer thickness and area/lipid. Perhaps more important, these

results should serve as the foundation for the fine-tuning of the

force fields used in various MD simulations, for which accu-

rately known lipid areas are central. Finally, we encourage

MD simulators not only to compare their simulation results

with x-ray scattering data, but also to include neutron data,

which are more sensitive to DB and, consequently, A.
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