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Intraflagellar Transport Is Required in Drosophila
to Differentiate Sensory Cilia but Not Sperm

revealed over 16 constituent proteins associated in A
and B subcomplexes [2, 3]. Particle movement toward
the plus ends of the axonemal microtubules at the tip
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lacking kinesin II subunits or complex B proteins do not3 Department of Neurobiology & Behavior
State University of New York at Stony Brook extend cilia beyond the transition zone of the basal body.

In mutants that express a temperature-sensitive kinesin,Stony Brook, New York 11794
flagella shrink after a shift to the restrictive temperature,
and this shrinkage indicates that IFT is needed to main-
tain and regulate flagellar length [2, 4, 5]. IFT particlesSummary
and kinesin are returned to the cell body by a nonaxo-
nemal dynein, and mutants with defects in this processBackground: Intraflagellar transport (IFT) uses kinesin

II to carry a multiprotein particle to the tips of eukaryotic [6, 7] typically have swollen cilia that accumulate IFT
particles. Some IFT proteins are concentrated in the cyto-cilia and flagella and a nonaxonemal dynein to return it

to the cell body. IFT particle proteins and motors are plasm close to the basal bodies as well as in the cilia
proper, and the transition fibers that connect the basalconserved in ciliated eukaryotes, and IFT-deficient mu-

tants in algae, nematodes, and mammals fail to extend body to the cell membrane are a possible site for the
docking and exchange of IFT particles, motors, andor maintain cilia and flagella, including sensory cilia. In

Drosophila, the only ciliated cells are sensory neurons cargo [8].
IFT proteins and motors are well conserved in ciliatedand sperm. no mechanoreceptor potential (nomp) mu-

tations have been isolated that affect the differentiation eukaryotes, including nematodes and mammals [9]. Mu-
tations affecting IFT motors and particle proteins inand function of ciliated sense organs. The nompB gene

is here shown to encode an IFT protein. Its mutant phe- these organisms cause a variety of developmental and
functional defects, many of which are traceable to miss-notypes reveal the consequences of an IFT defect in an

insect. ing or defective cilia. The nematode Caenorhabditis has
ciliated sensory neurons in which IFT particle transportResults: Mechanosensory and olfactory neurons in

nompB mutants have missing or defective cilia. nompB has been visualized [10]. Many mutations isolated due
to defects in sensory function or ciliary differentiationencodes the Drosophila homolog of the IFT complex B

protein IFT88/Polaris/OSM-5. nompB is expressed in [11, 12] affect IFT complex proteins or motors [13–18]
or an RFX-type transcription factor that regulates ex-the ciliated sensory neurons, and a functional, tagged

NOMPB protein is located in sensory cilia and around pression of several IFT genes [19].
Single “primary” cilia are nearly ubiquitous in mamma-basal bodies. Surprisingly, nompB mutant males produce

normally elongated, motile sperm. Neuronally restricted lian cells [20] and are overtly differentiated for a sensory
role in photoreceptors. Cilia with a central pair of micro-expression and male germline mosaic experiments

show that nompB-deficient sperm are fully functional in tubules (9�2 configuration) occur as sperm flagella and
in polyciliated cells that line airway and brain epithelia.transfer, competition, and fertilization.

Conclusions: NOMPB, the Drosophila homolog of Primary cilia, sensory cilia, and motile cilia all contain
IFT proteins, and mutations affecting IFT in mammalsIFT88, is required for the assembly of sensory cilia but

not for the extension or function of the sperm flagellum. are pleiotropic, reflecting ciliary roles in development
and in transducing sensory and regulatory signals [21].Assembly of this extremely long axoneme is therefore

independent of IFT. For instance, Polaris, the mouse homolog of IFT88, is
present in primary cilia, motile cilia, and sperm. Mice
homozygous for a hypomorphic allele, Tg737orpk [22],Introduction
have defects including kidney cysts, photoreceptor de-
generation, skeletal abnormalities, and spermatogene-The eukaryotic cilium or flagellum is a distinct subcellu-
sis defects [23–25] (J.T. San Agustin, G.J. Pazour andlar compartment, with its own characteristic microtubu-
G.B. Witman, personal communication). A targetedlar cytoskeleton, the axoneme, and a membrane that,
Tg737 knockout is embryonic lethal, with early embry-though continuous with the plasma membrane, can lo-
onic defects that include randomized left/right asymme-calize distinct sets of proteins. This distinction is main-
try, a consequence of missing cilia on the embryonictained by a specific mechanism of intraflagellar trans-
ventral node [26]. The defective cilia in kidney tubulesport (IFT). IFT was first observed in the single-celled
of orpk mutant mice [27] were in fact the first indicatoralga Chlamydomonas as a bidirectional movement of
that undifferentiated primary cilia have important physi-uniformly sized particles along the flagellum, in the
ological functions [28]. The similarity of some IFT pro-space between the axoneme and the flagellar mem-
teins to signaling and regulatory proteins found else-brane [1]. Biochemical characterization of the particles
where in the cell further suggests that IFT may be
involved in coupling cilia-mediated signals to intracellu-*Correspondence: mkernan@notes.cc.sunysb.edu
lar pathways [9].4 Present address: Laboratory of Chemistry and Cell Biology, Rocke-

feller University, New York, New York 10021. In Drosophila, cilia are found in Type I, monodendritic
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sensory neurons in which 9�0-type cilia located at the
distal tip of sensory processes transduce mechanical
or chemical sensory stimuli. Insect photoreceptors are
not ciliated, but flies, unlike nematodes, do have flagel-
lated sperm with a canonical 9�2 axoneme and acces-
sory tubules. Ciliogenesis-defective mutants of Dro-
sophila are therefore expected to combine sensory and
spermatogenesis defects. We show that the nompB
gene, previously identified by behavioral and electro-
physiological mutant defects, encodes the Drosophila
counterpart of Chlamydomonas IFT88, Caenorhabditis
OSM-5, and mammalian Polaris/Tg737. We find that
nompB mutants have defects in sensory cilia that are
consistent with a loss of IFT and that the NOMPB protein
is located in cilia and around basal bodies. Surprisingly,
it has no role in sperm differentiation or function.

Results and Discussion

Ciliary Defects in nompB Mutants
Three nompB alleles were isolated in a genetic screen
for defects in mechanosensory behavior and elec-
trophysiology [29]. All three alleles showed the same
phenotype when homozygous: severe uncoordination,
associated with a complete loss of transduction in
mechanosensory bristles [29] and in auditory chordoto-
nal organs [30]. Similar phenotypes were seen in flies
carrying two different mutant alleles and in flies hemizy-
gous for a mutant allele. Both of these types of sense
organs are innervated by one or more sensory neurons
surrounded by specialized supporting cells. Each neu-
ron has a single sensory process, divided into a proximal
inner segment and a distal outer segment [31]. The outer
segment is a modified cilium that extends from the more
distal of a pair of basal bodies located at the tip of
the inner segment. In mechanosensory neurons, it is
connected to stimulus-transmitting structures by an ex-
tracellular dendritic cap and is thought to be the site of
transduction.

We visualized neurons of campaniform sensilla, exter-
nal sense organs similar to bristles, by expressing a

Figure 1. Defective Sensory Cilia in nompB Mutantsgreen fluorescent protein (GFP) in neurons. In nompB
(A–J) Neurons and sensory processes in (A, C, E, G, and I) wild-typemutants, neuronal cell bodies and axons appeared nor-
and (B, D, F, H, and J) nompB mutant flies were visualized by tar-mal, but the sensory process that normally contacts
geted expression of green fluorescent proteins. (A–D) Campaniform

the dome-shaped sensillum was retracted (Figures 1A– sensilla on the wing vein. The dilated ciliary tip of the sensory pro-
1D). To study ciliary morphology in more detail, we ex- cess (arrowhead), normally located under the dome of the sensillum
amined the longer cilia of chordotonal neurons express- (line) (A and C), is missing in the mutant (B and D). (E–H) Sensory

neurons in the (E) femoral and (G) antennal chordotonal organs haveing a membrane-associated green fluorescent protein
cilia that are missing or deformed in the mutant (F and H). (I and J)(mCD8-GFP) (Figures 1E–1H). Wild-type chordotonal or-
Olfactory neurons on the third antennal segment, showing long ciliagans of the femur and antenna include pairs of sensory
(inset) in wild-type, that are missing or truncated in the mutant. The

neurons, each bearing a single cilium that bears a char- arrows (E)–(J) indicate the distal ends of inner dendritic segments,
acteristic ciliary dilation. In nompB mutants, cilia were and the arrowheads indicate the ciliary outer segments that extend
absent, while a few short, thin, irregularly curved pro- from them.
cesses remained on some neurons. The defect was lim-
ited to the cilia: inner segments and cell bodies ap-
peared normal, and the aberrant processes extending Positional Cloning of nompB

nompB was mapped to cytogenetic position 39E7-F1from osm-5 mutant cell bodies [12, 18] were not seen
in nompB mutants. Cilia were also missing from all olfac- by deficiency complementation tests and by P element-

induced male recombination [32]. The minimal intervaltory neurons of the third antennal segment (Figures 1I
and 1J). Thus, a general defect in the differentiation of containing nompB was delimited proximally by the P

element insertion l(2)02074 and distally by the break-sensory cilia underlies the behavioral and electrophysio-
logical defects of nompB mutants. point of a deletion, Df(2L)03832MR1, that was generated
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Figure 2. Gene Identification and Structure

(A) Molecular maps of the nompB region,
showing known and predicted genes, P inser-
tion sites, and the Df(2L)03832MR1 deletion.
The distal breakpoint of Df(2L)03832MR1 is
located in a histone repeat array, but its exact
location has not been defined.
(B) Genomic structure and mutant alleles of
nompB. Exons are shown as blue boxes.
Overlapping orange and green bars indicate
sequences that are duplicated upstream and
downstream of the gene. The 1100 bp dele-
tion in nompB1 is shown as a black bar. The
overlapping 8 bp deletions in nompB2 and
nompB3 are shown in a box; both lead to an
identical frameshift and a truncated protein.
Primers used to amplify the upstream geno-
mic region and full-length cDNA are indicated
by closed and open triangles, respectively.
(C) Transgene constructs described in the
text, aligned with the encoded protein. The X
box, a putative regulatory motif in the 5�-UTR,
is shown as a red line in the constructs and
is aligned with the consensus X box se-
quence in the inset. The dark blue boxes in
the protein indicate tetratricopeptide repeat
(TPR) motifs; the numbered asterisks indicate
the predicted truncation sites for each mutant
allele.
(D and E) Transgenic rescue of the nompB
electrophysiology defects in bristles and
chordotonal organs. (D) Bristle mechanore-
ceptor currents in response to a step stimulus
in a nompB/� heterozygote, a nompB/Df
hemizygote, and a hemizygote with a P inser-
tion carrying the genomic-cDNA fusion in Fig-
ure 2C. (E) Antennal sound-evoked potentials
recorded from the same genotypes.

from theP element insertion l(2)03832.The Df(2L)03832MR1 an RFX-type transcription factor, a probable transcrip-
tional regulator of IFT genes [19, 34]. The 5� flankingdeletion breakpoint falls in a histone gene repeat array.

Although the published Drosophila genome sequence duplication was not included in any transcript detected
by RT-PCR.[33] does not extend to these repeats, it does include

an approximately 100 kb segment that includes six pre- To verify the identity of CG12548 with nompB, we
sequenced exons from all three nompB mutant allelesdicted genes distal to the l(2)02074 insertion site. Among

these, CG12548 was identified as a possible nompB and the cn bw stock from which they were derived and
found independent alterations in each allele. In nompB1,candidate due to its similarity to the mammalian Tg737

gene. an approximately 1 kb deletion removes exon 4 and part
of exon 3. RT-PCR from nompB1 mutants showed thatThe previously predicted structure of CG12548 was

ambiguous due to two near-exact partial duplications this results in the missplicing of exon 2 to exon 5 and
a frameshift at amino acid 109 that yields a 110 aminoof internal exons that flank the gene proper (Figure 2B).

By TBLASTN alignment with the putative mammalian acid-truncated protein. nompB2 and nompB3 have over-
lapping but distinct 8 base deletions in exon 6. Thesehomolog, we adjusted the predicted structure to ex-

clude the duplicated exons and include exon 3. RT- deletions result in the same frameshift and premature
stop codon in the middle of the gene and thus yield a 542PCR and sequencing of overlapping cDNA segments

confirmed this structure and identified a single alterna- amino acid-truncated protein with 12 novel C-terminal
amino acids. Notably, none of the alterations found intively spliced exon. The longer isoform contains an open

reading frame that begins in exon 1, following two in- nompB alleles were the single-base transitions ex-
pected from the ethylmethanesulfonate mutagenesis inframe stop codons, and encodes 867 amino acids. The

shorter isoform lacks the 29 amino acids encoded by which they were isolated, although at least ten other
mutations isolated from the same screen [35, 36] (andexon 7. The first exon follows a highly predicted pro-

moter sequence and includes a putative binding site for our unpublished data) are transitions. However, all three
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alterations either overlap or fall within the two gene shows that GFP-NOMPB is most concentrated at the
distal end of the inner segment, the location of the basalsegments that are present in wild-type sequences as

flanking duplications; this finding suggests that the bodies (Figures 3E and 3F).
A winged-helix RFX transcription factor is specificallynompB mutations resulted from duplication-initiated re-

arrangements. expressed in ciliated sense organs in both Caenorhab-
ditis [19] and Drosophila [34, 45]. In nematodes, it regu-To confirm the identity of CG12548 and nompB, we

made a functional nompB transgene by amplifying a full- lates the expression of several IFT proteins, via a palin-
dromic “X box” DNA sequence often located close tolength cDNA including the translation start site, alternate

exon 7, and the polyadenylation signal and joining it to transcription start sites [19]. A canonical X box is located
within the 5�-untranslated region of the nompB tran-a 2.2 kb fragment of upstream genomic DNA (Figure

2D). Twelve independent P element inserts containing scription unit. Mutants for either the Caenorhabditis
(daf-19) [19] or Drosophila (Rfx) [46] RFX factor lackthis construct rescued the behavioral (data not shown)

and electrophysiological defects of nompB mutants in sensory cilia. GFP-NOMPB is undetectable in Rfx mu-
tant flies (Figure 3G), confirming that Rfx is required forgermline transformants (Figures 2D and 2E).
normal nompB expression.

Flies mutant for the kinesin II subunit Klp64D haveConservation of NOMPB and Other IFT Proteins
missing or shortened cilia, as expected for an IFT defectThe predicted NOMPB protein shows 28%–33% amino
[47] (and our unpublished data). In these mutantsacid identity and 47%–48% similarity with its homologs
(klp64Dk1/klp64Dn123), some GFP-NOMPB is still presentin Chlamydomonas, Caenorhabditis, and mammals.
in the inner segment (Figures 3K–3M).Like its homologs, NOMPB contains two groups of three

and seven tetratricopeptide repeat (TPR) motifs: these
are the most conserved parts of the protein. A TPR nompB Is Not Required for Spermatogenesis
comprises 34 amino acids in a �-helical hairpin fold Polaris, the mouse homolog of NOMPB, is expressed
[37], and stacked TPRs form potential protein interaction in immature spermatogonia, enriched in the mature flag-
sites [38, 39]. The protein predicted to be encoded by ellated sperm [24], and is required for spermatogenesis
the nompB1 allele lacks all the TPR motifs, while the (J.T. San Agustin, G.J. Pazour, and G.B. Witman, per-
nompB2 and nompB3 mutations truncate the protein in sonal communication). Because IFT is required for the
the fifth TPR. normal assembly of all types of cilia and flagella, includ-

NOMPB is the only IFT88 homolog encoded by the ing mammalian sperm, we were surprised to observe
sequenced Drosophila genome. Other IFT particle pro- that Drosophila males homozygous or hemizygous for
teins are also conserved in Drosophila, as in nematodes each of the three nompB mutations produce individual-
[40]: orthologs exist for the Chlamydomonas B complex ized, motile sperm. The distribution of glycosylated pro-
proteins IFT172/Caenorhabditis OSM-1 (Drosophila pre- teins on sperm acrosome and tail was examined by
dicted gene CG13809), IFT57/55/CHE13 (CG8553), using concanavalin A labeling [48] and was found to be
IFT52/OSM-6 (CG9595), the Caenorhabditis B complex normal (data not shown).
protein CHE-2 (CG9333), and the A complex proteins nompB mutant flies are too uncoordinated to mate,
IFT140/CHE-11 (CG11838) and IFT122/DAF10 (CG7161). so it was not immediately evident if nompB mutant
Of the known Chlamydomonas IFT particle proteins, sperm are functional in fertilization. To test this, we gen-
only IFT20, a B complex protein that is present in verte- erated male flies with normal behavior but nompB-
brates, appears not to be well conserved in the fly. Dro- defective sperm by targeted nompB expression and by
sophila also contains homologs for IFT-associated generating germline mosaics. nompB cDNA constructs
kinesin II subunits (Klp64D, Klp68D, DmKAP) [41–43]. (Figure 2C) were selectively expressed under the control
Thus, Drosophila appears to express most of the IFT of the GAL4 enhancer trap system [49]. A construct
components. using a full-length cDNA was able to rescue the sensory

defect in the absence of any GAL4 driver, possibly due
to the presence of an X box within the transcription unit.NOMPB Is Localized to Sensory Cilia

To investigate the subcellular localization of NOMPB, When 104 bp including the X box were deleted from
the 5�-untranslated region of the cDNA, rescue of thewe joined GFP to the N terminus of NOMPB by inserting

the GFP coding sequence in frame into the genomic- sensory defects was dependent on the presence of
neuronal GAL4 (data not shown). Rescued nompB1/cDNA rescue construct (Figure 3A). The tagged gene

rescued the behavioral defects of nompB mutants (data Df(2L)03832MR1 mutant males carrying both the elav-
GAL4 driver and the modified UAS-�X-nompB� con-not shown), which showed that it is normally expressed

and functional. In transgenic flies, GFP-NOMPB expres- struct were fertile, indicating normal sperm function.
In Drosophila females mated to multiple males, spermsion was observed only in type I, ciliated sense organs,

including olfactory sensilla (Figures 3B), chordotonal or- from the last male to mate can displace and inactivate
the sperm from previous males, so that most offspringgans (Figures 3C–3J), campaniform sensilla, and mecha-

nosensory bristles (data not shown). In chordotonal or- are sired by the last male [50]. To test if nompB contrib-
utes to last-male sperm precedence, neuronally rescuedgans, GFP-NOMPB weakly labels the neuronal cell

bodies and inner segments and is enriched in the ciliary nompB males and wild-type controls were used as sec-
ond males following mating to a standard first male. Theouter segments. Counterstaining with the monoclonal

antibody 22C10 [44], which labels all parts of the neuron proportion of offspring (P2) sired by neuronally rescued
nompB1/Df(2L)03832MR1 second males (0.80) and con-except the outer segment, confirms this localization and
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Figure 3. GFP-NOMPB Localization in Cili-
ated Sensory Neurons

(A) A sequence encoding enhanced GFP
(EGFP) was inserted at the translation start
site of the nompB� rescue construct to make
a functional GFP-nompB fusion.
(B–M) Confocal images of sensory neurons
expressing NOMPB-GFP (green) and coun-
terstained with MAb22C10 (magenta). The
arrows indicate the distal ends of inner seg-
ments, and the arrowheads indicate the cili-
ary outer segments. (B) Olfactory sensilla on
the third antennal segment. The enlarged in-
set shows labeling in multiple olfactory neu-
rons that extend cilia into a single bristle.
(C–F) Antennal chordotonal organs showing
(C and D) GFP labeling in ciliary outer seg-
ments and cell bodies, (E) labeling of inner
segments with Mab22C10, and (F) a merged
image. The GFP and 22C10 labeling overlap
at the junction of the inner and outer seg-
ments. (G) In the antenna of rfx253/rfx49 flies,
no GFP-NOMPB signal is visible. (H–J) GFP-
NOMPB in (H and I) wild-type embryonic and
(J) adult femoral chordotonal organs. (K–M)
The same organs in the kinesin-defective mu-
tant klp64Dk1/klp64Dn123. Cilia are missing in
the kinesin-defective mutant, but some GFP-
NOMPB is still present in inner segments.

trol second males (0.85) did not differ significantly. The to assemble sperm flagella or for sperm motility, trans-
fer, storage, competition, or fertilization. It is unlikelylack of nompB therefore does not affect the offensive

competitive ability of sperm. that there exists a separate, germline-specific IFT mech-
anism in Drosophila, as no other IFT88 homolog existsTo address the possibility that a low level of expres-

sion either from the neuronal GAL4 driver or from the in the genome. Further support for the absence of IFT
in fly sperm comes from Drosophila mutants defectiveUAS constructs might be sufficient to support IFT in the

germline, we generated homozygous nompB cells in in IFT-associated kinesin subunits, which show similar
sensory defects and a similar lack of effect on spermato-heterozygous males by FRT-mediated mitotic recombi-

nation [51] (Figure 4A). Production of functional sperm genesis [47]. Mutations in Drosophila RFX, the transcrip-
tional activator of several IFT genes, also cause defectsfrom heterozygous germline cells was prevented by in-

cluding a synthetic dominant, male sterile transgene, in all sensory cilia, but not in spermatogenesis [46], even
though RFX protein is present in late spermatid nuclei [34].P{HDM}, encoding a fusion of the Drosophila dosage

compensation protein MSL-2 to a bacterial DAM methyl- IFT is currently viewed primarily as an assembly mech-
anism that is required to construct any and all axonemalase (H. Oh and M. Kuroda, personal communication),

on the nompB� chromosome. Male flies heterozygous structures, including sperm flagella [21]; its absence
from fly sperm is therefore unexpected. Two distinctivefor chromosomes carrying a nompB mutation and

P{HDM} produce no motile sperm and are completely features of Drosophila spermatogenesis may be relevant
to their lack of IFT. First, spermatids develop in a synci-infertile (Figure 4B). When expression of a FLP recombi-

nase was induced in this background, enabling FRT- tial cyst and are not individually enclosed by plasma
membrane until after the flagellar axonemes have fullymediated mitotic recombination to homozygose the

nompB mutation, motile sperm and progeny bearing the elongated, so the growing tip of the axoneme is accessi-
ble from the cytoplasm [52, 53]. IFT particles, by con-nompB mutant chromosome were produced (Figure 4C).

Finally, the GFP-tagged NOMPB genomic construct trast, are transported between the axoneme and a
closely apposed ciliary membrane, a situation that doesthat rescued the sensory defects showed no detectable

GFP expression in the testis. Taken together, these data not exist in differentiating spermatids. Second, fly sperm
flagella are extremely long: D. melanogaster sperm, atshow that the Drosophila IFT88 homolog is not needed
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cilia of nompB mutants, the localization of GFP-NOMPB
to basal bodies and cilia, and the conservation of other
IFT proteins in Drosophila all indicate that IFT is required
in Drosophila sensory neurons for ciliary assembly. Sur-
prisingly, the assembly and function of sperm flagella,
the only other axonemal structure in the fly, are indepen-
dent of NOMPB and probably independent of IFT.

Experimental Procedures

Drosophila Stocks, Culture, and Genetic Mapping
nompB mutant alleles were described previously [29]. Flies carrying
inserts of the dominant, male sterile transgene P{HDM � Hsp83P –
DAM – MYC – MSL2} on chromosome 2L were a gift from M. Kuroda
(Baylor College of Medicine, Houston). rfx49 and rfx253 stocks were
from B. Durand (Université Claude Bernard, Lyon, France). Other
mutant and aberration stocks were obtained from the Drosophila
stock center at Bloomington. Flies were raised on standard medium
at 21�C–25�C. nompB was mapped relative to P element insertions
in l(2)02074 and l(2)03832 by P-induced male recombination [32].
Male Sp nompB cn bw/Sp� nompB� P cn bw�; Sb P{�2-3}99B/�
flies were crossed to cn bw/Cy cn bw Roi females. Sp bw� and
Sp� bw recombinants were crossed to nompB cn bw/CyO and Sp
nompB cn bw/Cy cn bw Roi flies, respectively. Multiple recombinant
chromosomes were analyzed. Both P elements yielded Sp nompB
P cn bw�, and Sp� nompB� P cn bw recombinants, therefore, lie
centromere-proximal to the nompB mutation. The deficiency chro-
mosome Df(2L)03832MR1 also arose as a P-induced male recombi-
nant derivative of l(2)03832 [56].

Molecular Mapping and Sequencing
The genomic DNA flanking the distal breakpoint of Df(2L)03832MR1
was isolated by single fly inverse polymerase chain reaction (PCR)
[57] using the primer sets described by the Drosophila Genome
Project (http://www.fruitfly.org/about/methods/inverse.pcr.html).
The amplified fragments were sequenced by using the BigDye Ter-
minator Cycle Sequencing Ready Reaction kit (PE Applied Bio-
systems).

The predicted transcript sequence was determined by amplifying
and sequencing overlapping cDNA fragments. Polyadenylated RNA
was isolated from adult cn bw flies by using Dynabeads (Dynal)
and was reverse transcribed by Superscript II reverse transcriptase
(GIBCO-BRL). Six overlapping cDNA fragments that include the en-
tire coding sequence were amplified and sequenced. To sequence
nompB mutant alleles, cDNA was made from flies heterozygous for
each nompB allele and Df(2L)03832MR1. To determine the deletion
in the nompB1 chromosome, genomic DNA fragments from exon 1
to exon 5 were amplified from nompB1/Df(2L)03832MR1 flies with
the Expand Long Template PCR System (Roche Applied Science)

Figure 4. Generation of nompB Male Germline Mosaics and were used for restriction enzyme digestion mapping.
(A) The schematic shows chromosome arm 2L in a germline cell
following chromosome duplication. One homolog carries a domi- DNA Constructs and Transformation

To make a genomic-cDNA fusion construct, a genomic DNA frag-nant, male sterile transgene (DMS, gray box), the other carries a
nompB mutant allele (black box). Induction and action of the FLP ment extending 2.2 kb upstream from the translation start site was

joined at an MluI site to cDNA including 127 base pairs of 5�-UTR,recombinase causes recombination at the FRT sites; one mitotic
segregation pattern yields a DMS� nompB� daughter cell. the entire coding sequence, and the polyadenylation signal. The

genomic-cDNA fusion was cloned into the pPCaSpeR4 vector [58].(B and C) Testis squashes from the nompB/DMS; hsFLP (B) without
and (C) with FLP induction by heat shock. Motile sperm were seen Both cDNA and genomic DNA were amplified from adult cn bw flies

by using the Expand High Fidelity PCR System (Roche, Appliedonly in the presence of an induced FLP. Males in which FLP expres-
sion was induced were fertile. Science). To construct a GFP-nompB fusion gene, two fragments

of the genomic-cDNA construct were amplified by PCR, to replace
the translational start site with NheI and PvuII restriction enzyme1.8–2.0 mm, are longer than the fly itself, and those of
sites, followed by sequence encoding the tripeptide spacer Ser-

D. bifurca at over 50 mm in length [54] may be the Gly-Gly. The NheI/ScaI-digested enhanced GFP (EGFP) (Clontech)
longest axonemal structures. If conventional IFT cannot cDNA was ligated to NheI/PvuII sites in the modified PCR products

of the genomic-cDNA construct. The resulting genomic-cDNA fu-construct or maintain axonemes this long, selection for
sion, encoding an EGFP-spacer-NOMPB fusion protein, was clonedincreased sperm length [55] may have favored other
into the P element transformation vector pPCaSpeR4. To make aassembly mechanisms.
Gal4-inducible nompB construct, the cDNA was inserted into the
transformation vector pUAST. To remove the X box, a plasmid con-

Conclusions taining the cDNA was digested with EcoRV and MluI, treated with
NOMPB is the Drosophila homolog of the IFT B complex T4 DNA polymerase (GIBCO-BRL) to generate blunt ends, and self-

ligated. The modified cDNA was then inserted into pUAST. Germlineprotein IFT88/Polaris/OSM-5. Defects in the sensory
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transformation of a w1118 stock was carried out as described [59]; separated from the males and placed individually in separate vials.
After 2 days, each female was mated overnight with two or threeinserts were introduced into mutant backgrounds by genetic crosses.
second males (Canton-S or elav-Gal4/Y; nompB/Sp Df(2L)03832MR1;
P{UAS-�X-nompB}/�) and placed individually in separate vials. P2Electrophysiological Recordings
was calculated for each female as the ratio of progeny from theBristle mechanoreceptor currents were recorded with a saline-filled
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