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Abstract Characteristics of thin layer microwave drying of apple were evaluated in a laboratory

scale microwave dryer at 2450 MHz. The drying experiments were carried out at 200, 400 and

600 W. The experimental data were fitted to nine drying models. The models were compared using

the coefficient of determination (R2), root mean square error (RMSE) and reduced chi-square (v2).
The Midilli et al. model best described the drying curve of apple slices. The effective moisture dif-

fusivity was determined by using Fick’s second law and was observed to lie between 3.93 · 10�7 and

2.27 · 10�6 m2/s for the apple samples. The microwave power dependence of the effective diffusivity

coefficient followed an Arrhenius-type relationship. The activation energy for the moisture diffu-

sion was determined to be 12.15 W/g. The highest energy efficiency was recorded for the samples

dried at 600 W as 54.34% and lowest at 200 W as 17.42%.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Apple represents the fourth most important horticultural crop

for human nutrition in the world and the apple is an important
raw material for many food products. Apple is the pomaceous
fruit of the apple tree, species Malus domestica of the rose fam-

ily (Rosaceae) (Forsline et al., 2010). Drying is probably the
oldest method of food preservation and it is one of the most
common processes used to improve food stability. Drying pre-
serves foods by removing enough moisture from food and re-

duces microbiological activity and minimizes physical and
chemical changes during storage to prevent decay and spoilage
(Doymaz and Ismail, 2011; VijayaVenkataRaman et al., 2012).

Apple drying is a highly energy-consuming process. Also, the
drying methods have significant effects on the dried apple
quality such as nutritional values, color, shrinkage and other

organoleptic properties. So far, many works have been per-
formed to study hot air, tray dryer with and without air circu-
lation, fluidized bed, and superheated steam drying of apple

pieces of various shapes (Doymaz, 2010; Huang et al., 2011;
Schössler et al., 2012; Wang et al., 2007; Zlatanović et al.,
2013). Hot air convection drying is one of the oldest methods
and the most widely used method of drying. Over 85% of

industrial dryers are of the convective type with hot air. One
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Figure 1 A schematic diagram of microwave–convective oven dryer.

Figure 2 Variation of the moisture content with drying time at

various microwave powers.
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of the disadvantages of these dryers is high energy consump-
tion. Due to these difficulties, more rapid, safe and controlla-
ble drying methods are required (Kavak Akpinar et al.,

2005; Motevali et al., 2011). In microwave drying, drying time
is shortened due to quick absorption of energy by water mol-
ecules, causes rapid evaporation of water, resulting in high

drying rates of the food. Recently the development of inexpen-
sive and reliable microwave sources has been of increasing
attraction to applications in the drying process (Balbay
et al., 2012; Darvishi et al., 2013; Kahyaoglu et al., 2012). A

two-stage drying process involving an initial forced-air convec-
tive drying followed by a microwave final drying has been re-
ported to give better product quality with considerable saving

in energy and time (Maskan, 2000). It has also been suggested
in the drying of apple slices, mushroom (Funebo and Ohlsson,
1998) and raisin (Kostaropoulos and Saravacos, 1995), that

microwave energy should be applied in the falling rate period
or at a low moisture content to finish drying. One of the most
important aspects of drying technology is the modeling of the

drying process. The objective of this study is to analyse and
model the drying kinetics of apple slices using the microwave
in different conditions of drying and describe the influence of
microwave output power on energy efficiency.
2. Materials and methods

2.1. Materials

Cultivar ofGolab apple was used in the present studywhich was

purchased from the local market in Tehran, Iran and was stored
in the refrigerator at a temperature of 4 ± 1 �C until the exper-
iments were carried out. The initial moisture content of the sam-

ples was found about 86.2 ± 1.5% (w.b.), and was determined
by drying in an air convection oven at 105 ± 1 �C till the weight
did not change any more (Wang et al., 2007). For each experi-
ment, apple samples (about 54 ± 0.5 g with 5 mm of sample

thickness) were placed in a glass dish.

2.2. Drying equipment and drying procedure

Fig. 1 shows the diagram of the microwave drying system. An
experimental microwave oven (M945, Samsung Electronics
Ins.) with a maximum output of 1000 W at 2450 MHz was

used for the drying experiments. The oven has a fan for air
flow in the drying chamber and cooling of the magnetron.
The moisture from the drying chamber was removed with this

fan by passing it through openings on the right side of the oven
wall to the outer atmosphere. The microwave dryer was oper-
ated by a control terminal which could control both micro-
wave power level and emission time. Experiments were

performed at three microwave powers of 200, 400, and
600 W. The moisture losses of samples were recorded at 60 s
intervals during the drying process by a digital balance (GF-

600, A & D, Japan) and an accuracy of ±0.01 g. Drying pro-
cess was done until the moisture content about 5% on a wet
basis was achieved. All measurements were carried out in

triplicate.

2.3. Theoretical considerations

2.3.1. Modeling of the thin-layer drying

One of the most important aspects of drying technology is the
modeling of the drying process. In this study, the experimental

drying data of apple slices at different microwave powers were



Table 1 Mathematical models given for drying curves.

No. Model name Model References

1 Newton MR= exp (�kt) Motevali et al. (2010)

2 Page MR= exp(�ktn) Motevali et al. (2010)

3 Modified page MR= exp(�(kt)n) Wang et al. (2007)

4 Wang and Singh MR= 1+ a.t + bt2 Wang and Singh (1978)

5 Henderson and Pabis MR= a.exp (�kt) Chhinnan (1984)

6 Logarithmic MR= a.exp (�kt)+c Dandamrongrak et al. (2002)

7 Modified Henderson and Pabis MR= a exp(�kt)+(1�a)exp(�kbt) Sharma et al. (2005)

8 Modified page equation-II MR= exp(�c(t/L2)n) (Diamante and Munro (1991))

9 Midili et al. MR= a.exp(�ktn)+b.t Midilli et al. (2002)
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fitted into 9 commonly used thin-layer drying models, listed in
Table 1.

The moisture ratio (MR) was calculated using the following
equation:

MR ¼ Mt �Me

M0 �Me

ð1Þ

where,MR is themoisture ratio (dimensionless);Mt,Me andM0

are the moisture content at any time, the equilibrium moisture
content, the initial moisture content (kg [H2O]/kg dry mater),
respectively. The values of Me are relatively small compared to

Mt and M0, hence the error involved in the simplification by
assuming thatMe is equal to zero is negligible (Akgun andDoy-
maz, 2005). Therefore, Eq. (2) was used to describe the thin layer
drying kinetics of samples (Senadeera et al., 2003).

MR ¼ Mt

M0

ð2Þ

The terms used to evaluate goodness of fit of the tested
models to the experimental data were the coefficient of deter-
mination (R2); root mean square error (RMSE) and the re-

duced chi-square (v2) between the experimental and predicted
moisture ratio values. The statistical parameters were calcu-
lated using equations: (Ertekin and Yaldiz, 2004):

R2 ¼ 1�
PN

i¼1ðMRpre;i �MRexp;iÞ2PN
i¼1ðMRpre;i �MRexp;iÞ

2
ð3Þ

v2 ¼

XN
i¼1
ðMRpre;i �MRexp;iÞ2

N� z
ð4Þ

RMSE ¼

XN
i¼1
ðMRpre;i �MRexp;iÞ2

N

0
BBBB@

1
CCCCA

1
2

ð5Þ

where MRexp is the experimental dimensionless moisture ratio,
MRpre is the predicted dimensionless moisture ratio, N is the

number of experimental data points, and z is the number of
parameters in the model. The model is said to be good if R2

value is high and, v2 and RMSE values are low (Ertekin and
Yaldiz, 2004).

Drying rate was defined as:

DR ¼MtþDt �Mt

Dt
ð6Þ

where Mt+Dt is moisture content at time t+ Dt (kg [H2O]/kg
dry mater), t is the time (min) and DR is the drying rate (kg

[H2O]/kg dry mater.min).
2.3.2. Effective diffusivities

Fick’s second law of diffusion equation, symbolized as a mass-
diffusion equation for drying agricultural products in a falling
rate period, is shown in the following equation:

@M

@t
¼ Deff

@2M

@x2
ð7Þ

By using appropriate initial and boundary conditions,
Crank (1975) gave the analytical solutions for various geome-
tries and the solution for slab object with constant diffusivity is
given as:

MR ¼ 8

p2

X1
n¼0

1

ð2nþ 1Þ2
exp �ð2nþ 1Þp2 Defft

4L2

� �
ð8Þ

where Deff is the effective diffusivity (m2/s), and L is the half-
thickness of samples (m), n is a positive integer. For long dry-
ing times, only the first term (n = 0) in the series expansion of

the above equation can give a good estimate of the solution,
which is expressed in logarithmic forms as follows (Tütüncü
and Labuza, 1996):

lnðMRÞ ¼ ln
8

p2

� �
� p2

4L2
Defft

� �
ð9Þ

The diffusion coefficients are typically determined by plotting
experimental drying data in terms of ln(MR) versus drying
time (t), because the plot gives a straight line with a slope as:

Slope ¼ p2Deff

4L2
ð10Þ
2.3.3. Modeling drying data

Three replications of each experiment were performed accord-

ing to a preset microwave power and time schedule, and the
data given are an average of these results. Non-linear regres-
sion analyses were down by using a statistical computer pro-

gram to obtain each parameter value of every model. The
statistical results from models are summarized in Table 1.

Where: k, n, a, and b are the model constants.

2.3.4. Activation energy

In as much as temperature is not precisely measurable inside
the microwave drier, the activation energy is found as modified

from the revised Arrhenius equation. In this method it is as-
sumed as related to effective moisture diffusion and the ratio
of microwave output power to sample weight (m/p) instead

of to air temperature. Then Eq. (11) can be effectively used
as follows (Özbek and Dadali, 2007):



Figure 3 Variation of drying rate with drying time for the apple.

Figure 4 Comparison of experimental and calculated moisture

ratio values using Midilli et al. model.
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Deff ¼ D0 exp �Eam

P

� �
ð11Þ

where Ea is the activation energy (W/g), m is the mass of raw
sample (g), D0 is the pre-exponential factor (m

2/s) and P is the

microwave power (W).

2.3.5. Drying efficiency

The microwave drying efficiency was calculated as the ratio of
heat energy utilized for evaporating water from the sample to
the heat supplied by the dryer (Soysal et al., 2006).

g ¼ mw � kw

P� t
ð12Þ

where g is the microwave-convective drying efficiency (%); P is
the microwave power (W); mw is the mass of evaporated water
Table 2 Results of statistical analysis on the modeling of moisture co

slices.

No. Power (W) Model constants

1 200 k = 0.07819

400 k = 0.1852

600 k = 0.4983

2 200 k = 0.01476 n= 1.653

400 k = 0.04592 n= 1.827

600 k = 0.3267 n= 1.558

3 200 k = 0.07802 n= 1.653

400 k = 0.1852 n= 1.827

600 k = 0.4878 n= 1.558

4 200 a= �0.05077 b= 0.0003359

400 a= �0.1145 b= 0.0009769

600 a= �0.3476 b= 0.02562

5 200 a= 1.135 k= 0.08951

400 a= 1.158 k= 0.2159

600 a= 1.124 k= 0.5608

6 200 a= 2.35 c= �1.305 k =

400 a= 2.749 c= �1.685 k =

600 a= 1.591 c= �0.5354 k =

7 200 a= 2.35 c= �1.305 k =

400 a= 2.749 c= �1.685 k =

600 a= 1.591 c= �0.5354 k =

8 200 L = 0.04975 c= 0.001456 n=

400 L = 2.239 c= 0.8734 n=

600 L = 1.115 c= 0.4589 n=

9 200 a= 1.001 b= �0.0063 k =

400 a= 1.004 b= �0.00986 k =

600 a= 1.009 b= �0.01829 k =
(kg), and kw is the latent heat of vaporization of water

(2257 kJ/kg).

3. Results and discussion

3.1. Drying curves

The moisture content versus drying time curves for microwave
drying of apple samples as affected by various microwave pow-
ers are shown in Fig. 2. The time required to dry apple samples
from an initial moisture content of 74 ± 1.5% (w.b.) to the fi-

nal moisture content of 4 ± 1% (w.b.) was 25, 10 and 4.25 min
at 200, 400 and 600 W, respectively. Drying microwave power
ntents and drying time for the microwave–convective dried apple

R2 v2 RMSE

0.8764 0.007691 0.08764

0.908 6.48 · 10�5 0.1038

0.9456 0.005 0.0783

0.9952 0.000515 0.02318

0.9968 3.53 · 10�4 0.01977

0.9979 2.27 · 10�4 0.016

0.9952 0.00515 0.02318

0.9968 3.53 · 10�4 0.01977

0.9979 2.24 · 10�4 0.016

0.9949 0.0005437 0.02382

0.9886 0.0012 0.03742

0.9933 0.0011 0.02739

0.9522 0.0050 0.07281

0.9397 0.01067 0.08618

0.9652 0.0036 0.06454

0.0251 0.9971 3.34 · 10�4 0.01845

0.05114 0.9934 7.34 · 10�4 0.02923

0.2637 0.9958 4.61 · 10�4 0.0231

0.0251 0.9898 0.006471 0.0343

0.05114 0.9836 0.00183 0.04626

0.2637 0.9958 4.61 · 10�4 0.0231

0.7622 0.847 0.0162 0.1331

1.827 0.9968 3.53 · 10�4 0.02031

1.56 0.9979 2.27 · 10�4 0.01653

0.0156 n= 1.426 0.9995 5.29 · 10�5 0.007776

0.05092 n= 1.655 0.9994 3.12 · 10�5 0.008946

0.3244 n= 1.696 0.9997 3.51 · 10
�5

0.006905



Table 3 Effective diffusivity values for microwave drying of

apple.

P (W) Effective moisture diffusivity (m2/s)

200 3.93 · 10–7

400 9.48 · 10�7

600 2.27 · 10�6

Figure 5 Arrhenius-type relationship the values of ln(Deff)

versus sample amount/power.

Figure 6 Energy efficiency versus drying time for microwave

drying of apple samples.
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had an important effect on drying time. The results indicated

that mass transfer within the sample was more rapid during
higher microwave power heating because more heat was gener-
ated within the sample creating a large vapor pressure differ-

ence between the center and the surface of the product due
to characteristic microwave volumetric heating.

Fig. 3 shows how the drying rate of apple samples was

changed with increased drying time under various drying con-
ditions. The drying rates increased with the increasing micro-
wave power levels. The maximum drying rates were

approximately 0.382, 0.898 and 2.299 kg [H2O]/kg dry mater/
min, when the microwave powers of 200, 400 and 600 W were
applied, respectively. The moisture content of the material was
very high during the initial phase of the drying which resulted

in a higher absorption of microwave power and higher drying
rates due to the higher moisture diffusion. As the drying pro-
gressed, the loss of moisture in the product caused a decrease
in the absorption of microwave power and resulted in a fall in
the drying rate.

3.2. Modeling drying data

Non-linear regression was used to obtain each parameter value
of every model. The statistical results from models are summa-

rized in Table 2. In all cases, the statistical parameter estima-
tions showed that R2, v2 and RMSE values ranged from
0.847 to 0.9997, 3.12 · 10�5 to 0.0162, and 0.006905 to

0.1331, respectively. Based on highest value of R2, and lowest
values of v2 and RMSE, it can be concluded that Midilli et al.
model gave better results than the other models. Thus, it was

selected to represent the thin layer drying characteristics of ap-
ple slices. As it is seen, the R2, v2 and RMSE values for Midilli
et al. model ranged from 0.9994 to 0.9997, 3.12 · 10�5 to
5.29 · 10�5 and 0.006905 to 0.008946, respectively. Based on

the multiple regression analysis, the Midilli et al. model, the
constants and coefficients were as follows:

k ¼ 0:0031 expð0:0076PÞ R2 ¼ 0:984 ð13Þ
n ¼ 1:33 expð0:0004PÞ R2 ¼ 0:853 ð14Þ
a ¼ 2� 10�5Pþ 0:9967 R2 ¼ 0:98 ð15Þ
b ¼ �3� 10�5Pþ 0:0005 R2 ¼ 0:948 ð16Þ

Fig. 4 compares experimental data with those predicted with
the Midilli et al. model for apple slices at 200, 400 and
600 W. There was a very good agreement between the experi-
mental and predicted moisture ratio values, which closely band

around a 45� straight line. The Midilli et al. model has also
been suggested by others to describe the infrared drying of to-
mato (Celma et al., 2008), fluidized bed drying of olive pomace

(Arslan and Ozcan, 2011; Meziane, 2011), sun, oven, and
microwave oven drying of savory leaves, and thin layer drying
of potato, apple, and pumpkin slices (Akpinar, 2006).

3.3. Effective moisture diffusivity

The determined values of effective moisture diffusivity (Deff)

for different microwave powers are given in Table 3. The val-
ues lie within the general range of 10�6 to 10�11 m2/s for food
materials. It can be seen that the values of Deff increased with
increasing microwave power. This might be explained by the

increased heating energy, which would increase the activity
of the water molecules leading to higher moisture diffusivity
when samples were dried at higher microwave power.

5.612 · 10�9 to 1.317 · 10�8 m2/s for fluidized bed drying of
apples (VijayaVenkataRaman et al., 2012), 4.606 · 10�6 to
7.065 · 10�6 m2/s freeze-drying of apple cubes with far-infra-

red (Kahyaoglu et al., 2012), 3.17 · 10�7 to 15.45 · 10�7 m2/s
for thin-layer drying of apple slices in length of continuous
band dryer (Wang et al., 2007), and 2.90 · 10�8 to
4.88 · 10�8 m2/s, 7.04 · 10�8 to 24.22 · 10�8 m2/s, and

3.15 · 10�8 to 5.36 · 10�8 m2/s for convective, microwave
and combined drying of apple cylinders, respectively (Wang
et al., 2007).

The activation energy was calculated by plotting the natural
logarithm of Deff versus sample amount/power (m/P) as pre-
sented in Fig. 5. The plot was found to be a straight line in

the range of microwave power studied, indicating Arrhenius
dependence. Then, the dependence of the effective diffusivity
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of apple samples on the microwave power can be represented
by the following equation:

Deff ¼ 4� 10�6 expð�12:15m
P
Þ R2 ¼ 0:924 ð17Þ

The activation energy for apple samples was found to be
12.15 W/g.

3.4. Energy efficiency

Fig. 6 shows the variation of energy efficiency with drying time

for microwave drying of apple samples. The energy efficiency
was very high during the initial phase of the drying which re-
sulted in a higher absorption of microwave power. Following

moisture reduction, the energy absorbed by the product de-
creased and the reflected power increased. The best result with
regard to energy efficiency was obtained from 600 W micro-
wave power levels among all microwave power. Average en-

ergy efficiency of apple samples ranged from 17.42% to
54.34% for the output microwave power.

4. Conclusion

Characteristics of the microwave drying of apple (about
54 ± 0.5 g with 5 mm of sample thickness) were determined.

Microwave drying period of samples lasted between 25 and
4.25 min at the microwave powers at 200 and 600 W, respec-
tively. This study indicated that based on non-linear regression

analysis, the Midilli et al. model gave excellent fitting to the
drying experimental data of apple slices. The drying time of
apple slices decreases and the effective diffusivity increases as

the microwave output power increases. The values of effective
diffusivity for microwave drying of apple ranged from
3.93 · 10�7 to 2.27 · 10�6 m2/s and activation energy was
found to be 12.15 W/g. The changes of moisture content have

been described by using the Midilli et al. model. We concluded
that 600 W is the optimum microwave power level in the
microwave drying of apple with respect to drying time and en-

ergy efficiency. The models and parameters found in this study
can be applied to industrial designs and operational guides for
the microwave drying of apple slices.
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