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On the Multivariate Normal Hazard
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It is well known that the hazard rate of a univariate normal distribution is
increasing. In this paper, we prove that the hazard gradient, in the case of general
multivariate normal distribution, is increasing in the sense of Johnson and Kotz.
� 1997 Academic Press

1. INTRODUCTION

It is well known that the hazard rate of a univariate normal distribution
is increasing. Johnson and Kotz (1975) presented a vector definition of
multivariate hazard rates and associated definitions of increasing and
decreasing multivariate distributions. They showed that in a bivariate
normal case, the bivariate hazard is increasing provided that the correla-
tion coefficient is positive.

In this paper, we first show that in the bivariate normal case, the hazard
rate is increasing without the condition on the correlation coefficient
imposed by Johnson and Kotz. The result is then extended to the trivariate
normal case and finally to the general m dimensional multivariate case.
Before proceeding further, we present some definitions and results which
are used in establishing the results.

1. Definition 1. The joint multivariate hazard rate of m jointly
absolutely continuous random variables X1, X2 , ..., Xm is defined as the
vector

h(x)=\&\ �
�x1+ } } } &\ �

�xm++ ln G(x)= &grad ln G(x)

where G(x)=P(Xi >xi , i=1, 2, ..., m) is the joint survival function. For
convenience, we shall write &(���xj) ln G(x)=hj (x). Note that hj (x) is the
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jth component of the hazard gradient and is a function of x1, x2 , ..., xm .
Also note that the vector-valued function h uniquely determines the prob-
ability distribution; see Marshall (1975).

2. Definition 2. If for all values of x, all components of h(x) are
increasing (decreasing) functions of the corresponding variable, i.e., hj (x) is
an increasing (decreasing) function of xj for j=1, 2, ..., m, then the distribu-
tion is called a multivariate IHR (DHR).

3. Noting that

G(x)=P(X1>x1| X2>x2 , ..., Xm>xm) P(X2>x2 , ..., Xm>xm),

this gives

h1(x)=&
�

�x1

ln P(X1>x1 | X2>x2 , ..., Xm>xm),

i.e., h1(x) is the hazard rate of the conditional distribution of X1 given
X2>x2 , ..., Xm>xm .

4. The corresponding conditional pdf of X1 is given by

f1(x)=h1(x) P(X1>x1 | X2>x2 , ..., Xm>xm)

= &
�

�x1

P(X1>x1 | X2>x2 , ..., Xm>xm)

=
&

�
�x1

P(X1>x1 , X2>x2 , ..., Xm>xm)

P(X2>x2 , ..., Xm>xm)
.

Likewise the hazard rate and the conditional pdf of X2 , ..., Xm can be
obtained.

5. We now present the following result due to Glaser (1980) which
will be used to establish the results.

Lemma. Let X be a positive random variable with pdf f (x). Assume that
f (x) is continuous and twice differentiable on its support. Define a function
'(t)=&f $(t)�f (t). Then the hazard rate of X is increasing if '$(t)>0 for
all t.

Remark. The above result is true even if the suport of X is the whole
real line.
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6. The following result will be needed: Let �(u1, u2 , ..., um) be an
integrable function and let a1(x), ..., am(x) be differentiable, then

d
dx |

am(x)
} } } |

a1(x)
�(u1, u2 , ..., um) du1du2 } } } dum

=& :
m

j=1

aj$ (x) |
am(x)

} } } |
aj+1(x)

|
aj&1(x)

} } } |
a1(x)

�(u1, u2 , ..., uj&1 , aj (x), uj+1, ..., um) du j,

where du j=du1 } } } duj&1 duj+1 } } } dum .

7. The following result on the conditional distribution will be needed.
Let X be Nm(+, �). Partition X, +, and � as below:

X=\X1

X2+ , +=\+1

+2+ , �=_�
11

�
12

�
21

�
22
& ,

where X1 and +1 are k_1 and �
11

is k_k. Let �&
22

be a generalized inverse
of �

22
, i.e., a matrix satisfying

�22 �&
22�22=�22 .

Then the conditional distribution of X2 given X1 is Nm&k(+2 +
�

21
�&

11
(X1&+1), �

22
&�

21
�&

11
�

12
); see Muirhead (1982). In our case �

is nonsingular and hence the generalized inverse is the same as the regular
inverse.

2. TWO DIMENSIONAL CASE

Suppose X1, X2 have a joint standard bivariate normal distribution with
correlation coefficient \ (this can be assumed without loss of generality).

It can be verified that in this case

h1(x)=
{1&8 \x2&\x1

- 1&\2+= ,(x1)

F� \(x1, x2)
, (2.1)

where F� \(x1, x2)=P(X1>x1, X2>x2), ,(x) and 8(x) are the pdf and the
cumulative distribution function of a standard normal, respectively.

The corresponding pdf of X1 is given by

f1(x)=
_1&8 \x2&\x1

- 1&\2+& ,(x1)

P(X2>x2)
.
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This gives

'(x1)=&
�

�x1

ln f1(x)

=&_&x1+
\

- 1&\2

,((x2&\x1)�- 1&\2)

1&8((x2&\x1)�- 1&\2)&
=&_&x1+

\

- 1&\2
r \x2&\x1

- 1&\2+& ,

where r(t) is the hazard rate of a standard normal at the point t.
This gives

'$(x1)=1+
\2

(1&\2)
r$ \x2&\x1

- 1&\2+>0,

since the hazard rate of a univariate normal distribution is increasing at
every point. Thus h1(x) is an increasing function of x1 , and hence the
hazard gradient of a bivariate normal distribution is increasing for all
values of \.

3. THREE DIMENSIONAL CASE

Suppose X=(X1, X2 , X3) has a trivariate standard normal distribution
with correlation matrix R given by

1 \12 \13

R=_\12 1 \23& .
\13 \23 1

Then

f1(x)=
&

�
�x1

P(X1>x1 , X2>x2 , X3>x3)

P(X2>x2 , X3>x3)
. (3.1)

The numerator of (3.1) is

1
(2?)3�2 |R| 1�2 |

�

x3
|

�

x2

I2 dz2 dz3 , (3.2)
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where

I2=exp {&
1

2 |R| \
C11x2

1+C22z2
2+C33z2

3+2C23z2z3

+2C12x1z2+2C13x1z3 += ,

and

C11 C12 C13

C=_C12 C22 C23&C13 C23 C33

is the matrix of the co-factors of R. It can be seen that (3.2) is of the form

1
(2?)3�2 |R| 1�2

_|
�

x3
|

�

x2

exp {&
1

2 |R| \ |R| x2
1+(z2&!2(x1))2 C22+(z3&!3(x1))2 C33

+2C23(z2&!2(x1))(z3&!3(x1)) += dz2 dz3

=,(x1) |
�

x3
|

�

x2

1
2? |R| 1�2

_exp {&
1

2 |R| \C22(z2&!2(x1))2+C33(z3&!3(x1))2

+2C23(z2&!2(x1))(z3&!3(x1)) += dz2 dz3 . (3.3)

Note that the integrand in the above expression is the conditional pdf of
( X2

X3
) given X1=x1 with mean ( !2(x1)

!3(x1)
)=( \12x1

\13x1
) and covariance matrix=

�
22

&�
21

�&1
11

�
12

, where �
11

, �
12

, �
22

, and �
21

are the partitioning
matrices of R as shown below:

1 \12 \13

R=_\12 } 1 \23&=_�11 �12

�21 �22& .
\13 \23 1

By the transformation

v=_v2

v3&=_
z2&!2(x1)

- 1&\2
12 &=D2 _z2&!2(x1)

z3&!3(x1)& ,
z3&!3(x1)

- 1&\2
13
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where D2=diag(1�- 1&\2
12 , 1�- 1&\2

13), (3.3) will reduce to

,(x1) |
�

a3(x1)
|

�

a2(x1)

1
2? |K2 |1�2 e&(1�2) y$K2

&1y dy=,(x1) F� K2
(a2(x1), a3(x1)), (3.4)

where F� K2
(a2(x1), a3(x1)) is the survival function of a standard bivariate

normal with correlation matrix K2 at the point

(a2(x1), a3(x1)), K2=_ 1
k12

k12

1 &=D2(�22
&�

21
�&1

11
�

12
) D$2 ,

a2(x1)=
x2&!2(x1)

- 1&\2
12

, a3(x1)=
x3&!3(x1)

- 1&\2
13

.

Now

'(x1)=&
�

�x1

ln f1(x)

=&
�

�x1

ln[,(x1) F� K2
(a2(x1), a3(x1))]

=&
�

�x1

[ln ,(x1)+ln F� K2
(a2(x1), a3(x1))]

=_x1&
�

�x1

ln F� K2
(u1 , u2)& ,

where u1=a2(x1), u2=a3(x1),

=x1&
�

�u1

ln F� K2
(u1 , u2)

�u1

�x1

&
�

�u2

ln F� K2
(u1 , u2)

�u2

�x1

=x1+h1(u1 , u2)
�u1

�x1

+h2(u1 , u2)
�u2

�x1

,

where hi (u1 , u2), i=1, 2, is the i th component of the hazard gradient at
(u1 , u2) given by

h1(u1 , u2)=

,(u1) |
�

u2

1

- 2? |K2 | 1�2
exp {&

1
2 \

w&k12(u1)

- 1&k2
12
+

2

= dw

F� K2
(u1 , u2)

(3.5)
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and

h2(u1 , u2)=

,(u2) |
�

u1

1

- 2? |K2 | 1�2
exp {&

1
2 \

w&k12(u2)

- 1&k2
12
+

2

= dw

F� K2
(u1 , u2)

. (3.6)

Hence

'$(x1)=
�

�x1

'(x1)

=1+_ �
�u1

h1(u1 , u2)
�u1

�x1

+
�

�u2

h1(u1 , u2)
�u2

�x1&
�u1

�x1

+_ �
�u1

h2(u1 , u2)
�u1

�x1

+
�

�u2

h2(u1 , u2)
�u2

�x1&
�u2

�x1

. (3.7)

Note that

�
�u2

h1(u1, u2)
�u2

�x1

=
�

�u1

h1(u1, u2)
�u1

�u2

�u2

�x1

=
�

�u1

h1(u1, u2)
�u1

�x1

.

Similarly,

�
�u1

h2(u1, u2)
�u1

�x1

=
�

�u2

h2(u1, u2)
�u2

�x1

.

Hence (3.7) becomes

'$(x1)=1+2 _\�u1

�x1+
2 �

�u1

h1(u1, u2)+\�u2

�x1+
2 �

�u2

h2(u1, u2)&

=1+2 _\�u1

�x1+
2

\�u2

�x1+
2

& _
�

�u1

h1(u1, u2)

�
�u2

h2(u1, u2)&>0,

since the hazard gradient for dimension 2 has shown to be increasing.
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4. GENERAL CASE

Let us assume that the result is true for dimension (m&1).
Suppose X=(X1, X2 , ..., Xm)$ have a multivariate standard normal

density with correlation matrix R given as follows:

R=[\ij]m_m , \ij=1 if i= j.

Then, as before,

f1(x)=
&

�
�x1

P(X1>x1, X2>x2 , ..., Xm>xm)

P(X2>x2 , X3>x3 , ..., Xm>xm)
, (4.1)

where

&
�

�x1

P(X1>x1, X2>x2 , ..., Xm>xm)

=,(x1) |
�

am(x1)
|

am&1(x1)
} } } |

�

a2(x1)

1
(2?)(m&1)�2 |Km&1 |1�2 e&(1�2)v1K&1

m&1v dv

=,(x1) F� Km&1
(a2(x1), a3(x1), ..., am(x1)), (4.2)

where F� Km&1
(a2(x1), a3(x1), ..., am(x1)) is the survival function of a standard

(m&1) normal variate with correlation matrix

Km&1=Dm&1(�m&1, m&1
&�m&1, 1

�&1
11

�
1, m&1

) D$m&1 ,

Dm&1=diag \ 1

- 1&\2
12

,
1

- 1&\2
13

} } }
1

- 1&\2
1m
+ .

Also, �m&1, m&1
, �m&1, 1

, �
11

, and �
1m&1

are the partitions of R defined
as below:

1 \12 \13 } } } \1m

\12 1 \23 } } } \2m

R=_ \13 } \23 1 } } } \3m&=_ �
11

�m&1, 1

�
1, m&1

�m&1, m&1
& ,

b b b b
\1m \2m \3m } } } 1

and

ai (x1)=
xi&\1ix1

- 1&\2
1i

, i=2, 3, ..., m.
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It may be verified that Km&1 is the matrix of partial correlations with
X1=x1 .

Now

'(x1)= &
�

�x1

ln f1(x)

= &
�

�x1

ln[,(x1) F� Km&1
(a2(x1), a3(x1), ..., am(x1))]

=
�

�x1

[ln ,(x1)+ln F� Km&1
(a2(x1), a3(x1), ..., am(x1))]

=x1& :
m&1

i=1

�
�ui

ln F� Km&1
(u1 , u2 , ..., um&1)

�ui

�x1

, (4.3)

where ui=ai+1(x1) i=1, 2, ..., m&1,

=x1+ :
m&1

i=1

hi (u1, u2 , ..., um&1)
�ui

�x1

;

note that hi (u1, u2 , ..., um&1), i=1, 2, ..., m&1, is the i th component of the
hazard gradient at (u1, u2 , ..., um&1) given by

hi (u1, u2 , ..., um&1)=
,(ui) ��

um&1
��

um&2
} } } ��

ui+1
��

ui&1
} } } ��

u1
gm&2(w) dwi

F� Km&1
(u1, u2 , ..., um&1)

,

(4.4)

with dwi=(dw1, dw2 , ..., dwi&1, dwi+1, ..., dwm&1) and gm&2(w) the (m&2)
variate normal density. It may be observed that (4.4) is the analog of (3.5)
and (3.6) in three dimension. Hence

'$(x1)=
�

�x1

'(x1)=1+ :
m&1

i=1

:
m&1

j=1
_ �

�uj
hi (u1, u2 , ..., um&1)

�uj

�x1&
�ui

�x1

.

Therefore,

'$(x1)=1+ :
m&1

i=1 _\
�ui

�x1+
2 �

�ui
hi (u1, u2 , ..., um&1)

+ :
m&1

j{i, j=1

�
�uj

hi (u1, u2 , ..., um&1)
�uj

�x1

�ui

�x1& . (4.5)
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Note that

�
�uj

hi (u1, u2 , ..., um&1)
�uj

�x1

=
�

�ui
hi (u1, u2 , ..., um&1)

�ui

�uj

�uj

�x1

=
�

�ui
hi (u1, u2 , ..., um&1)

�ui

�x1

,

j{i and j=1, 2, ..., m&1.
Hence (4.5) becomes

'$(x1)=1+(m&1) :
m&1

i=1
\ �ui

�x1+
2 �

�ui
hi (u1, u2 , ..., um&1)

=1+(m&1) _\�u1

�x1+
2

\�u2

�x1+
2

} } } \�um&1

�x1 +
2

&

__
�

�u1

h1(u1, u2 , ..., um&1)

&>0,
�

�u2

h2(u1, u2 , ..., um&1)

b
�

�um&1

hm&1(u1, u2 , ..., um&1)

since the hazard gradient for dimension m&1 is assumed to be increasing.
Thus the general result has been established by induction.
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