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We have calculated all contributions to the energy levels of parapositronium at order mα7 coming from 
vacuum polarization corrections to processes involving virtual annihilation to two photons. This work is 
motivated by ongoing efforts to improve the experimental determination of the positronium ground-state 
hyperfine splitting.
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1. Introduction

Positronium, the electron–positron bound state, is a particularly 
simple and interesting system. The constituents of positronium 
have no known internal structure. The properties of positronium 
are governed almost completely by QED – strong and weak inter-
action corrections are below the level of current interest due to the 
small value of the electron mass. On the other hand, some features 
of positronium tend to complicate the analysis compared to, say, 
hydrogen or muonium. The no-recoil approximation is not relevant 
for positronium – the mass ratio for positronium takes its max-
imum value of one. Also, because positronium is composed of a 
particle and its antiparticle, it exhibits real and virtual annihilation 
into photons. The states of positronium can be taken to be eigen-
states of the discrete symmetries charge parity and spatial parity, 
making positronium useful in searches for new, symmetry break-
ing interactions. Because of its unique properties and accessibility 
to high-precision experiments, positronium is an ideal system for 
tests of the bound state formalism in quantum field theory and for 
searches for new physics in the leptonic sector.

Since its discovery in 1951 [1], positronium has been the object 
of increasingly precise measurements of the ground state hyperfine 
splitting (hfs), orthopositronium (spin-triplet) and parapositronium 
(spin-singlet) decay rates and branching ratios, n = 2 fine structure, 
and the 2S–1S interval. This progress is reviewed in Refs. [2–10]
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with citations to the original literature. The most precise hfs mea-
surements were performed by two groups in the 70s and early 80s 
[11–13]:

�E(Brandeis) = 203 387.5(1.6) MHz,

�E(Yale) = 203 389.10(74) MHz. (1)

Both of these results are based on the observation of Zeeman mix-
ing of ortho and para states in the presence of a static magnetic 
field. More recently, a great deal of work has been done both with 
the Zeeman approach and with other indirect and direct methods 
of measurement [14–21]. A new high-precision measurement uti-
lizing the Zeeman method with improved control of systematics 
was recently reported [22]

�E(Tokyo) = 203 394.2(1.6)stat(1.3)sys MHz. (2)

Theoretical work on the positronium hfs involves calculating 
the energy splitting by use of bound-state methods in QED. The 
principal modern approach involves the definition of an effective 
non-relativistic theory through matching with full QED followed 
by a bound-state perturbation calculation in the effective theory. 
The result has the form of a perturbation series in the fine struc-
ture constant α augmented by powers of � = ln(1/α). This series 
has the form

�E = mα4
{

C0 + C1
α

π
+ C21α

2� + C20

( α

π

)2

+ C32
α3

�2 + C31
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where m is the electron mass. The coefficients C0–C31 are known 
analytically as reviewed in Ref. [23]. The most recent result,

C31 = −17

3
ln 2 + 217

90
, (4)

was obtained by three groups in 2000 [24–26]. The numerical 
value of the theoretical prediction, including terms through C31, 
is

�E(th) = 203 391.69 MHz (5)

with an uncertainty due to uncalculated terms that has been esti-
mated as 0.16 MHz [25], 0.41 MHz [24], or 0.6 MHz [23]. Theory 
and the older experiments are separated by 2.6σ and 3.5σ in 
terms of the experimental uncertainties, but theory and the new 
experiment are consistent with one another.

The naive size of O (mα7) corrections is only mα4(α/π)3 =
4.39 kHz, but contributions as large as several tenths of a MHz 
have been found coming from “ultrasoft” energy scales [27,28]. 
Additional O (mα7) contributions have recently been obtained [23,
29–31]. The present work is a contribution to a systematic calcula-
tion of all corrections at O (mα7) begun in anticipation of yet more 
precise measurements of the positronium hfs.

Contributions to the positronium hfs at O (mα7) can be classi-
fied as either annihilation or exchange depending on the presence 
or not of virtual annihilation e+e− → nγ → e+e− in the descrip-
tion of the process. Among annihilation contributions, ones that in-
volve virtual annihilation to an odd number of photons only affect 
orthopositronium according to charge conjugation symmetry, while 
ones involving an even number of photons only affect parapositro-
nium. We consider here two-photon-annihilation processes affect-
ing parapositronium and focus specifically on processes containing 
a vacuum polarization correction to one or both of the annihilation 
photons. This set of contributions forms a gauge invariant set, and 
furthermore is insensitive to the particular bound-state formalism 
used in its evaluation, and consequently it comprises a reasonable 
set of contributions to be evaluated in isolation from other types of 
terms. Most of the two-, three-, and four-photon annihilation con-
tributions have non-vanishing imaginary parts, as can be seen from 
Cutkosky analysis [32]. However, the vacuum polarization function 
vanishes for small k2 (where kμ is the photon momentum), so 
the vacuum polarization corrections discussed here vanish for an-
nihilation to on-shell virtual photons. These contributions to the 
energy shift �E are purely real and that fact simplifies their eval-
uation considerably.

2. Pure vacuum polarization corrections

The “pure vacuum polarization” corrections involving either the 
two-loop vacuum polarization function or a product of two one-
loop functions are shown in Fig. 1. The effect of a vacuum polar-
ization (VP) correction is to modify a photon propagator according 
to

1

p2
→ 1

1 + �R(p2)

1

p2
= 1

p2
− �R(p2)

1

p2
+ · · · (6)

where the renormalized scalar vacuum polarization function can 
be expressed in a spectral form as

�R(p2) =
1∫

0

dvg(v)
p2

p2 − 4m2/(1 − v2)
. (7)

At one-loop order the spectral function g(v) takes the form

g1(v) = − v2(1 − v2/3)

2

α
. (8)
1 − v π
Fig. 1. The three types of O (mα7) pure vacuum polarization corrections in the 
two-photon-annihilation channel. Graph (a) represents the contribution of the one-
photon-irreducible two-loop vacuum polarization function. This function is repre-
sented by a single diagram, but there are two additional contributions that can be 
described as self-energy corrections inside the vacuum polarization loop that are 
not shown. Graph (b) gives the one-photon-reducible contribution. Graph (c) shows 
a final two-loop vacuum polarization correction, one with a one-loop correction on 
each virtual photon. Graphs with crossed photons are not displayed – the crossed 
photon graphs give energy contributions equal to those of the graphs that are dis-
played. In addition, the contributions of graphs (a) and (b) must be doubled since 
the correction could occur on either virtual photon.

The two-loop function has been given by Källén and Sabry [33], 
Schwinger [34], and in a form using “standard” notation for the 
dilogarithm function [35], by Eides, Grotch, and Shelyuto [36]. One 
must note that the Källén–Sabry form is for the reducible vacuum 
polarization function (Figs. 1a plus 1b), not the irreducible function 
of Fig. 1a alone. The Schwinger and Eides–Grotch–Shelyuto forms 
are for the irreducible function.

The energy shift due to the vacuum polarization graphs con-
sidered in this article is insensitive to the particular bound state 
formalism we employ because the energy and momentum values 
that contribute are purely “hard” – of order m, not mα or mα2. We 
choose to use the formalism of Ref. [37], in which the energy shift 
is an expectation value

�E = i	̄δK	. (9)

The two-body states 	 , 	̄ carry information about the positron-
ium spin state χ :

	 → φ0

(
0 χ
0 0

)
	̄T → φ0

(
0 0
χ † 0

)
, (10)

where χ is the two-by-two two-particle singlet spin matrix χ =
1/

√
2. The positronium states, in this approximation, have van-

ishing relative momentum, and φ0 = √
m3α3/(8πn3) is the wave 

function at spatial contact for a state of principal quantum num-
ber n and orbital angular momentum � = 0.

The explicit expression for the energy shift for the vacuum po-
larization diagram of Fig. 1a is

�E1a = (−1)4iφ2
0

∫
d4 p

(2π)4

(−�R(p2)
)−i

p2

−i

(P − p)2

× tr
[( 0 0

χ † 0

)
(−ieγ μ)

i

γ (P/2 − p) − m
(−ieγ ν)

]

× tr
[
(−ieγ ν)

i

γ (P/2 − p) − m
(−ieγ μ)

(
0 χ
0 0

)]
(11)

where P = (2m, �0 ) is the positronium 4-momentum in the center-
of-mass frame, p is the 4-momentum of the vacuum polarization 
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corrected photon, the initial (−1) is a fermionic minus sign, and 
the factor of 4 accounts for the graph with crossed photons and 
for the fact that the vacuum polarization correction could act on 
either photon. After evaluating the traces and some simplifications, 
the energy shift above takes the form

�E1a = mα5

π

∫
d4 p

iπ2

2�p 2�R(p2)

p2(p − P )2(p2 − p · P )2
(12)

for the ground state (n = 1). The integral over p can be evaluated 
either using Feynman parameters or by the method of poles – clos-
ing the p0 contour with a half-circle of infinite radius in the upper 
or lower half plane. In either case, the result for the energy shift 
becomes

�E =
1∫

0

dv
g(v)

2v(1 − v2)

{
(2 − v)(1 + v)2 ln

(1 + v

2

)

− (2 + v)(1 − v)2 ln
(1 − v

2

)

+ 2v3 ln v + 2v(1 − v2)
}mα5

π
. (13)

For the one-loop vacuum polarization of (8) the energy shift is

�EVP;1 = IVP
mα6

π2
, IVP = −1

6
ζ(2) (14)

in accord with the result of [38]. The two-loop irreducible vacuum 
polarization contribution of Fig. 1a is

�E1a =
{
−65

24
ζ(4) + 10

3
ζ(2) ln2 2 − 1

18
ln4 2

− 4

3
a4 + 161

96
ζ(3) − 39

8
ζ(2) ln 2

+ 475

192
ζ(2) − 43

96

}mα7

π3
(15)

where ζ is the Riemann zeta function and a4 ≡ Li4(1/2). We didn’t 
actually “do” the integral for �E1a . Rather, we obtained a nu-
merical result to high precision (100 digits) and used the PSLQ 
algorithm [39] to obtain (15).

For the reducible contribution of Fig. 1b we were able to actu-
ally perform the exact integral. We used the spectral function

g1b(v) = 2v2(1 − v2/3)

1 − v2

×
{8

9
− v2

3
− v

2

(
1 − v2

3

)
ln

(1 + v

1 − v

)} α2

π2
(16)

extracted from the work of Källén and Sabry [33] in (13) to obtain

�E1b =
{1

6
ζ(3) − 2

3
ζ(2) ln 2 + 19

36
ζ(2) − 41

108

}mα7

π3
. (17)

Finally, for the term of Fig. 1c with a one-loop vacuum polar-
ization correction on each annihilation photon, we were not able 
to achieve an exact result. The numerical value of this contribution 
is

�E1c = −0.045140511
mα7

π3
. (18)
Fig. 2. The four types of two-loop corrections to the two-photon-annihilation chan-
nel containing a one-loop vacuum polarization function. Graph (a) contains a self-
energy correction. Graph (b) displays a correction having a vertex correction on 
the same photon that is modified by vacuum polarization (this is “Vertex Type A”). 
Graph (c) shows a correction where the vertex and vacuum polarization affect 
different virtual photons (this is “Vertex Type B”). Graph (d) contains a ladder cor-
rection. Each of these graphs must be multiplied by a factor of eight to account 
for equivalent graphs involving crossed annihilation photons, VP corrections on ei-
ther photon, and the self-energy, vertex, or ladder corrections appearing at various 
positions in the diagram.

3. Terms involving one-loop vacuum polarization

Additional vacuum polarization corrections are shown in Fig. 2. 
They contain a one-loop vacuum polarization part combined with 
self-energy (SE), vertex, or ladder corrections to the bare two-
photon-annihilation process. These contributions form a set that is 
best calculated together because, after renormalization of the self-
energy and vertex parts, each of these graphs contains an infrared 
divergence that only cancels when all four are summed.

Our calculational method is to start with a form like (11) con-
taining the one-loop vacuum polarization correction of (7) and (8)
and tack on a self-energy, vertex, or ladder correction. Convenient 
forms for the one-loop self-energy and vertex corrections were 
given in [40]. The renormalized self-energy function corrects the 
bare electron propagator according to

1

γ p − m
→ α

π

{
S1 + S2(p)

} 1

γ p − m
(19)

where

S1 = ln

(
λ

m

)
+ 1

2
, (20a)

S2(p) =
∫

dxdu fSE
N(p)

D(p)
(20b)

with fSE = −1/(2u) and

N(p) = {
2m − (1 − x)γ p

}
(γ p + m) (21a)

D(p) = p2 − m2 − xm2

(1 − x)u
. (21b)

(All parametric integrals in the self-energy and vertex corrections 
run from 0 to 1.) A photon mass λ was introduced as an infrared 
regulator in the course of on-shell renormalization. The vertex cor-
rection has the form

γ μ → α {
V μ

1 + V μ
2 (p′, p) + V μ

3 (p′, p)
}

(22)

π
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Table 1
Contributions to the p–Ps energy levels coming from one-loop vacuum polarization 
(VP) corrections combined with self-energy (SE) (Fig. 2a), vertex (Figs. 2b and c), 
and ladder (Fig. 2d) corrections to the two-photon-annihilations graphs. For type A 
(type B) vertex corrections, the VP and vertex corrections act on the same pho-
ton (different photons). The separate contributions to the self-energy, etc., parts are 
shown along with their totals, all in units of mα7/π3. The infrared divergence is 
contained in L ≡ ln(λ/m) IVP .

Term Poles result Parameters result

SE: 1 2L − 1
6 ζ(2) 2L − 1

6 ζ(2)

SE: 2 −0.76281(16) −0.7629639(4)

SE 2L − 1.03697(16) 2L − 1.0371196(4)

Vertex A: 1 −2L + 5
12 ζ(2) −2L + 5

12 ζ(2)

Vertex A: 2 −0.2272831(5) −0.2272846(14)

Vertex A: 3 0.1876296(12) 0.1876304(19)

Vertex A −2L + 0.6457357(13) −2L + 0.6457350(24)

Vertex B: 1 −2L + 5
12 ζ(2) −2L + 5

12 ζ(2)

Vertex B: 2 0.0693357(4) 0.0693348(6)

Vertex B: 3 0.2046073(11) 0.2046053(16)

Vertex B −2L + 0.9593322(12) −2L + 0.9593293(18)

Ladder: 1 2L + 1
3 ζ(2) 2L + 1

3 ζ(2)

Ladder: 2 0.3124063(6) 0.3124057(21)

Ladder: 3 −0.5448084(11) −0.5448063(10)

Ladder 2L + 0.3159093(13) 2L + 0.3159108(24)

where p and p′ are the incoming and outgoing electron momenta 
and

V μ
1 = γ μ

(
− ln

( λ

m

)
− 5

4

)
, (23a)

V μ
2 (p′, p) =

∫
dx du

−Nμ

4H
, (23b)

V μ
3 (p′, p) = γ μ

∫
dx du dz

−x(H − xm2)

2H̄
. (23c)

The parametric functions are

H = (1 − x)
[
u(m2 − p′ 2) + (1 − u)(m2 − p2)

]
− xu(1 − u)(p′ − p)2 + xm2, (24a)

H̄ = xm2 + z(H − xm2), (24b)

Nμ = γ λ
(
γ (p′ + Q ) + m

)
γ μ (γ (p + Q ) + m)γλ (24c)

where Q = −x(up′ + (1 − u)p).
The self-energy contribution is pictured in Fig. 2a. The diagram 

shown must be multiplied by eight to account for the two places 
where the SE correction could occur, the two photons that the VP 
could correct, and the two types of graph (with uncrossed and 
crossed photons). All eight contribute equally. There are two parts 
to the SE contribution: S1 and S2(p) of (19). The S1 contribution 
is 2S1 IVP(mα7/π3) where IVP is the O (mα6) VP correction of (14). 
For the S2(p) contribution we could preform the d4 p integral as a 
whole using Feynman parameters, or do dp0 first by poles followed 
by d3 p → 4π p2dp numerically. Both results are shown in Table 1, 
followed by their total.

There are two classes of vertex corrections: ones with the VP 
and vertex corrections affecting the same photon (type A, Fig. 2b) 
or affecting different photons (type B, Fig. 2c). Each has three parts 
as specified in (22) and (23). The various vertex correction inte-
grals were performed both by poles and parameters, with results 
recorded in Table 1.

The ladder correction shown in Fig. 2d gives an energy shift 
that looks like (11) except that the right-hand trace of (11) is re-
placed by
tr
[ ] → 2

∫
d4q

(2π)4
tr

[
(−ieγ β)

i

γ (−P/2 + q) − m

× (−ieγ ν)
i

γ (P/2 + q − p) − m
(−ieγ μ)

× i

γ (P/2 + q) − m
(−ieγβ)

(
0 χ
0 0

)]( −i

q2 − λ2

)
(25)

where the factor of 2 comes because the ladder correction could 
occur on either side of the diagram. Again an infrared divergence, 
here arising from the binding singularity, is regulated by including 
a photon mass λ. The contribution of (25) can be written as

−2(4πα)2
∫

d4q

(2π)4

N(q)

D(q)Z(q)
(26)

where D(q) = ((P/2 − q)2 −m2)((P/2 + q)2 −m2)(q2 −λ2), Z(q) =
((P/2 + q − p)2 − m2), and

N(q) = tr
[
γ β (γ (−P/2 + q) + m)γ ν (γ (P/2 + q − p) + m)

× γ μ (γ (P/2 + q) + m)γβ

(
0 χ
0 0

)]
. (27)

We isolate the small-q singularity by use of the decomposition:

N(q)

D(q)Z(q)
= N(0)

D(q)Z(0)
+ N(0)

D(q)

( 1

Z(q)
− 1

Z(0)

)

+ N(q) − N(0)

D(q)Z(q)
(28)

consisting of terms 1, 2, and 3, which we evaluate in turn. The first 
term in (28) contains the infrared singular part of the q integral, 
but otherwise is simply proportional to IVP because

N(0)

Z(0)
= −4m2tr

[
γ ν 1

γ (P/2 − p) − m
γ μ

(
0 χ
0 0

)]
(29)

is proportional to the right-hand trace of (11). The IR-singular 
binding integral is [41]

∫
d4q

iπ2

−m2

D(q)
= mπ

λ
+ ln

( λ

m

)
− 1 + O

( λ

m

)
. (30)

The mπ/λ term represents the part of the ladder correction that 
comes from exchange of a Coulomb photon and so is just part of 
the binding that created the bound state in the first place, and so 
must not be included again here [42]. Or, to put it another way, the 
mπ/λ term is the piece that is removed in the matching calcula-
tion if an effective field theory formalism had been used [43,41]. 
So term 1 contributes 2(ln(λ/m) − 1) IVP (mα7/π3) to the energy 
shift. Terms 2 and 3 of the ladder correction were constructed to 
be IR safe and can be evaluated directly using λ → 0. (It is useful 
to average over the directions of �q when performing the d3q inte-
gration as described in [44].) The results for the various parts of 
the ladder correction are reported in Table 1.

4. Results and discussion

The results for all VP corrected two-photon-annihilation graphs 
at O (mα7) are shown in Table 2. We see that all infrared di-
vergences cancel in the sum. The ground state parapositronium 
energy level correction due to vacuum polarization effects in the 
two-photon-annihilation channel is

�E = −0.153095(3)
mα7

3
. (31)
π
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Table 2
Positronium energy level corrections at O (mα7) coming from vacuum polarization 
corrections to two-photon-annihilations graphs. The tabulated results are contribu-
tions to I where �E = (mα7/π3)I . The poles and parameters results from Table 1
were combined to give the results shown here. The infrared divergence contained 
in L = ln(λ/m) IVP cancels in the sum.

Term Diagram Energy shift

irreducible 2-loop VP 1a −0.9205630
reducible 2-loop VP 1b −0.0712481
1-loop VP on each 1c −0.0451405
VP – SE 2a 2L − 1.0371196(4)

VP – vertex A 2b −2L + 0.6457355(12)

VP – vertex B 2c −2L + 0.9593313(10)

VP – ladder 2d 2L + 0.3159096(12)

total −0.153095(3)

The numerical value of this correction is small due to large cancel-
lations among the various terms. This parapositronium shift cor-
rects the hfs (spin-triplet minus spin-singlet) by the amount

�Ehfs = 0.67 kHz. (32)

Higher S states with principal quantum number n have correc-
tions that are the same as (31) except divided by the n3 factor 
that comes from the square of the wave function at spatial con-
tact. States with � �= 0 are not corrected by the terms considered 
here at order O (mα7). Additional contributions in the two-photon-
annihilation channel involve terms having a one-loop SE, vertex, or 
ladder correction on each side of the diagram, and two-loop self-
energy, vertex, etc., corrections on a single side of the diagram. 
Calculation of these terms is in progress.
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