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Abstract

We give characterizations and necessary and sufficient existence conditions for tracking and asymptotic
observers for linear functions of the state of a linear finite-dimensional time-varying state space system. We
specialize the results to affine parameter varying systems and bilinear control systems.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In a general sense, causal observation is the problem of finding estimates for the current values
of a set of signals given the current and the past values of another set of signals, where both signal
sets are interconnected by the action of a dynamical system. Non-causal observation—where
future values of the first set of signals may also be used—is sometimes referred to as smoothing
in the literature. This paper is only concerned with causal observation. In the work of Luenberger
[19,20] a method is described how this can be done in the context of linear finite-dimensional
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time-invariant state space systems, where the observed signals are the input and the output of the
system and the to be estimated signals are linear functions of the state. The main idea is to feed
the observed signals into an auxiliary system, the observer, and to use its output as the desired
estimate.

One desired property of such an estimate is that it is asymptotically accurate, in other words,
it converges to the actual value of the observed signals when time goes to infinity. An observer
that achieves this is usually called an asymptotic observer. A characterisation of all asymptotic
(functional) observers, given a controllable linear finite-dimensional time-invariant state space
system and a to be observed linear function of its state, has already been given by Fortmann and
Williamson [6]. However, their proof is rather incomplete (see [27] for a discussion) and it is only
recently that a full proof has been given by Fuhrmann and Helmke [13]. A full characterisation for
the existence of such observers has first been given by Schumacher [23], in terms of the existence
of conditioned invariant subspaces [2,32] with certain spectral properties, namely outer detectable
subspaces [24,31].

Indeed, the outer spectral properties of conditioned invariant subspaces associated to the to
be observed linear function of the state determine all possible dynamics of an observer. Willems
[30] observed that this spectrum naturally splits into a fixed part associated to a tight subspace
(this terminology has been introduced by Fuhrmann and Helmke [12]) and a completely variable
part associated to an observability subspace [21,31]. An extensive proof (of the dual result) can
be found in Trentelman’s thesis [26]. A further analysis of this splitting in a very recent paper by
Fuhrmann and the author [14] unearthed the fundamental concept of tracking observer and led to a
complete characterisation of all possible observer dynamics, including the dynamic fine structure
determined by the invariant factors. This follows from an extension of Rosenbrock’s generalized
pole placement theorem [22] to the quotient space setting. This generalisation required the careful
linking of concepts from Fuhrmann’s theory of polynomial models [7] to concepts from geometric
control theory, a program started by Fuhrmann and Willems in [15,8] with a first culmination point
in the work of Fuhrmann and Helmke [13].

A generalisation of some of these results to the setting of linear behaviors in ARMA form has
been given by Valcher and Willems [29], who also rigorously define observers and their desirable
properties in terms of sets of observed and to be estimated system variables and their past, current
and future values. Again, it is Fuhrmann in a recent preprint [11] who provides a link to the
classical results drawing on his concept of a behavior homomorphism [9,10].

The purpose of this paper is to generalise some of the above ideas to the case of linear finite-
dimensional time-varying state space systems. A preliminary version of some of the results has
been presented at the MTNS in Leuven [28]. The results generalise recent work by Balas et al.
[1].

From what has been said above, it becomes evident that Paul Fuhrmann’s contributions to
observer theory for linear systems are second to none. During the past five years Paul has been
a challenging mentor, a vigorous colleague and a friend. I am deeply indebted to him for all the
support he provided throughout my short career to date. It is hence a great pleasure to dedicate
this paper to him on the occasion of his 70th birthday.

2. Preliminaries

The material in this section can be found in any standard textbook on ordinary differential
equations (we used [16,5]). We briefly review it in order to introduce our notation. We consider
linear time-varying (LTV) systems of the form
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ẋ(t) = A(t)x(t) + B(t)u(t),

y(t) = C(t)x(t),
(S)

where A(·) ∈ C(R, Rn×n), B(·) ∈ C(R, Rn×m) and C(·) ∈ C(R, Rp×n) are continuous real ma-
trix functions. It is well known that for each initial value x0 ∈ Rn and each continuous input
function u(·) ∈ C(R, Rm) the system (S) has a unique continuously differentiable global solu-
tion x(·; x0, u) ∈ C1(R, Rn) with x(0; x0, u) = x0, and hence an associated continuous output
function y(·; x0, u) ∈ C(R, Rp).

We are interested in estimates for

z(t) = K(t)x(t), (Z)

where K(·) ∈ C(R, Rl×n) is a continuous real matrix function and x(·) is a solution of the sys-
tem (S). We will write z(·; x0, u) for the (continuous) function z(·) resulting from the solution
x(·; x0, u).

Recall that any solution of the homogeneous system

ẋ(t) = A(t)x(t) (H)

associated to (S) can be written as x(·) = X(·)x(0), where X(·) ∈ C1(R, Rn×n) is the principal
matrix solution of (H), i.e. the unique continuously differentiable solution of the matrix initial
value problem

Ẋ(t) = A(t)X(t), X(0) = In,

where In ∈ Rn×n denotes the identity matrix. It is well known that X(t) is invertible for each
t ∈ R and hence we get the identity

∀t∈RX−1(t)A(t)X(t) − X−1(t)Ẋ(t) = 0. (1)

We will call any continuously differentiable matrix function T (·) ∈ C1(R, Rn×n) for which each
T (t), t ∈ R, is invertible a coordinate transformation in the state space Rn of system (S). In fact,
under the transformation x′(·) = T −1(·)x(·) of solutions x(·) the system (S) is transformed to the
system

ẋ′(t) = A′(t)x′(t) + B ′(t)u′(t),
y′(t) = C′(t)x′(t), (S′)

where A′(·) :=T −1(·)A(·)T (·) − T −1(·)Ṫ (·), B ′(·) :=T −1(·)B(·) and C′(·) :=C(·)T (·). It fol-
lows from Eq. (1) that transforming the system (S) with the principal matrix solution X(·) of the
associated homogeneous system (H) yields a transformed system (S′) with A′(·) ≡ 0, i.e. with no
internal dynamics.

Recall that a solution x(·) of the homogeneous system (H) is called attractive for time t0, where
t0 ∈ R is interpreted as initial time, if there exists a neighborhood U of x(t0) ∈ Rn such that for
each initial value x0 ∈ U

lim
t→∞ ‖x(t; t0, x0) − x(t)‖ = 0,

where x(·; t0, x0) ∈ C1(R, Rn) denotes the unique continuously differentiable solution of system
(H) with x(t0; t0, x0) = x0. Due to linearity, a solution x(·) of the homogeneous system (H) is
attractive for time t0 if and only if the zero solution is attractive for time t0. Furthermore, since
x(·; t0, cx0) = cx(·; t0, x0) for each c ∈ R, attractiveness for time t0 of the zero solution implies

∀x0∈Rn lim
t→∞ x(t; t0, x0) = 0,
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i.e. all solutions of system (H) vanish asymptotically. Conversely, if all solutions of system (H)
vanish asymptotically, the zero solution (and hence any solution) is attractive for any t0 ∈ R. It
is hence justified to call the matrix function A(·) attractive if the zero solution of the associated
homogeneous system (H) is attractive for time 0.

Using the principal matrix solution X(·) of system (H) it is immediately clear that A(·) is
attractive if and only if

lim
t→∞ ‖X(t)‖ = 0.

Below we state a classical sufficient condition for attractiveness that can be expressed purely in
terms of A(·). Daleckiı̆ and Kreı̆n [5] attribute this result to Bohl [4]. The real matrix function
A : R −→ Rn×n, t �→ A(t) is called stationary at infinity if

∀ε>0∃L>0,T >0∀T �s<t t − s � L ⇒ ‖A(t) − A(s)‖ � ε.

Any matrix C ∈ Rn×n that occurs as a limit C = limk→∞ A(tk), where (tk)k∈N ⊂ R is an arbitrary
sequence such that (A(tk))k∈N ⊂ Rn×n converges, is called ω-limit matrix of A(·).

Proposition 2.1. Let A(·) ∈ C(R, Rn×n) be bounded and stationary at infinity. If the upper Bohl
exponent

κ := sup{smax(C)|C is ω�limit matrix of A(·)}
is negative then A(·) is attractive. Here smax(C) denotes the maximal real part of the eigenvalues
of C.

Corollary 2.2. Let A(·) ∈ C(R, Rn×n). If A(∞) := limt→∞ A(t) exists and is stable (all eigen-
values have negative real part) then A(·) is attractive.

3. Observers for LTV systems

An observer for (S) and (Z) is an auxiliary system

ξ̇ (t) = F(t)ξ(t) + G(t)y(t) + H(t)u(t),

ζ(t) = J (t)ξ(t),
(O)

where F(·) ∈ C(R, Rq×q), G(·) ∈ C(R, Rq×p), H(·) ∈ C(R, Rq×m) and J (·) ∈ C(R, Rl×q) are
continuous real matrix functions. Again, for every initial value ξ0 ∈ Rq and every pair u(·) ∈
C(R, Rm) andy(·) ∈ C(R, Rp)of continuous observer input functions the system (O) has a unique
continuously differentiable global solution ξ(·; ξ0, u, y) ∈ C1(R, Rq) with ξ(0; ξ0, u, y) = ξ0,
and an associated continuous observer output function ζ(·; ξ0, u, y) ∈ C(R, Rl ).

We are interested in the interconnection of system (S) with the observer (O), i.e. the specific
solutions ξ(·; ξ0, u, x0) :=ξ(·; ξ0, u, y(·; x0, u)) for initial values x0 ∈ Rn for the system (S),
initial values ξ0 ∈ Rq for the observer (O), a common input function u and the second observer
input function y being chosen as the resulting output function of the system (S). In this situation
we will regard the observer output function ζ(·; ξ0, u, x0) :=ζ(·; ξ0, u, y(·; x0, u)) as an estimate
for the function z(·; x0, u) in (Z).

There are many different things one could require from such an estimate. E.g., we could require
the estimate ζ to converge to z when the time goes to infinity. Such an observer is usually called
an asymptotic (functional) observer. In the time-invariant case the fundamental property of an
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observer turns out to be the tracking property: for every initial value x0 of the observed system
there exists an initial value ξ0 of the observer such that for any (continuous) input function u the
observer tracks the to be estimated signal, i.e. ∀t∈R ζ(t) = z(t). This property is fundamental in
the sense that it can always be achieved and that for controllable observed time-invariant systems
it is already implied by the asymptotic property described before (see [13,14] for a proof). An
observer will be called a tracking observer if it has the tracking property. A generalisation of the
concept of tracking observers to the behavioral setting has been provided by Bisiacco and Valcher
in [3]. They call such observers consistent.

Definition 3.1. System (O) will be called a tracking observer for (S) and (Z) if

∀x0∈Rn∃ξ0∈Rq ∀u(·)∈C(R,Rm)∀t∈R e(t; ξ0, u, x0) = 0,

where e(·; ξ0, u, x0) :=ζ(·; ξ0, u, x0) − z(·; x0, u) is the tracking error.

This means that potentially we could get an exact estimate if we knew how to choose ξ0. Of
course, choosing the right ξ0 is equally hard as exactly estimating z(0), hence this property is
mainly of theoretical interest.

Definition 3.2. System (O) will be called an asymptotic observer for (S) and (Z) if

∀x0∈Rn∀ξ0∈Rq ∀u(·)∈C(R,Rm) lim
t→∞ e(t; ξ0, u, x0) = 0.

In other words, the to be estimated signal is asymptotically identified by the observer.
We observe the following invariance of the tracking property under coordinate transformations

in the state space of the observed system (we omit the trivial proof).

Proposition 3.3. System (O) is a tracking observer for (S) and (Z) if and only if it is a tracking
observer for (S′) and

z′(t) = K ′(t)x′(t), (Z′)
where K ′(·) :=K(·)T (·).

We obtain the following necessary condition for a given observer to have the tracking property.

Theorem 3.4. If system (O) is a tracking observer for (S) and (Z) then there exists a continuously
differentiable matrix function Z(·) ∈ C1(R, Rq×n) such that

Ż = FZ − ZA + GC,

K = JZ.
(T)

Furthermore, Z(·) can be chosen such that tracking is achieved by setting ξ0 :=Z(0)x0.

Proof. Let system (O) be a tracking observer for (S) and (Z). Observe that Z(·) is a solution of
(T) if and only if Z′(·) :=Z(·)T (·) is a solution of

Ż′ = FZ′ − Z′A′ + GC′,
K ′ = JZ′,

where the other primed matrix functions are those of the transformed system (S′) and (Z′). Choos-
ing T (·) :=X(·) in Proposition 3.3 we can hence assume w.l.o.g. that A(·) ≡ 0.
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By the tracking property, for each x0 ∈ Rn there exists a ξ0 ∈ Rq such that for every u(·) ∈
C(R, Rm) the tracking error e(·; ξ0, u, x0) ≡ 0. Denote that ξ0 by ξ0,x0 . In particular, we get
ζ(·; ξ0,x0 , 0, x0) ≡ z(·; x0, 0). Set u(·) :≡ 0, then the solutions for system (S) are just constant
functions x(·; x0, 0) ≡ x0.

Pick a basis B for the state space Rn of the observed system (S). Define for each time t ∈ R

a matrix Z(t) ∈ Rq×n by

∀x0∈B Z(t)x0 :=ξ(t; ξ0,x0 , 0, x0)

and obtain a continuously differentiable matrix function Z(·) ∈ C1(R, Rq×n).
Now pick x0 ∈ B. By definition of Z(·) we have

dx0(·) :=ξ(·; ξ0,x0 , 0, x0) − Z(·)x(·; x0, 0)

= ξ(·; ξ0,x0 , 0, x0) − Z(·)x0 ≡ 0

and hence by the tracking property it follows

(K(·) − J (·)Z(·))x0 = (K(·) − J (·)Z(·))x(·; x0, 0)

= z(·; x0, 0) − J (·)Z(·)x(·; x0, 0)

= ζ(·; ξ0,x0 , 0, x0) − J (·)Z(·)x(·; x0, 0)

= J (·)(ξ(·; ξ0,x0 , 0, x0) − Z(·)x(·; x0, 0))

= J (·)dx0(·) ≡ 0.

Since x0 ∈ B was arbitrary this implies K = JZ.
Pick again x0 ∈ B, observe that 0 ≡ d(·) :=dx0(·) ∈ C1(R, Rq) and compute

0 = ḋ

= ξ̇ − Żx − Zẋ

= Fξ + GCx + Hu − Żx − Z(Ax + Bu)

= Fd − (ZA − FZ − GC + Ż)x + (H − ZB)u

= (ZA − FZ − GC + Ż)x.

Here we have dropped the dependencies on time, x0, ξ0,x0 and u(·) ≡ 0 for the sake of readability.
We conclude from x(·; x0, 0) ≡ x0 and from the fact that x0 ∈ B was arbitrary that ZA − FZ −
GC + Ż = 0.

The last statement follows from the definition of Z(·) above since for every x0 ∈ B we have
Z(0)x0 = ξ0,x0 . By linearity, for any x0 ∈ Rn the choice ξ0 :=Z(0)x0 will hence achieve track-
ing. �

The significance of equations (T) is that their solution Z(·) defines an embedding of the
system state trajectories into the observer state trajectories of a tracking observer (for u(·) ≡ 0).
This embedding (if it exists) allows us to write down explicit dynamics for the tracking error e(·)
of arbitrary observers (for arbitrary inputs) as follows.

Proposition 3.5. Let Z(·) be a solution of equations (T). Let x(·) and ξ(·) be arbitrary solutions
of (S) and (O), respectively. Define d(·) :=ξ(·) − Z(·)x(·). Then
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ḋ = Fd + (H − ZB)u,

e = Jd,
(E)

where e(·) = ζ(·) − z(·) is the tracking error as above.

The proof follows from a straight forward computation. We can now state a sufficient condition
for a given observer to have the tracking property.

Theorem 3.6. System (O) is a tracking observer for (S) and (Z) if there exists a continuously
differentiable matrix function Z(·) ∈ C1(R, Rq×n) such that

Ż = FZ − ZA + GC,

K = JZ, (T′)
H = ZB.

Proof. Let Z(·) be a solution of equations (T′). For a given initial value x0 ∈ Rn of system (S)
set the initial value of system (O) to ξ0 :=Z(0)x0. By Proposition 3.5 it follows e(·) ≡ 0 since
d(0) = 0 and H − ZB = 0. �

Note that in order to construct a tracking observer we only need to solve equations (T) and
define H :=ZB.

The gap between the necessary condition and the sufficient condition above can be closed in
the case where the observer is itself a completely observable system on every time interval [t0, ∞),
t0 ∈ R. We recall the following definition of complete observability.

Definition 3.7. Let t0 ∈ R. A linear time-varying system (S) is called completely observable on
the time interval [t0, ∞) if for any pair of initial values x0, x

′
0 ∈ Rn at time t0 and for any pair of

input functions u(·), u′(·) ∈ C(R, Rm) with ∀t∈[t0,∞)u(t) = u′(t) the equality

∀t∈[t0,∞)y(t; t0, x0, u) = y(t; t0, x
′
0, u

′)

of the corresponding output functions implies x0 = x′
0.

The interpretation of this condition is that the initial value x0 at time t0 is uniquely determined by
u|[t0,∞) and y|[t0,∞) and hence could in principle be determined (observed) from that knowledge.
Some of the well known necessary and sufficient conditions for complete observability on finite
time intervals (see e.g. [25,18] and references therein) can be readily extended to this case. We
won’t need the exact form of these conditions here, we just note that complete observability
depends only on the matrix functions A(·) and C(·), but not on B(·). We can hence also call the
pair (C(·), A(·)) completely observable. For linear time-invariant systems, i.e. constant matrix
pairs (C, A) the condition is equivalent to the usual notion of observability. The relevance of
complete observability for the situation at hand is due to the following lemma.

Lemma 3.8. Let the system (S) be completely observable on every time intervall [t0, ∞), t0 ∈ R.

Then

∀u(·)∈C(R,Rm)y(·; 0, u) ≡ 0

implies B(·) ≡ 0.
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Proof. The proof will be done by contradiction. Let t0 > 0 and assume B(t0) /= 0. Let X(·) be
the principal matrix solution of the homogeneous system (H) associated with (S). Then with
M(·) :=X−1(·)B(·) the matrix M(t0) = X−1(t0)B(t0) ∈ Rn×m has a nonzero entry, say Mi,j (t0).
By continuity, there exist m > 0 and ε > 0 such that ∀t∈(t0−ε,t0+ε)|Mi,j (t)| � m. Here, we can
choose ε such that t0 − ε > 0. Letu(·) ∈ C(R, Rm)be such that all component functionsuk(·) ≡ 0
for k /= j , and such that ∀R\(t0−ε,t0+ε)uj (t) = 0 but

∫ t+ε

t0−ε
uj (s)ds > 0. Such a u clearly exists. It

follows

x0 :=x(t0 + ε; 0, u) = X(t0 + ε)

∫ t0+ε

t0−ε

M(s)u(s)ds /= 0.

Consider the second solution x′(·; 0, 0) ≡ 0. By uniqueness of solutions we now have a pair of
initial conditions x0 and x′

0 :=0 at time t0 + ε and a pair of input functions u(·) and u′(·) :≡
0 with ∀t∈[t0+ε,∞)u(t) = u′(t) such that (by assumption) the corresponding output functions
y(·; t0 + ε, x0, u) and y(·; t0 + ε, x′

0, u
′) both vanish and in particular agree on the time intervall

[t0 + ε, ∞). By complete observability on the time interval [t0 + ε, ∞) this implies x0 = 0, a
contradiction. We hence conclude B(t0) = 0. The argument for t0 < 0 is completely analogous,
and B(0) = 0 then follows by continuity. �

We can now state the promised necessary and sufficient condition.

Theorem 3.9. Let the system (O) be completely observable on every time interval [t0, ∞), t0 ∈ R.

Then system (O) is a tracking observer for (S) and (Z) if and only if there exists a continuously
differentiable solution Z(·) ∈ C1(R, Rq×n) of equations (T′).

Proof. Sufficiency follows from Theorem 3.6. For necessity, let system (O) be a tracking ob-
server for (S) and (Z). By Theorem 3.4 there exists a continuously differentiable solution Z(·) ∈
C1(R, Rq×n) of equations (T) such that for every initial value x0 ∈ Rn of system (S) the choice
ξ0,x0 :=Z(0)x0 for the initial value of the observer (O) will lead to

∀u(·)∈C(R,Rm) e(·; ξ0,x0 , u, x0) ≡ 0.

By Proposition 3.5 the dynamics of the tracking error is governed by system (E) which by assump-
tion is completely observable on every time intervall [t0,∞), t0 ∈ R. Note, that (O) and (E) have
the matrix functions F(·) and J (·) in common. Apply Lemma 3.8. �

In the case of Theorem 3.6 we have

ḋ(t) = F(t)d(t)

and hence the tracking error e(·) = J (·)d(·) goes to zero whenever d(·) does and J (·) is bounded.
We arrive at the following sufficient condition for a tracking observer to be an asymptotic observer.

Corollary 3.10. A tracking observer with attractive F(·), bounded J (·) and H = ZB, where
Z(·) is a continuously differentiable solution to equations (T), is an asymptotic observer.

4. Existence conditions

Going back to equations (T′) we immediately get the following existence conditions for
tracking and asymptotic observers. The conditions make use of the concept of families of con-
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ditioned invariant subspaces as introduced by Ilchmann [17]. Note that in order to be able to
apply all the characterizations of families of conditioned invariant subspaces given by Ilch-
mann, including the duality results and the characterizations via output injections, we need to
restrict our system class to piecewise analytic systems. See Ilchmann’s paper for a detailed
discussion why this is the case. If we opt for the first equation in (T′) as the definition of
the family Ker Z(·) being conditioned invariant (i.e. there exist F(·) and G(·) such that this
equation holds), and if we don’t require an output injection characterization and a duality result,
we can still work within the class of continuous systems. We will call the family Ker Z(·)
outer detectable if the matrix function F(·) in the first equation in (T′) can be chosen to be
attractive.

Theorem 4.1. There exists a tracking observer for (S) and (Z) if and only if Ker K(·) contains a
conditioned invariant family of subspaces.

If one of these families is outer detectable then there exists an asymptotic observer for (S) and
(Z).

In both cases the family of subspaces is given by Ker Z(·).

Remark 4.2. We now specialise to systems of the form

ẋ(t) =
(

A0 +
r∑

i=1

ρi(t)Ai

)
x(t) +

(
B0 +

r∑
i=1

ρi(t)Bi

)
u(t),

y =
(

C0 +
r∑

i=1

ρi(t)Ci

)
x(t),

where Ai , Bi and Ci are constant matrices and the ρi are continuous scalar functions.
If the ρi are linearly independent then a particular type of conditioned invariant subspace

family is a constant family that is conditioned invariant with respect to all pairs (Ci, Ai), cf. Balas
et al. [1]. That paper also contains algorithms to compute such simultaneously invariant subspaces,
which in turn can be used for observer construction by substituting a kernel representation of the
subspace into equations (T′) and solving for the observer matrices.

A further specialisation leads to systems of the form

ẋ(t) =
(

A +
r∑

i=1

ui(t)Bi

)
x(t),

y = Cx(t),

where A, Bi and C are constant matrices and the controls ui are interpreted as parameter uncertain-
ties ρi . Then apparently the previous result applies. We are hence led to algorithms for an observer
construction for bilinear systems. The details of this construction will be reported elsewhere.
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