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Abstract

This paper studies several aspects of asymptotically hyperbolic (AH) Einstein metrics,

mostly on 4-manifolds. We prove boundary regularity (at infinity) for such metrics and

establish uniqueness under natural conditions on the boundary data. By examination of

explicit black hole metrics, it is shown that neither uniqueness nor finiteness holds in general

for AH Einstein metrics with a prescribed conformal infinity. We then describe natural

conditions which are sufficient to ensure finiteness.
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0. Introduction

In this paper, we study several aspects of asymptotically hyperbolic (AH) Einstein
metrics on an open 4-manifold M with compact boundary @M: These metrics are
complete Einstein metrics g on M; normalized so that

Ricg ¼ �3g; ð0:1Þ
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which are conformally compact in the sense of Penrose, in that there exists a defining
function r for @M in M; such that the conformally equivalent metric

%g ¼ r2g ð0:2Þ

extends to a Riemannian metric on %M: Recall that a defining function r for
@M is essentially just a coordinate function for @M in M; thus r is a smooth,

typically CN; function on %M ¼ M,@M such that r40 on M; r�1ð0Þ ¼ @M

and dra0 on @M:
Defining functions are unique only up to multiplication by positive functions on

%M: Hence only the conformal class ½ %g� is uniquely determined by g; as is the
conformal class ½g� of the induced metric g ¼ %g@M on @M: The class ½g� is called the
conformal infinity of g and a choice gA½g� will be called a boundary metric. The metric

g is Lk;p or Cm;a conformally compact if there exists a defining function such that the

metric %g in (0.2) has a Lk;p or Cm;a extension to %M; here Lk;p is the Sobolev space of k

weak derivatives in Lp and Cm;a is the usual Hölder space. It is easy to see, cf. Section
1, that a conformally compact Einstein metric has curvature decaying to �1 at an
exponential rate, so that such manifolds are AH.

Regarding the existence of such metrics, Graham and Lee [19] have proved that

any metric g near the standard metric go on Sn�1 in a sufficiently smooth topology
may be filled in with an AH Einstein metric g on the n-ball Bn having prescribed
boundary metric g: Further, such AH Einstein metrics have a conformal
compactification with a certain degree of smoothness. More precisely, they prove

that there is an open neighborhood Ugo
of go in the space of Cm;a metrics Mm;aðSn�1Þ

on Sn�1; for any mX2; such that any metric gAUgo
is the boundary metric of an AH

Einstein metric g on the n-ball Bn; i.e. %gj@M ¼ g: Further, for mpn � 1; the metric g is

Cn�2;a conformally compact for n44 and C1;a compact, for n ¼ 4:
Recently, Biquard [7] has extended this result to boundary metrics g in an open

neighborhood Ugo
CMm;að@MÞ of the boundary metric go of an arbitrary non-

degenerate AH Einstein manifold ðM; gÞ: Here non-degenerate means that there are

no non-trivial L2 infinitesimal AH Einstein deformations of ðM; gÞ: Biquard’s

method can be shown to give a C2 conformal compactification for nX4; (by
choosing d ¼ 2 in the notation of [7]).

The first purpose of this paper is to study the boundary regularity of conformal
compactifications %g of AHE metrics g; in dimension 4. Namely, given an AH
Einstein metric ðM; gÞ which, in some compactification %g as in (0.2), has a Cm;a

boundary metric g; is there a Cm;a conformal compactification of g? This issue of
boundary regularity was first raised in [16], and has been an open problem for some
time. In fact, when n ¼ dim M is odd, it was discovered in [16] that boundary
regularity in general breaks down at the order m ¼ n � 1; in that there are log terms
in the asymptotic expansion of %g near @M at this order, cf. (0.4). These log terms
play an important role in the AdS/CFT correspondence relating string theory and
conformal field theory, cf. [25,38].
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When n ¼ dim M is even, there are no log terms in the expansion, and it is possible
that a CN boundary metric has a CN compactification. We resolve this issue in
dimension 4.

Theorem 0.1. Let M be a 4-manifold and g an AH Einstein metric on M: Suppose g

has an L2;p conformal compactification, for some p44; in which the boundary metric g
is Cm;a; mX3; a40: Then ðM; gÞ has a Cm;a conformal compactification with the same

boundary metric. This result holds also if m ¼ N or m ¼ o:

The reason for considering the (weak) condition of L2;p compactification is that
the result of Biquard above naturally gives the existence of AH Einstein metrics with
such compactifications. Theorem 0.1 is proved in Section 2, cf. Theorem 2.4 and
Corollary 2.5.

A second purpose of the paper is to study the uniqueness question, i.e. to what
extent an AH Einstein metric ðM; gÞ is uniquely determined by its conformal infinity
ð@M; ½g�Þ; or by data of ðM; gÞ at infinity. Again, this issue, raised in [16], has been
open for some time, cf. also [8].

We summarize some of the results on non-uniqueness here, and refer to Section 4
for detailed statements and constructions. First, it turns out that it has been known
to physicists working in Euclidean quantum gravity for a rather long time that
uniqueness fails in general. For example, there are distinct, i.e. non-isometric, AH
Einstein metrics on M ¼ S2 � R2; which have the same conformal infinity on @M ¼
S2 � S1: These metrics are from the family of AdS-Schwarzschild metrics, and have
been analyzed in detail in a remarkable paper of Hawking and Page [24]. Further
there are AH Einstein manifolds ðM; gÞ of distinct topological type, with the same
conformal infinity, so that the conformal infinity ð@M; gÞ does not determine the
topological type of M:

In fact, even in dimension 3, where Einstein metrics are hyperbolic, i.e. of constant
curvature, there are numerous examples of non-uniqueness. These examples come
from the Thurston theory of Dehn surgery, or the well-known process of ‘‘opening
cusps’’, cf. [20,37]. This construction gives infinitely many isometrically distinct
hyperbolic 3-manifolds, all with a given conformal infinity.

Of course such Thurston–Dehn surgery is a special feature of hyperbolic 3-
manifolds, and does not generalize to hyperbolic n-manifolds, nX4: However, we
will see in Section 4 that such Dehn surgery constructions do generalize in the
context of AH Einstein metrics. As in dimension 3, this gives rise, in special
situations, to an infinite sequence distinct AH Einstein metrics on a fixed 4-manifold,
with a fixed conformal infinity, cf. Proposition 4.4 and Remark 4.5. These metrics
again come from ’AdS black hole’ metrics, with a toral ðT2Þ event horizon and
have been extensively examined in the AdS/CFT correspondence. In particular, we
see that even the finiteness issue, in addition to the uniqueness issue, fails in
general.

In sum, there are numerous counterexamples to uniqueness of AH Einstein
metrics with a given conformal infinity. We give at least a brief overview of this
situation in Section 4.
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Thus, it is of interest to understand under what conditions one can uniquely
characterize an AH Einstein metric. To do this, recall the Fefferman–Graham
expansion of a conformal compactification. Thus, let %g be a compactification as in
(0.2) where the defining function t has the property that tðxÞ ¼ dist %gðx; @MÞ; in a

collar neighborhood U of @M: It is easy to see that, given a boundary metric g in the
conformal infinity of ðM; gÞ; there is a unique such defining function t ¼ tg having g
as its boundary metric, (cf. Section 1). The Gauss lemma then implies that the metric

%g splits in U as

%g ¼ dt2 þ gt; ð0:3Þ

where gt is a curve of metrics on @M: It follows from Theorem 0.1, cf. Corollary 2.5,

that if the boundary metric gACmþ1;a; then the curve gt is at least a Cm;a curve of
metrics in t: Following [16], we may then expand gt as a Taylor series in t as

gt ¼ gð0Þ þ tgð1Þ þ t2gð2Þ þ t3gð3Þ þ?þ tmgðmÞ þ OðtmþaÞ: ð0:4Þ

One has gð0Þ ¼ g; gð1Þ ¼ 0; while gð2Þ is determined locally from the geometry of the

boundary metric g: On the other hand, the terms gðjÞ for jX3 are not locally

determined by the boundary g in general, cf. Section 3 for further discussion.

Theorem 0.2. Suppose dim M ¼ 4 and the boundary metric gAC7;a: Then the data

ðg; gð3ÞÞ on @M uniquely determine an AH Einstein metric up to local isometry, i.e. if g1

and g2 are two AH Einstein metrics on manifolds M1 and M2; with @M1 ¼ @M2 ¼
@M such that, w.r.t. geodesic compactifications as in (0.3),

g1 ¼ g2 and g1
ð3Þ ¼ g2

ð3Þ; ð0:5Þ

then g1 and g2 are locally isometric and the manifolds M1 and M2 are commensurable,
i.e. they have diffeomorphic universal covers.

It follows that M1 is diffeomorphic to M2 and g1 is isometric to g2 if

p1ðM1ÞDp1ðM2Þ and the actions of p1ðMiÞ on the universal cover M̃ of Mi are

conjugate in the isometry group of M̃: Theorem 0.2 is proved in Section 3.
The third purpose of the paper is to analyze the finiteness issue, i.e. when a given

boundary metric ð@M; gÞ bounds finitely or infinitely many AH Einstein 4-manifolds
ðMi; giÞ: The main result is, roughly speaking, that under reasonably natural
conditions only conformally flat boundary data can bound infinitely many AH
Einstein metrics. Since the exact statement is somewhat technical, we refer to
Theorem 5.3 for details. We also mention here Proposition 5.1, which gives a very
simple proof of the result of Witten–Yau [39] on the connectedness of @M when @M

has a component of positive scalar curvature.
This paper does not address the existence question for AH Einstein metrics, i.e.

given a conformal class ½g� of metrics on @M; does there exist an AH Einstein metric
on M which has ½g� as its conformal infinity. This issue will be discussed in a
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sequel [4] to this paper; the results obtained here, however, will play an important
role in the sequel.

As indicated above, there is a very extensive and active recent physics literature on
AH Einstein metrics in relation to the AdS/CFT correspondence and this work is a
strong influence on this paper. We refer to [14,23,31,33,38] for some relevant
perspectives.

1. Conformally compact Einstein metrics

In this section we discuss some background material for conformally compact
Einstein metrics. Although the results of this section hold in arbitrary dimensions, we
carry out the computations only in dimension 4, since this is the most relevant case
for the paper; cf. also Remark 1.5 for the higher-dimensional case. Thus, we assume
that M is an open, connected, oriented 4-manifold, with non-empty and compact
boundary. It is not assumed that @M is connected.

Let r be a defining function for @M and as in (0.2), set

%g ¼ r2g: ð1:1Þ

Unless r is restricted by the geometry of g; without loss of generality we may, and

do, assume that r is CN on %M; so that the metric %g is CN in the interior of M: The

metric %g is a Lk;p or Cm;a compactification if it extends to a Lk;p or Cm;a metric on %M:
Thus, there are coordinate charts for a neighborhood of @M in M such that the local

components of %g in these charts are Lk;p or Cm;a functions of the coordinates. We will
usually assume that

kX2; p44 or m þ a41: ð1:2Þ

Sobolev embedding, in dimension 4, implies that for p44; L2;pCC1;a; a ¼ 1 � 4
p
40;

while for p42; L2;pCCa; a ¼ 2 � 4
p
: It is well-known that metrics have optimal

regularity in harmonic coordinates. Such coordinates exist on ð %M; %gÞ if %g is a Lk;p

metric with kX2; p42; further the components of %g are in Lk;p w.r.t. such harmonic
coordinates, cf. [6, Chapter 5E].

If %g is a Cm;a compactification, then the boundary metric g ¼ %gj@M on @M is also

Cm;a; while if %g is Lk;p; then the boundary metric g is L
k�1

p
;p
; cf. [1, 7.56]. In particular,

by Sobolev embedding, a L2;p compactification has a C1;a boundary metric when
p44: Of course the converse of these statements may not hold in general. The degree
of smoothness of the boundary metric g does not, a priori, imply any degree of
smoothness of the compactification.

As noted in Section 0, defining functions r on M are not unique, but differ by
multiplication by positive functions. Conversely, given any positive smooth function
f on M and any defining function r; then f 
 r is a defining function. Hence only the
conformal class of the boundary metric g ¼ %g@M is uniquely determined by ðM; gÞ:
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The curvatures of the Einstein metric g and a compactification %g are related by the
following formulas in dimension 4:

%Kab ¼ Kab þ j %rrj2

r2
� 1

r
f %D2rð%ea; %eaÞ þ %D2rð%eb; %ebÞg: ð1:3Þ

%Ric ¼ �2
%D2r
r

þ 3r�2ðj %rrj2 � 1Þ �
%Dr
r

� �
%g; ð1:4Þ

%s ¼ �6
%Dr
r

þ 12r�2ðj %rrj2 � 1Þ: ð1:5Þ

The terminology here is the following: D2 is the Hessian, r is the gradient, D ¼ tr D2

the Laplacian, while Kab denotes sectional curvature and feag an orthonormal basis.
(See [6, Chapter 1J] for example for formulas for conformal changes of metric). All
barred quantities are w.r.t. the %g metric. Eq. (1.4) is equivalent to the Einstein
equations (0.1). Similar formulas hold in all dimensions. We also let

r ¼ log
2

r

� �
; r ¼ 2e�r: ð1:6Þ

Since r is smooth on %M; it is essentially immediate from (1.4) that if %g is a Lk;p

compactification, satisfying (1.2), then j %rrj � 1 at @M; and hence by (1.3), the
sectional curvatures of g tend to �1 at infinity in ðM; gÞ: Hence any such
conformally compact Einstein manifold is asymptotically hyperbolic (AH). Further

at @M; we have %D2r ¼ A; where A is the second fundamental form of @M in ð %M; %gÞ;
A is Ca on @M; again by (1.2). Eq. (1.4) further implies that @M is umbilic, i.e.
A ¼ l 
 g; for some function l on @M:

From formulas (1.4) and (1.5), it is clear that defining functions which satisfy

j %rrj � 1 ð1:7Þ

in a collar neighborhood U of @M in M are especially natural. Such defining
functions will be called geodesic defining functions, (although they are called special
defining functions in [18]). A brief computation shows that, (in general),

j %rrj ¼ jrrj; ð1:8Þ

where the norm on the left is w.r.t. %g and that on the right w.r.t. g: Thus condition
(1.7) is an intrinsic property of ðM; gÞ and r: The function r is a (signed) distance
function on ðM; gÞ and the integral curves of rr are geodesics in ðM; gÞ: Similarly r
is the distance function from @M w.r.t. %g: Geodesic defining functions are geometric,
in that they depend on the geometry of ðM; %gÞ or ðM; gÞ; and so their smoothness
depends on the metric %g: Thus, such functions will not be CN unless the

compactification %g is; if %g is Cm;a; then r is Cmþ1;a off the cutlocus of @M in ð %M; %gÞ:
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Suppose there is a compactification g̃ ¼ r2g of ðM; gÞ which is at least C2;

(actually C1;1 suffices), with boundary metric g: Then it is easy to see that there is a
unique geodesic defining function t ¼ tðgÞ for ðM; gÞ such that the compactification

%g ¼ t2 
 g ð1:9Þ

has boundary metric g; cf. [19, Lemma 5.2]. Briefly, write t ¼ u 
 r where u is a

positive function on %M with u � 1 on @M so that the boundary metric of (1.9) is

indeed g: Then the equation that j %rtj %g ¼ 1; i.e. t is a geodesic defining function, is

equivalent to

2ð *rrÞðlog uÞ þ rj *r log uj2g̃ ¼ r�1ð1 � j *rrj2g̃Þ: ð1:10Þ

This is a non-characteristic first order PDE, with C2 (or C1;1Þ coefficients, on the

right-hand side in C1 (or Lipschitz). Hence, the Cauchy problem has a unique
solution with u � 1 on @M in a collar neighborhood U of @M: Observe, however,

that %g may not be as smooth as g̃; if g̃ACm;a; aX0; then we have only uACm�1;a and

so %gACm�1;a

The Gauss lemma implies that the metrics %g and g split in U ; as in (0.3):

%g ¼ dt2 þ gt and g ¼ dr2 þ gr ð1:11Þ

with g0 ¼ g and gr ¼ t�2gt: The 1-parameter family gt is a Cm;a smooth curve of
metrics on @M if %g is a Cm;a compactification. Observe also that the second

fundamental form %A of the level sets of t is given by %A ¼ %D2t and so in particular
by (1.4)

%A ¼ 0 at @M; ð1:12Þ

i.e. @M is totally geodesic in M: In sum, if g̃ is a Cm;a compactification with mX2

and aX0; then there is a unique compactification %g; at least Cm�1;a; by a geodesic
defining function inducing the boundary metric g of g̃ on @M: Such a
compactification will be called the geodesic compactification associated with g:

If g̃ is only L2;p or C1;a; then the discussion above does not hold; although
geodesics normal to @M do exist, they are not necessarily uniquely defined, and so
one does not obtain a splitting (1.11) valid up to the boundary @M: Nevertheless, the

discussion above does hold ‘‘to first order’’ at @M; in that there exists (another) L2;p

compactification ĝ which satisfies (1.12).

Lemma 1.1. Let g̃ be a L2;p compactification of g; p44; with boundary metric g and

L3;p defining function r: Then there exists another (possibly equal) L2;p compactifica-

tion ĝ of g; with the same boundary metric g; such that

Â ¼ 0 at @M:
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Proof. Let f be a L2;p positive function on %M; with f � 1 on @M and set ĝ ¼ f2g̃:

Then ĝAL2;p; the boundary metric of ĝ is g; and the second fundamental forms Â and

Ã of @M w.r.t ĝ and g̃ are related by

Â ¼ Ã þ/ *r log f; *rrS 
 g:

Let Ã be the second fundamental form of the r-level sets w.r.t. g̃ and set l ¼ trg̃Ã=3;

so that lAL1;p: As noted above, Ã ¼ lg and *rr ¼ N; the g̃ unit normal, both at @M:

Choosing f to satisfy / *r log f; *rrS ¼ Nðlog fÞ ¼ �l at @M then gives the result.

Observe that if g̃ALk;p or Cm;a then f may also be chosen to be in Lk;p or
Cm;a: &

The next result shows that the Ricci curvature %Ric at @M of a C2 geodesic

compactification %g is determined by the intrinsic C2 geometry of the boundary
metric g:

Lemma 1.2. Let %g be a C2 geodesic compactification of an AH Einstein 4-manifold

ðM; gÞ; with C2 boundary metric g: Then at @M;

%s ¼ 6 %RicðN;NÞ ¼ 3

2
sg; ð1:13Þ

where N is the unit normal to @M w.r.t. %g: If X is tangent to @M; then

%RicðN;XÞ ¼ 0; ð1:14Þ

while if T denotes the projection onto Tð@MÞ; then

ð %RicÞT ¼ 2Ricg �
1

4
sg 
 g: ð1:15Þ

Proof. Equality (1.14) follows immediately from (1.4), while the first equality in
(1.13) follows from (1.4) and (1.5). For the rest, let t be the geodesic defining
function, let %ei; i ¼ 1; 2; 3; be an o.n. basis at any point for a level set SðtÞ of t; for t

near 0, and let N ¼ %rt be the unit normal field to SðtÞ: By definition, the curvature
%KNi ¼ %Rð%ei;N;N; %eiÞ ¼ / %r%ei

%rNN; %eiS�/ %rN %r%ei
N; %eiS�/ %r½%ei ;N�N; %eiS: Using the

fact that N is tangent to geodesics and N is a gradient, together with the fact that
%D2t ¼ A ¼ 0 at @M by (1.12), gives

%KNi ¼ � lim
t-0

t�1 %D2tð%ei; %eiÞ;

at @M: From (1.4) and (1.5), it then follows that

%KNi ¼
1

2
%Ricð%ei; %eiÞ �

1

12
%s; ð1:16Þ
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again on @M: On the other hand, the Gauss–Codazzi equations and (1.12) again
imply

%Ricð%ei; %eiÞ ¼ Ricgð%ei; %eiÞ þ %KNi;

and so substituting in (1.16) gives 1
2
%Ricð%ei; %eiÞ ¼ Ricgð%ei; %eiÞ � 1

12%s: Thus (1.15) follows

from the second equality in (1.13).

Finally, to prove this second equality, Gauss–Codazzi and (1.12) again give 1
2
sg ¼P

iojp3
%Kij: But by definition,

1

2
%s ¼

X
ip3

%KNi þ
X

iojp3

%Kij:

The first term is just %RicðN;NÞ; and so 1
2%s ¼ %RicðN;NÞ þ 1

2
sg: From (2.6), this gives

1
2%s ¼ 1

6%s þ 1
2
sg; which gives (1.13). &

We will also need the analogue of Lemma 1.2 when the compactification is not
geodesic.

Lemma 1.3. Let %g be a geodesic compactification and let g̃ ¼ f2
%g be another

compactification with the same boundary metric g; so that f � 1 on @M: Suppose that

Ã ¼ 0 on @M; cf. Lemma 1.1. Then the Ricci curvature R̃ic of g̃ at @M is determined

by the Ricci curvature of the boundary metric g and the scalar curvature s̃ of g̃ at @M:
In fact, at @M;

R̃ic ¼ %Ric þ 1
6
ðs̃ � %sÞðg̃ þ 2n 
 nÞ; ð1:17Þ

where %Ric and %s are as in (1.13)–(1.15) and n is the unit conormal at @M: If Ãa0 at

@M; then (1.17) holds modulo terms of the form Ã2:

Proof. By standard formulas for conformal changes of the metric, cf. [6, 1.159], the
Ricci curvatures of g̃ and %g are related by

R̃ic ¼ %Ric � 2f�1 %D2fþ 4ðd log fÞ2 � f�1 %Df 
 %g � jd log fj2 
 %g: ð1:18Þ

At @M; f ¼ 1 and df ¼ 0; since Ã ¼ 0: Hence

R̃ic ¼ %Ric � 2 %D2f� %Df 
 %g:

In an orthonormal frame e1;y; e4; e4 ¼ N; %D2fðei; ejÞ ¼ 0 at @M unless ei ¼ ej ¼
N; i.e. %D2f ¼ ½NNðfÞ�n 
 n: Hence %D2fðN;NÞ ¼ %Df; and it follows that

R̃ic ¼ %Ric � ð %DfÞðg̃ þ 2n 
 nÞ
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at @M: Taking the trace of this equation gives s̃ ¼ %s � 6 %Df; which implies (1.17). If

Ãa0; then the same arguments show that (1.18) gives (1.17) modulo Ã2 terms. &

Next we have an interesting estimate for the scalar curvature %s of geodesic
compactifications %g:

Proposition 1.4. Let %g be a C2 geodesic compactification with boundary metric g and

scalar curvature %s: Then off the cut locus of t in ðM; %gÞ;

%s
0 � / %r%s; %rtS ¼ 6t�1j %D2tj2X0: ð1:19Þ

In particular, %s is uniformly bounded below in this region by its boundary value on @M;

and thus bounded below by the C2 geometry of g:

Proof. The computations below are w.r.t. the %g metric, but we drop the bar from the
notation. The flow lines of rt are geodesics, and hence, a standard result in
Riemannian geometry (cf. [35] for example) implies that the following Ricatti
equation holds in U :

H 0 þ jAj2 þ Ricðrt;rtÞ ¼ 0; ð1:20Þ

here H ¼ tr A ¼ Dt and H 0 ¼ /rH;rtS: By (1.4), we have Ricðrt;rtÞ ¼
�2t�1ðD2tÞðrt;rtÞ � t�1Dt; and since jrtj ¼ 1; ðD2tÞðrt;rtÞ ¼ 0: Hence dividing
(1.20) by t gives

t�1ðDtÞ0 þ t�1jD2tj2 � t�2Dt ¼ 0: ð1:21Þ

But t�1ðDtÞ0 ¼ ðt�1DtÞ0 þ t�2Dt; and so (1.21) becomes

ðt�1DtÞ0 þ t�1jD2tj2 ¼ 0:

Eq. (1.19) then follows from (1.5). &

Remark 1.5. All of the discussion in this section holds in any dimension, with
obvious modifications for Sobolev embedding and constants depending on
dimension. For instance, in dimension n; with 3 in (0.1) replaced by n � 1; (1.13)

holds with 3n�4
2ðn�1Þðn�2Þ in place of 3

2
; while the factor of 6 in (1.13) and (1.19) should be

replaced by 2ðn � 1Þ:

2. Boundary regularity

In this section we study the boundary regularity of AH Einstein metrics on 4-
manifolds and establish Theorem 0.1.
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As is well-known [6, Chapter 5], Einstein metrics satisfy an elliptic system of
equations in harmonic coordinates, and so one obtains higher-order ðCN or CoÞ
regularity of such metrics from a local Lp bound on the curvature. With regard to
boundary regularity, the boundary of an AH Einstein metric occurs at infinity. If one
works in local coordinates for @M; the system of Einstein equations becomes
degenerate at @M; and thus difficult to deal with for regularity issues.

It is a special feature of dimension 4 that Einstein metrics ðM; gÞ also satisfy a
conformally invariant equation, namely the Bach equation

dd Ric � s

6
g

� �
þ W̊ðRicÞ ¼ 0; ð2:1Þ

cf. [6, (4.77)]. This is the Euler–Lagrange equation for W; the square of the L2 norm
of the Weyl curvature W : Here Ric and g are viewed as 1-forms with values in TM;

d ¼ dr is the exterior derivative L1-L2 defined in terms of the metric g and W̊ is the
action of the Weyl tensor on symmetric bilinear forms.

Of course Einstein metrics satisfy (2.1) in any dimension, but expression (2.1) is
conformally invariant only in dimension 4. Hence (2.1) holds for any conformal
compactification ðM; %gÞ of ðM; gÞ: Observe that (2.1) is a fourth-order system of
equations in the metric g; as opposed to the second-order system of Einstein
equations. Note also that, being conformally invariant, Eq. (2.1) is trace-free, i.e. its
trace vanishes identically.

We first prove boundary regularity of an L2;p compactification, p44; given
suitable control on the scalar curvature of the compactification. As mentioned in the

introduction, we consider compactifications which are L2;p; since this level of
regularity exists for the AH Einstein metrics constructed by Biquard [7].

Proposition 2.1. Let ðM; gÞ be an AH Einstein 4-manifold which admits an L2;p

conformal compactification %g; with boundary metric g; for some p44; so that

jR %gjLppLoN; ð2:2Þ

where R is the curvature tensor.

Let kX1 and qX2: If gALkþ2;qð@MÞ; the scalar curvature %sALk;qð %MÞ; with

%sj@MALk;qð@MÞ; then the metric %g is in Lkþ2;qð %MÞ: (This last assumption may be

realized by assuming %sAL
kþ1

q
;q
; cf. [1, 7.56]).

The same result holds with respect to the Hölder Cm;a spaces, i.e. if gACmþ2;að@MÞ
and %sACm;að %MÞ; then %gACmþ2;að %MÞ: If %s and g are Co; i.e. real-analytic, then so is %g:

Further, if, with respect to a fixed harmonic coordinate system for %M;

jjgjjLkþ2;qð@MÞpC and jj%sjjLk;qð %MÞ þ jj%sjjLk;qð@MÞpC ð2:3Þ

then

jj %gjjLkþ2;qð %MÞpC1; ð2:4Þ
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where C1 depends only on C; L; an upper diameter bound and a lower bound for the

geodesic ball volume ratio vol %gBxðsÞ=s4; xAM; sp1; on ðM; %gÞ: The analogous

estimate holds with respect to the Cm;a Hölder norms.

Proof. The idea of the proof is to apply boundary regularity results for elliptic
systems, in connection with the Bach system (2.1). However, the leading operator dd

in (2.1) is not elliptic. This can be rectified by considering the operator dd þ 2dnd: In
fact a standard Weitzenbock formula gives

dd þ 2dnd ¼ 2DnD þR;

where DnD is the rough Laplacian, and R is a curvature term, cf. [5, p. 288] or [6,

(4.71)]. (The exact form of R is of no importance here). The Bianchi identity dRic ¼
�1

2
ds; gives 2dndRic ¼ �D2s; while a straightforward computation, cf. again [5],

shows ddðsgÞ ¼ �2Ds 
 g þ 2D2s: Hence (2.1) can be rewritten as

2DnDRic ¼ �2

3
D2s � 1

3
Ds 
 g þR1; ð2:5Þ

where R1 ¼ �RðRicÞ � W̊ðRicÞ is a term quadratic in curvature. Here and in the
following, all metric quantities are w.r.t. %g but the overbar is omitted from notation.

The assumptions on s and g give control on the right-hand side of (2.5), while the
left-hand side of (2.5) is essentially an elliptic fourth-order system in the metric g: In
principle, the result then follows from general elliptic boundary regularity theory,
but there are a fair number of details to address. To begin, as noted in Section 1, one

may choose local harmonic coordinates for %M in which the components of g; (i.e. %g),

are L2;p: With respect to such coordinates, the components of the Ricci curvature are

�Ricab ¼ 1

2
Dgab þ ½Q1ðg; @gÞ�ab; ð2:6Þ

where Q1 is of lower order; Q1 involves only quadratic expressions in g; g�1 and @g:
Similarly, the rough Laplacian DnD is also the function Laplacian to leading order,
in that, in harmonic coordinates

�ðDnDRicÞab ¼ DðRicabÞ þ ½Q3ðg; @ jgÞ�ab; ð2:7Þ

where Q3 involves only derivatives of g up to order 3; we refer to [2, p. 234] for
instance for the exact calculations. Hence, in local harmonic coordinates, the left-
hand side of (2.5) has the form of the bi-Laplacian of the metric, DDðgabÞ; to leading
order. Further, in such coordinates, the Laplacian has the form

D ¼ gkl@k@l ; ð2:8Þ

and so involves the metric only to zeroth order.

The metric g is a weak L2;p solution of Eq. (2.5), i.e. (2.5) holds when it is paired

with any L2;p0
o test form h; ðp�1 þ ðp0Þ�1 ¼ 1Þ and integration by parts is performed
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twice; here L2;p0
o is the closure of the space of smooth functions of compact support in

M in the L2;p0 norm.
Given this setup, to control the boundary behavior it is necessary to make a

specific choice of harmonic coordinates. Thus, given the boundary metric

gALkþ2;qð@MÞ; (or Cmþ2;að@MÞ), choose local harmonic coordinates ua; a ¼ 1; 2; 3

for @M w.r.t. g: The coordinates ua are in Lkþ3;qð@MÞ; (or Cmþ3;að@MÞ), and gab ¼
gð@a; @bÞALkþ2;qð@MÞ; ðCmþ2;að@MÞÞ; here @a ¼ @=@ua: Next, the coordinates ua may
be extended to local harmonic coordinate functions for M by solving a local
Dirichlet problem: Dgua ¼ 0; with uaj@M the given function ua on @M: Similarly,

choose a local ‘‘harmonic defining function’’ u4; i.e. Dgu4 ¼ 0; with u4j@M ¼ 0: The

metric g ¼ gab ¼ gð@a; @bÞ has optimal regularity in these coordinates.
Clearly gabj@M ¼ gab; for a; bp3: However, g4a at @M is not apriori determined by

the boundary metric g: The following lemma shows that the components g4a satisfy
Neumann boundary conditions on @M:

Lemma 2.2. Let N ¼ ru4=jru4j be the unit normal at @M; ru4 ¼ g4a@a: Then the

components g4a satisfy the following Neumann boundary condition at @M:

Nðg44Þ ¼ �6lðg44Þ3=2 and

Nðg4aÞ ¼ �1

2
ðg44Þ�1=2

gab@bg44 � 3l
ffiffiffiffiffiffi
g44

p
g4a; ao4 on @M; ð2:9Þ

where l is given by A ¼ l 
 g at @M:

Proof. Since Dua ¼ 0 at @M; one has, at @M;

0 ¼ /rei
rua; eiSþ/rNrua;NS;

where ei is an orthonormal basis for @M at a given point. Write rua ¼ ðruaÞT þ
ðruaÞN : Then /rei

ðruaÞT ; eiS ¼ 0; since ua is harmonic on @M; ap3; and u4 � 0

on @M: Further, /rei
ðruaÞN ; eiS ¼ Aðei; eiÞ/rua;NS ¼ Hg4a ¼ 3lg4a: This then

gives

/rNrua;NS ¼ �3lg4a at @M: ð2:10Þ

Let a ¼ 4: Since ru4 ¼ g4a@a; jru4j2 ¼ g44; so jru4j ¼
ffiffiffiffiffiffi
g44

p
: The term on the left-

hand side in (2.10), with a ¼ 4 is then

1

jru4j2
/rru4

ru4;ru4S ¼ 1

2
ðg44Þ�1/ru4;rg44S ¼ 1

2
ðg44Þ�1=2

Nðg44Þ;

which, with (2.10), gives the first equation in (2.9).
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For the second equation, the left-hand side of (2.10) may be written as

1

jru4j2
/rru4

rua;ru4S ¼ 1

jru4j
N/rua;ru4S� 1

jru4j
/rua;rNru4S:

For the first term, compute

/rua;ru4S ¼ /gac@c; g4b@bS ¼ gacg4bgbc ¼ g4a;

so that the first term is 1
jru4jNðg4aÞ:

For the second term, using the gradient property, this is

1

jru4j
/N;rrua

ru4S ¼ 1

2jru4j2
/rua;rg44S ¼ 1

2jru4j2
gab@b; gcd@g44

@ud

@c

	 


¼ 1

2jru4j2
gad@dg44:

Combining these estimates gives the second equation in (2.9). &

We are now in position to deal with the proof of Proposition 2.1 itself. We begin
with the lowest regularity situation, and so suppose k ¼ 1 and 2pqpp: One has R

and Ric in LpðMÞ; and by assumption sAL1;qðMÞ and sj@MAL1;qð@MÞ: Hence, (2.5)

and (2.7) give

DðRicabÞAL�1;q þ Lp=2 þ L�1;p; ð2:11Þ

on M; where the right-hand side of (2.11) denotes the sum of three terms, each in the

respective spaces, cf. also [2, p. 234]. (The L�1;q term comes from the s terms on the

right-hand side in (2.5), the Lp=2 term comes from the curvature terms in (2.5), while

the L�1;p term comes from the Q3 term in (2.7)). The coefficients of the Laplacian in

(2.11) are in L2;p: We refer to [30] for treatment of Sobolev spaces with negative

exponents, and recall that the dual space of L�1;q is L1;q0

o :

A straightforward application of Sobolev embedding then shows that L�1;pCL�1;q

and Lp=2CL�1;q and so we may view the Laplacian in (2.11) as a mapping

D : L1;q-L�1;q: Now elliptic boundary regularity theory for a Laplacian as in (2.8),

cf. [30, Chapter 2.7; 32, Theorem 5:5:50] shows that RicgAL1;q provided the curvature

Ricg is L1;q at the boundary @M: By Lemma 1.3, the Ricci curvature of g at @M is

determined algebraically by that of intrinsic metric g; s and A at @M: By Lemma 1.1,
(and passing to a new compactification equally as smooth as the original), one may
assume that A ¼ 0 at @M; alternately, it will be remarked below that the case Aa0
may be handled by the same arguments. It then follows from the assumptions on

Ricg and sj@M in Proposition 2.1 that Ricgj@MAL1;qð@MÞ and hence RicgAL1;qðMÞ:
We now basically repeat this argument with (2.6) in place of (2.7). Thus, the left-

hand side of (2.6) is now in L1;q; with Laplacian of form (2.8) with L2;p coefficients.
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The lower-order term ½Q1�ab is in L1;pCL1;q: For i; jp3; since gij ¼ gij at @M; it

follows from elliptic boundary regularity that gijAL3;q; since the boundary metric

gAL3;qð@MÞ by assumption. For the normal terms, g4a; suppose as above, (w.l.o.g.),

that A ¼ 0 at @M and work first with g44: This satisfies the Neumann condition (2.9),

where the coefficients of the vector field N are in L2;pðMÞ; and so in C1;að@MÞ: Since

g44 also satisfies an equation of form (2.6), with right-hand side of the form

Ric44AL1;qðMÞ; it follows from elliptic boundary regularity that g44AL3;qðMÞ; cf.

[32, Theorem 6.3.7] or [30, Chapter 2.7.3] for instance. For the terms g4a; ao4; since

now @g44AL2;qðMÞ; the same arguments as above using the Neumann condition (2.9)

on g4a give g4aAL3;qðMÞ:
Thus we have gijAL3;qðMÞ; i; jp3 and g4aAL3;qðMÞ; ap4: From this, it is an

exercise in linear algebra to see that gabAL3;qðMÞ; a; bp4; my thanks to Rafe

Mazzeo for suggesting the argument below. Thus g44 ¼ ðdet gabÞ�1
A44; where A44 is

the ð4; 4Þ cofactor is the matrix gab: Since A44 only involves gij ; i; jp3; the regularity

above gives A44AL3;qðMÞ; and hence det gabAL3;qðMÞ; since g4440: The same

reasoning on g4a then gives A4aAL3;qðMÞ; ap3: Now each determinant A4a may be
expanded, (along its last row or column), to obtain a linear form in the variables g4i;
ip3; with coefficients given by 2 � 2 determinants. Thus, one has a linear system of
three equations in the three variables g4i with coefficients given by 2 � 2
determinants. These 2 � 2 determinants are cofactors in the 3 � 3 matrix gij;

i; jp3: The determinant of the matrix associated to this 3 � 3 linear system is then

easily calculated to be just �ðdet gijÞ2: Since det gijj@M ¼ det gij40; this linear system

in invertible near @M: Hence, the variables g4i are rational expressions in A4a; gkl ;

k; lp3 and ðdet gklÞ�1; each of which is in L3;qðMÞ: It follows that gAL3;qðMÞ; this
completes the proof in case k ¼ 1 and qpp:

If k ¼ 1 and q4p; then the work above gives gAL3;p and by Sobolev embedding,

L3;pAL2;r; for any roN; since p44: Choosing r sufficiently large so that qpr; the

work above with r in place of p gives gAL3;q; as required. This completes the proof in
case k ¼ 1:

The proof for a given kX2 follows exactly the same 2-step procedure, using
induction from the regularity obtained at order k � 1:

If Aa0 at @M; the same arguments are valid, with an extra bootstrap or iteration,

since A is of lower order. Thus, for instance, working with (2.11), since A2AL1;pðMÞ;
Ricgj@MAL1;q þ L1�1=p;p and so elliptic regularity gives RicgAL1�1=p;pðMÞ; (assuming

L1;qCL1�1=p;p). In turn, this leads as before to gAL3�1=p;pðMÞ; which gives

A2AL2�1=p;pðMÞ: Using this new estimate for A2 and iterating this process again
leads to the same result as before.

The proof of regularity in the case of Hölder spaces is also essentially the same

although a little easier. Thus suppose m ¼ 1; so that gAC3;a and sAC1;aCL1;p; for all

poN: It follows that D2sAL�1;p and so the work on Sobolev space regularity above

implies gAL3;p; for any poN: The metric g is thus an L3;p weak solution of (2.5)

with Ricj@MAC1;a: Elliptic boundary regularity theory applied to (2.7), cf. [17,
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Chapter 8], again implies that RicgAC1;a on M and the same argument applied to

(2.6) gives gAC3;a: The proof when mX2 follows in the same way, using the
Schauder elliptic estimates. This then completes the proof in all cases.

Regarding estimate (2.4), bound (2.2), together with bounds on the diameter and

volume ratios of geodesic balls imply uniform L2;p bounds on the metric %g in
harmonic coordinates, as well as an upper bound on the number of such coordinate
charts, cf. [2,12]. Thus, bound (2.4) follows from the fact that the elliptic regularity
results above are effective, i.e. all the regularity statements are accompanied by
estimates.

Finally, Eq. (2.5) has real-analytic coefficients in the metric %g; and smooth
solutions of such equations with real-analytic boundary values are real-analytic, cf.
[32, Chapter 6.7]. This gives the statement on real analyticity. &

Remark 2.3. The method of proof above, and in particular Lemma 2.2, can also be
used to prove other regularity results; for example regularity up to the boundary for
metrics whose Ricci curvature is controlled up to the boundary.

Proposition 2.1 shows that the smoothness of the compactification %g is determined
by that of its scalar curvature %s; and that of the boundary metric g on @M: Since (2.1)
is trace-free, one cannot improve this result eliminating the dependence on the scalar
curvature %s: An improvement can be obtained only by choice of a suitable
representative of the conformal class, i.e. a suitable choice of gauge. From formulas
(1.4) and (1.5), a natural choice of gauge near @M is that given by a geodesic defining
function. However, it seems to be difficult to prove higher-order regularity directly in
this gauge. The Yamabe, i.e. constant scalar curvature, gauge appears to be much
better in this respect.

This leads to the following result, which is essentially Theorem 0.1.

Theorem 2.4. Let ðM; gÞ be an AH Einstein 4-manifold which admits a L2;p conformal

compactification %g ¼ r2g; p44: If, for a given mX3 and aAð0; 1Þ; the boundary metric

g ¼ %gj@M is Cm;a smooth, then there is another (possibly equal) conformal

compactification g̃ of g; with g̃j@M ¼ g; such that g̃ is Cm;a smooth. If g is real-

analytic, then there is a real-analytic compactification g̃:
Further, estimate (2.4) holds for g̃ without any dependence on the scalar curvature s̃:

Proof. Suppose gACm;a; mX3; and that %g is an L2;p compactification of g: Let g̃ be a
constant scalar curvature metric conformal to %g on M with g̃j@M ¼ g: Thus, for

g̃ ¼ u2 
 %g; the function u40 is a solution to the Dirichlet problem for the Yamabe
equation

u3m ¼ �6 %Du þ %su; ð2:12Þ

on M; with u � 1 on @M and s̃ ¼ m ¼ const: It is simplest to choose m ¼ �1: Then

standard methods in elliptic PDE give an L2;p solution to this Dirichlet problem, just
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as in the negative scalar curvature case of the Yamabe problem on compact
manifolds. We refer to [29, Theorem 1.1] and references therein, (cf. also [15,

Remark]), for a proof, at least when %gAC2;a: The same proof holds for %gAL2;p; p44;

alternately, the compactness result of [22] implies that if %gjAC2;aðMÞ converges to %g

in L2;pðMÞ; then the Yamabe metrics g̃j also converge in L2;pðMÞ to an L2;p Yamabe

metric g̃A½ %g�; with uAL2;pðMÞ:
Since the Bach equation (2.1) is conformally invariant, the metric g̃ is an L2;p weak

solution of Eq. (2.5). Hence, since s̃ is constant, Proposition 2.1 implies that g̃ is as
smooth as the boundary metric g; which completes the proof.

Estimate (2.4) follows as in the proof of Proposition 2.1, since the scalar curvature
s̃ is a priori controlled. &

Theorem 2.4 gives the optimal regularity near @M of a conformal compactifica-

tion in terms of the regularity of the intrinsic metric g on @M; assuming there is a L2;p

conformal compactification of g; for some p44:
We note also the following, essentially immediate, corollary.

Corollary 2.5. Let g be an AHE metric on M; which admits a L2;p conformal

compactification, for some p44; for which the boundary metric g is in Cm;að@MÞ; for

some mX3:

Then the geodesic compactification %g associated to g is at least a Cm�1;a

compactification.

Proof. Let g̃ be the Cm;a (Yamabe) compactification of g; given by Theorem 2.4.
Then the geodesic compactification %g and the Yamabe compactification g̃ are related
by a conformal factor u satisfying (1.10). The coefficients and right-hand side of the

first-order system (1.10) are in Cm;a and Cm�1;a; respectively, and so the solution u

with u � 1 on @M is a Cm�1;a function on %M: Hence %g is also Cm�1;a on %M: &

Remark 2.6. Theorem 2.4 does not hold in odd dimensions nX5: Namely by the

result of Graham–Lee [19], there are CN metrics g on Sn�1 which are boundary

metrics of Cn�2;a compactifications %g of AHE metrics g on the n-ball Bn: However,

for generic g; such compactifications %g have a non-zero tn�1 log t term in the
asymptotic expansion (0.4) of %g near @M; cf. [18] for example. Hence, such metrics

are at best only Cn�1;a smooth. It is unknown if Theorem 2.4 holds in even
dimensions n44:

The geodesic compactification %g is Cm�1;a only off the cutlocus %C of @M in ð %M; %gÞ;
at the cutlocus %C; the metric %g becomes singular, (although of course the Einstein
metric g is smooth). However, any smooth approximation to the geodesic defining
function t gives a smoothing to the compactification %g:

We conclude this section with the following application of Corollary 2.5. First, let

fgn
i g be a sequence of L2;p compactifications, p44; of AH Einstein metrics ðM; giÞ
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with Cm;a boundary metrics gi; mX1: Suppose (2.2) holds uniformly for fgn
i g; and

that the bounds on the diameter and volume ratios for geodesic balls of gn
i hold

uniformly. Then a standard application of the Lp Cheeger–Gromov compactness

theorem, cf. [2,12] and references therein, implies that fgn
i g is precompact, in that

there is a subsequence converging in the weak L2;p and C1;a; ao1 � 4
p
; topologies to

an L2;p limit metric gn
N

on %M:
The following result shows that this convergence can be strengthened, given

suitable control on the boundary metrics.

Proposition 2.7. For fgn
i g as above, suppose the boundary metrics gi are bounded in the

Cm;a topology on @M; for some mX3: Then, for the subsequence above, the Cm�1;a

geodesic compactifications %gi determined by gi converge, away from their cutlocus and

in the Cm�1;a0 topology, to the Cm�1;a limit %gN; for any a0oa: Further, the distance of

the cutlocus of each %gi to @M is uniformly bounded below.

Proof. Corollary 2.5 and the associated (Hölder) bound (2.4) imply a uniform

bound on f %gig in the Cm�1;a topology on M; away from the cutlocus. Since mX3; the
curvature of %gi is thus uniformly bounded, which, by standard Riemannian
geometry, implies a uniform lower bound on the distance of the cutlocus of %gi to @M:

Given such a uniform bound on f %gig; it is then again standard that one has Cm�1;a0

convergence to the Cm�1;a limit %gN; for any aoa0; this is essentially the Arzela–
Ascoli theorem in harmonic coordinates, cf. [2,12]. &

Using the C1;a compactness, the geodesic compactifications %gi may be smoothed

near the cutlocus to obtain Cm�1;a0 convergence of the smoothed metrics on all of %M:

3. Uniqueness

In this section, we prove the uniqueness theorem, Theorem 0.2. Let g be an AH

Einstein metric on a 4-manifold M; with Cmþ1;a boundary metric g; mX3: By
Corollary 2.5, we may assume that the geodesic compactification %g associated with g
is a Cm;a compactification, so that %g has a Fefferman–Graham expansion

gt ¼ gð0Þ þ t2gð2Þ þ t3gð3Þ þ?þ tmgðmÞ þ OðtmþaÞ: ð3:1Þ

The coefficients are defined by

gðjÞ ¼
1

j!
ðLðjÞ

%rt
%gÞj@M ; ð3:2Þ

where LðjÞ is the j-fold Lie derivative. Observe that although expression (3.2) gives

symmetric bilinear forms on TMj@M ; the vector %rtAKer gðjÞ for all j and so gðjÞ is
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uniquely determined by its restriction to Tð@MÞ: Hence we view gðjÞ as bilinear forms

on @M:
The term gð0Þ ¼ g; while the term gð1Þ; equal to the second fundamental form of

@M in ðM; %gÞ; vanishes. Using formulas (1.4) and (1.5) and (1.12)–(1.15), the term
gð2Þ is given by

gð2Þ ¼ �1

2
Ricg �

sg

4
g

� �
; ð3:3Þ

while the gð3Þ term satisfies

trggð3Þ ¼ 0; dggð3Þ ¼ 0; ð3:4Þ

i.e. gð3Þ is transverse traceless. However, beyond relations (3.3) and (3.4), the Einstein

equations at @M do not determine the coefficients gðjÞ; jX3: In particular, the term

gð3Þ is not a priori determined by the Einstein equations, for a given choice of

boundary metric. These results follow from the work of Fefferman–Graham [16], cf.
also [18,25]. Related results hold in higher dimensions, given suitable boundary
regularity, up to the order gðn�1Þ:

Remark 3.1. The term gð3Þ has the following interpretation from the AdS/CFT

correspondence. First, the expansion (3.1) easily leads to an expansion for the
volume of the geodesic ‘spheres’ SðrÞ ¼ fxAM: tðxÞ ¼ 2e�rg; of the form

vol SðrÞ ¼ vð0Þe
3r þ vð2Þe

r þ Oðe�arÞ; ð3:5Þ

cf. again [18] for instance. The coefficients vð0Þ and vð2Þ in (3.5) depend on the

compactification %g; and so are not invariantly attached to ðM; gÞ: (The term vð3Þ
vanishes by (3.4)). Let BðrÞ ¼ fxAM: tðxÞX2e�rg be the associated geodesic ‘ball’.
Then integrating (3.5) over r gives

vol BðrÞ ¼ 1

3
vð0Þe

3r þ vð2Þe
r þ V þ oð1Þ: ð3:6Þ

Now general reasoning from the AdS/CFT correspondence, cf. [38], leads to the
conclusion that the constant term V in (3.6) is in fact independent of the
compactification %g and depends only on ðM; gÞ:

The term V is the renormalized volume (or action, up to a multiplicative constant)
of the AH Einstein metric ðM; gÞ: In fact, V may be computed invariantly in terms of

the L2 norm of the Weyl curvature W of ðM; gÞ as

1

8p2

Z
M

jW j2 dV ¼ wðMÞ � 3

4p2
V : ð3:7Þ

cf. [3]. Note in particular that (3.7) implies Vp4p2

3
wðMÞ:

Let dV be the differential of V ; acting on infinitesimal AH Einstein deformations h

of a given AH Einstein metric ðM; gÞ; so that gs ¼ g þ sh is an AH Einstein metric to

ARTICLE IN PRESS
M.T. Anderson / Advances in Mathematics 179 (2003) 205–249 223



first-order in s: Let hð0Þ be the induced first-order variation of the boundary metric gs

at g: Then dV is given by

dVgðhÞ ¼ �1

4

Z
@M

/gð3Þ; hð0ÞS dVg; ð3:8Þ

where the inner product and volume form are w.r.t. g; cf. again [3]. Although (3.8)
implies that dV is determined by the behavior at @M; dV is not intrinsically
determined by the boundary metric g; it depends on the global AH Einstein filling
ðM; gÞ: A formula similar to (3.8) also holds in dimensions nX4; when gð3Þ is

replaced by gðn�1Þ and lower-order terms, cf. [3], and also [14,33].

For convenience, we restate Theorem 0.2 as follows. Define two manifolds M1 and

M2 to be commensurable if M1 and M2 have covering spaces %M1; %M2 which are
diffeomorphic. This is equivalent to the statement that the universal covers are
diffeomorphic.

Theorem 3.2. Let ðM; gÞ be an AH Einstein 4-manifold with C7;a boundary metric.

Then the data ðg; gð3ÞÞ on @M uniquely determine ðM; gÞ up to local isometry, i.e. if g1

and g2 are two such AH Einstein metrics on manifolds M1 and M2; with @M1 ¼
@M2 ¼ @M such that, w.r.t. geodesic compactifications,

g1 ¼ g2 and g1
ð3Þ ¼ g2

ð3Þ; ð3:9Þ

then g1 and g2 are locally isometric and the manifolds M1 and M2 are commensurable.

The proof will be carried out in several steps below. The main issue is to prove that

g1 and g2 are isometric within a collar neighborhood U of @M in M; given this it is

straightforward to prove that g1 and g2 are then everywhere locally isometric. The
basic idea to establish uniqueness within U is to set up a suitable Cauchy problem for
a conformal compactification within U ; and then prove uniqueness of solutions to
the Cauchy problem.

Step 1: Let g1 and g2 be AH Einstein metrics on M satisfying (3.9). By Corollary

2.5, the geodesic compactifications %g1 and %g2 of g1 and g2 are C6;a compactifications.
The discussion preceding Theorem 3.2 implies that the first four terms gðjÞ; 0pjp3;

of the Taylor expansion (3.1) for g1 and g2 agree, i.e.

g1
ðjÞ ¼ g2

ðjÞ; jp3: ð3:10Þ

However, the geodesic defining functions ti for gi are not necessarily the same. We
rectify this by means of a suitable diffeomorphism. Namely, a geodesic
compactification (1.11) gives rise to a natural identification

I ¼ I %g : U-I � @M; x-ðtðxÞ; sxð0ÞÞ;
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where sx is the unique %g geodesic starting in @M through x: For distinct AH Einstein

metrics g ¼ g1 and g2 with the same boundary metric g as above, the resulting
identifications are distinct, although of course equivalent. Namely, in a possibly
smaller collar neighborhood also called U ; the diffeomorphism

f : U-U ; fðI�1
%g2 ðt2ðxÞ; s2

xð0ÞÞÞ ¼ I�1
%g1 ðt1ðxÞ;s1

xð0ÞÞ

has the effect that fnt2 ¼ t1 : U-R: Observe that fAC6;a; this is because the vector

fields r %g1 t1 and r %g2 t2 are C6;a and so have C6;a flows. The map f is a composition of

these two flow maps.

Thus, given the fixed metric %g ¼ %g1; we pull back the metric %g2 to the metric

%%g2 � fn
%g2:

The C5;a metric %%g2 is of course isometric to %g2 in U ; has geodesic defining function t1;

and hence a splitting w.r.t. t1: Further, the metrics %%g2 and %g1 have the same boundary
metric g:

Since f ¼ id on @M; the terms %g2
j and %%g2

j are equal for jp3; this can be seen

directly from expressions (3.3) and (3.8), cf. also [14] and references therein. It

follows then that the Taylor expansions of %g1 and %%g2 w.r.t. t1 agree up to order 3. In

the following, we will always assume that %g2 is pulled back in this way to make it
comparable to a given %g:

Step 2: As discussed in Section 2, Einstein metrics g and their compactifications %g

are solutions of the conformally invariant Bach equation (2.5) in dimension 4,

2DnDRic þ 2

3
D2s þ 1

3
Ds 
 g þR1 ¼ 0: ð3:11Þ

Here and below, we will usually drop the overbar from the notation.
Because of the conformal as well as diffeomorphism invariance of (3.11), one must

choose suitable gauges, i.e. representatives of the conformal and diffeomorphism
actions, in order to prove any uniqueness. For the conformal gauge, we choose the
geodesic compactification, while for the diffeomorphism gauge, we use harmonic
coordinates.

The AH Einstein metric ðM; gÞ has a C5;a geodesic compactification %g with

boundary metric g; and with C6;a geodesic defining function t: By (1.5), the scalar

curvature s ¼ %s is given by s ¼ �6Dt
t
; and in local harmonic charts for a

neighborhood U of @M one thus has

s ¼ �6gijt�1@i@j t:

It follows that the terms D2s and Ds in (3.11) involve at most the second derivatives

of the metric tensor %gij ; with coefficients that are at least C1;a: Thus, (3.11) may be

rewritten as

DnDRic þ Q2ðx; g; @jgÞ ¼ 0; ð3:12Þ
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where Q2 involves g and its derivatives only up to order 2, with all coefficients at least

C1;a: As in (2.6) and (2.7), one may then rewrite system (3.11) in a harmonic
coordinate atlas A covering @M as

DDg þ Q3ðx; g; @jgÞ ¼ 0; ð3:13Þ

where Q3 involves derivatives of g only up to order 3.

By Step 1, if g1 and g2 are two distinct metrics satisfying (3.9), we may assume that
the associated geodesic defining functions are the same.

Step 3: In this step, we set up and prove uniqueness for the Cauchy problem for
system (3.13).

From the work in Steps 1 and 2, to each AH Einstein metric g with boundary
metric g; we have associated a geodesic compactifiction %g defined in a collar

neighborhood U of @M; with fixed defining function t: In a harmonic atlas for %U; the
metric %g satisfies system (3.13). This is a four order, non-linear, elliptic system in the
metric %g: Further, in these local coordinates, the Cauchy data on @M takes the form

@
ðjÞ
t ðgijÞ ¼ gðjÞ; 0p3pj; on @M: ð3:14Þ

Clearly, @M is non-characteristic for the Cauchy problem (3.13) and (3.14). As
explained at the beginning of Section 3, data (3.14) are determined by data (3.9).

We now claim that this coordinate Cauchy problem has a unique solution in a

possibly smaller neighborhood U 0CU of @M: Given this for the moment, if g2 is
another AH Einstein metric with boundary metric g; then by construction in Steps 1

and 2, the geodesic compactification %g2 is also a solution (in local harmonic
coordinate charts) to the Cauchy problem (3.13) with the same boundary Cauchy
data (3.14). Hence, uniqueness to the coordinate Cauchy problem implies that the

metrics g1 and g2 are isometric in U 0:
With regard to uniqueness of the coordinate Cauchy problem, first note that the

symbol (or characteristic polynomial) of D is

sðDÞ ¼ jxj2 ¼ gijxixj : TnðMÞ-R;

where gij is the metric induced on the cotangent bundle. Here and below, all
computations are w.r.t. the compactification %g; but we omit the overbar from the
notation. Hence, the leading order symbol of the Bach equation in form (3.13) is

sðBÞ ¼ sðDDÞ ¼ jxj4: ð3:15Þ

This symbol has of course no real characteristics. However, it does have double

complex characteristics. Namely, for xATnð@MÞ with jxj ¼ 1; the roots of the
characteristic form of the leading term DD;

pðx; x; tÞ ¼ sðxþ t dtÞ ¼ 0;
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are given by

t ¼ 7i;

independent of xAU and x in the unit sphere bundle within Tnð@MÞ: Thus, the
operator DD has constant, pure imaginary, double characteristics.

The proof of uniqueness for this coordinate Cauchy problem now essentially
follows from the Calderón uniqueness theorem, cf. [10] and especially [11, Theorem
11]. A clear exposition of this result is also given by Nirenberg [34, Sections 6 and 7],
(however only in the case of linear equations with CN coefficients); cf. also [36]. We
describe below how to reduce the uniqueness problem to the class of problems solved
in [11, Theorem 11].

The main issue is to reduce the non-linear Cauchy problem to a linear one. Note
that while the non-linearity in the lower-order term Q3 in (3.13) is complicated, the
non-linearity in the leading order term just comes from the fact that the ‘‘unknown’’
g enters in the Laplacian D; of the form (2.8).

We do this following the elegant method of [10, Section 5]. Thus, system (3.13) is
a non-linear system of 10 fourth-order PDE’s in 10 unknowns g ¼ gij ¼ gji on

(a domain in) ðR4Þþ: Let u denote a variable vector in R10; (so that u corresponds to
the metric g), and fuag the collection of all partial derivatives of u of order p4:
System (3.13) may then be formally expressed as

Fðx; u; uaÞ ¼ 0; ð3:16Þ

where F : ðR4Þþ � R10 � R64-R10 is C1;a smooth. Write

Fðx; u; uaÞ ¼ DuDuu þ F3ðx; u; uaÞ; ð3:17Þ

where F3 corresponds to the term Q3 in (3.13), so that F3 has order 3.

Now suppose u and v are two solutions of (3.16), corresponding to metrics g ¼ g1

and g2; with say v fixed. Then one has

0 ¼DuDuu � DvDvv þ F3ðx; u; uaÞ � F3ðx; v; vaÞ

¼DuDuðu � vÞ þ Hðx; u; uaÞ � Hðx; v; vaÞ;

where

Hðx; u; uaÞ ¼ DuDuv þ F3ðx; u; uaÞ:

Note that in terms of the metrics u ¼ g ¼ g1; v ¼ g2; (subscripted here for
convenience),

DuDuv ¼ g
ij
1gkl

1 @ijklg2:

ARTICLE IN PRESS
M.T. Anderson / Advances in Mathematics 179 (2003) 205–249 227



Now as in [10, Section 5] the mean value theorem applied to H; (with x; v fixed and
u varying), gives

Hðx; u; uaÞ � Hðx; v; vaÞ

¼ ðu � vÞ
Z 1

0

Hu½x; v þ ðu � vÞs; va þ ðua � vaÞs� ds

þ
X
a

ðua � vaÞ
Z 1

0

Ha½x; v þ ðu � vÞs; va þ ðua � vaÞs� ds: ð3:18Þ

Substitute the solutions u ¼ uðxÞ and v ¼ vðxÞ in all terms inside the integrals in
(3.18), so that the integrals then become coefficient functions in x: Hence, (3.18)
becomes a third-order linear system in the unknown u � v: It follows that one has a
solution u � v of the linear fourth-order system

DuDuðu � vÞ þ Hðx; ðu � vÞ; ðua � vaÞÞ ¼ 0: ð3:19Þ

The leading order symbol of (3.19) is given by (3.15), and u � v has 0 Cauchy data

on @M: Hence, if the leading coefficients in (3.19) are in C1;b; b40; and the lower-
order coefficients are bounded and measurable, then [11, Theorem 11] implies that

u ¼ v in a neighborhood U of @M: We have assumed that u ¼ g1; v ¼ g2AC5;a: This
implies that the lower-order coefficients are at least in Ca; while the leading order

coefficient is in C5;a:
This completes the proof of uniqueness within a collar neighborhood U : The last

step is to extend this to the filling manifolds M1 and M2 of g1 and g2:

Step 4: Suppose g1 and g2 are two AHE metrics on manifolds M1 and M2 which

agree, up to diffeomorphism on a collar neighborhood U of @M ¼ @Mi; i.e. there is
a diffeomorphism f : U-U ; f ¼ id on @M; such that

fng2 ¼ g1: ð3:20Þ

We claim that g1 and g2 are locally isometric, i.e. for all x1AM1 there exists

x2AM2 together with small open balls V iAMi; xiAV i and a diffeomorphism

c : V 1-V2; such that cng2 ¼ g1 on V 1: To see this, let Ki be a domain with compact

closure in Mi such that @KiCU ; so that Mi ¼ Ki,U : For each gi; we may cover Ki

by a finite collection of charts which are harmonic w.r.t. gi; i.e. let Ai be a finite

harmonic atlas for (a thickening of) Ki w.r.t. gi: By (3.20), without loss of generality

we may assume that the charts in A1 restricted to U-K1 are f-pullbacks of charts

in A2 restricted to U-K2:
Now it is well-known that in harmonic charts an Einstein metric is real-analytic

and hence satisfies unique continuation. Thus, given the expression for the local

components of g1 in one local harmonic chart of A1; the expression for g1 in all of
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the other finitely many harmonic charts of A1 is uniquely determined, by analytic

continuation along paths. The same holds w.r.t. g2:

Thus, given x1AK1; let s1 be an analytic path in K1 joining x1 to a point

xoAU-K1: Using the identification f : U-U near @M and analyticity, s1 gives rise

to a unique path s2 in K2; ending at a point x2AK2: Since g2 and g1 are isometric in

U ; analytic continuation along s1 and s2 implies that g2 are g1 are locally isometric

near x2 and x1: Of course, the local isometry may depend on the homotopy class of

the path s1: An alternate, but essentially similar argument is to show that the set of

points where g2 and g1 are locally isometric is both open and closed, cf. also [27,
Chapter 6.6].

Finally, since g1 and g2 are locally isometric, it follows that they are isometric in

the universal covers of each Mi; and hence the manifolds M1 and M2 are
commensurable. &

Remark 3.3. (i) We point out that the uniqueness, within a collar neighborhood, of
self-dual AH Einstein metrics with real-analytic compactifications, has been proved
by LeBrun [28], using twistor methods.

(ii) The proof of Theorem 3.2 strongly uses the fact that dim M ¼ 4; since the
conformally invariant Bach equation can be used in that situation. It is unknown if
an analogous result holds in n-dimensions, i.e. whether the coefficients ðgð0Þ; gðn�1ÞÞ
uniquely determine an AH Einstein metric up to local isometry. Without working in
the compactified setting, this would require a uniqueness result for the Cauchy
problem for a highly degenerate elliptic system.

(iii) It follows of course from Theorem 3.2 that all the higher-order terms gðjÞ in the

Fefferman–Graham expansion (3.1) are uniquely determined by the pair ðg; gð3ÞÞ:
This also follows directly from an obvious analysis of the Bach equation at the
boundary @M:

(iv) The hypothesis gAC7;a is needed only for technical reasons arising from the
proof. In the sequel paper [4], methods will be developed allowing one to use

approximation arguments, so that the hypothesis gAC7;a can be relaxed to gAC3;a:

Theorem 3.2 implies that the isometry type of ðM; gÞ is determined by ðg; gð3ÞÞ and

the action of p1ðMÞ on the universal cover, i.e. the representation of p1ðMÞ as a

subgroup of the isometry group IsomðM̃Þ of M̃: The examples constructed in Section
4.4 are locally isometric, non-isometric metrics on a fixed manifold, with a fixed
ðg; gð3ÞÞ; but varying representation of p1ðMÞ:

4. Non-uniqueness

In this section, we examine in detail several classes of examples which show that in
general an AH Einstein metric is not uniquely determined by its conformal infinity.
These examples will also illustrate the sharpness of the uniqueness result,
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Theorem 3.2. These classes of examples are AdS black hole metrics and are discussed
in some detail in the literature on the AdS/CFT correspondence. cf. [23,24,33,38],

and also [6, (9.118)]. The black hole topologies may be arbitrary surfaces, i.e. S2; T2

or Sg; where Sg is any oriented surface of genus gX2: The most interesting cases, (for

the present purposes), are those of S2 and T2; which we treat first and last.
4.1. We begin with a discussion of the AdS-Schwarzschild metric, following [23].

On the manifold M ¼ R2 � S2; consider the metric

gm ¼ gðþ1Þ
m ¼ V�1 dr2 þ V dy2 þ r2gS2ð1Þ; ð4:1Þ

where gS2ð1Þ is the standard metric of curvature þ1 on S2 and V ¼ VmðrÞ is the

function

V ¼ 1 þ r2 � 2m

r
: ð4:2Þ

The mass m is any positive number, m40; if mo0; metric (4.1) has a singularity at
r ¼ 0 and so it is no longer complete. The parameter r runs over the interval ½rþ;NÞ;
where rþ is the largest root of the equation VðrÞ ¼ 0: The locus S ¼ fr ¼ rþg in M is
thus a totally geodesic round 2-sphere, of radius rþ: The circular parameter y runs
over an interval ½0; b� of length b: Smoothness of the metric gm at S requires that

lim
r-rþ

V 1=2 dðV1=2Þ
dr

b ¼ 2p;

otherwise, the metric has a cone singularity along and normal to S: It follows easily
from this and (4.2) that gm is smooth everywhere exactly when

b ¼ 4prþ
1 þ 3r2

þ
: ð4:3Þ

Observe also that the radius rþ increases monotonically from 0 to N as the mass
parameter m increases from 0 to N:

If one sets m ¼ 0 in (4.2) and b ¼ N; then metric (4.1) is the hyperbolic metric

H4ð�1Þ on the 4-ball B4; (decomposed along equidistants from H3ð�1ÞCH4ð�1Þ).
This can be seen by the change of coordinates r ¼ sinh s: Here of course the sphere S
has collapsed to a point. However, the metrics gm do not converge (globally) to the
hyperbolic metric as m-0; due to the restriction on b in (4.3). As m-0; rþ-0; and
so b-0: Nevertheless, for r large, the term 2m=r in (4.2) is small and so the local
geometry of the metric gm; for any m40; approximates hyperbolic geometry. In fact,
it is easily verified that the metrics gm are conformally compact, with conformal

infinity given by the conformal class of the product metric S1ðbÞ � S2ð1Þ:
The 1-parameter family of metrics gm are Einstein metrics satisfying (0.1), and

are isometrically distinct, i.e. gm1
is not isometric to gm2

for m1am2: The parameter b
in (4.3) however does not increase monotonically with m or rþ: In fact, b has a
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maximal value bo;

bo ¼ 2p=
ffiffiffi
3

p
;

achieved at rþ ¼ 1=
ffiffiffi
3

p
: As m-0; or m-N; b-0: In particular, for any

m1a2=ð3Þ3=2; there is an m2am1 such that the AH Einstein metrics gm1
and gm2

on S2 � R2 are not isometric but have the same conformal infinity. This is the first
example of non-uniqueness.

As indicated above, as b-0; these metrics degenerate, as does the conformal
structure of the boundary metric. Observe also that since bpbo; the boundary

metrics S1ðbÞ � S2ð1Þ for b4bo are not achieved in this family.

Remark 4.1. (i) There is another AH Einstein metric with conformal infinity S1ðbÞ �
S2ð1Þ: Namely let g be a geodesic in the hyperbolic space H4ð�1Þ and let ðM; gÞ ¼
ðH4ð�1Þ=Z; g�1Þ; where the Z action is generated by translation of length b along g:
This hyperbolic metric also has conformal infinity given by S1ðbÞ � S2ð1Þ: Note that

the topological type here, R3 � S1; is distinct from that of the Schwarzschild family.
In this situation, all values of the length b may be realized as boundary metrics.

Further, if one replaces the (pure hyperbolic) translation along g by a loxodromic
translation, i.e. translation along g together with a rotation in the orthogonal

H3ð�1Þ; then the resulting conformal structure at infinity is a bent product S1ðbÞ �a

S2ð1Þ; where the angle a between the factors corresponds to the twist rotation.

(ii) There are a number of other explicit examples of S2 black hole AdS metrics;

for example the AdS Taub-Bolt metrics on non-trivial line bundles over S2; cf. [23]
and references therein.

4.2. Next, consider the class of AdS black hole metrics on surfaces S ¼ Sg; of

genus X2: As above, on the manifold M ¼ R2 � S; consider the metric

gm ¼ gð�1Þ
m ¼ V�1 dr2 þ V dy2 þ r2gS; ð4:4Þ

where gS is a hyperbolic metric on S; i.e. any point in the moduli space of Riemann
surfaces. Now V ¼ VðrÞ is given by

V ¼ �1 þ r2 � 2m

r
ð4:5Þ

with rXrþ; the largest root of VðrÞ ¼ 0: As before, the locus S ¼ fr ¼ rþg in M is
totally geodesic and isometric to ðS; gSÞ; and smoothness at the horizon requires
yA½0; bÞ with

b ¼ 4prþ
�1 þ 3r2

þ
: ð4:6Þ
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The metrics gm are AH Einstein metrics on M; with conformal infinity S1ðbÞ � S;
and are non-isometric for distinct values of m:

In contrast to the case of S2; the function b here is monotone decreasing as m or rþ
increases, so that b is a single valued function of m or rþ: Further, the metric gm is

well-defined whenever rþ41=
ffiffiffi
3

p
; which is equivalent to

m4mo ¼ �3�3=2:

Hence the mass parameter may assume (some) negative values.

When m ¼ 0; so that rþ ¼ 1; the metric go is the hyperbolic metric on R2 � S; and
b has the value 2p: When m-N; b-0; while when m-mo; b-N: Thus, at these
extremes, both the metrics and the conformal infinity degenerate. In particular, we
see that this family does not provide examples of non-uniqueness.

4.3. Before proceeding to discuss T2 AdS black hole metrics, in this subsection we
review the well-known theory of Dehn surgery on hyperbolic 3-manifolds. This
review mainly motivates the construction to follow in dimension 4 in Section 4.4, but
also shows that uniqueness fails even in the category of conformally compact
hyperbolic 3-manifolds.

Let ðT2; goÞ be a torus with a fixed flat metric go; representing a fixed point in the

moduli space of flat structures on T2: Let s be a given simple closed geodesic in T2;
with length L ¼ LðsÞ:

Next, let g be a complete geodesic in H3ð�1Þ and let TðRÞ be the R-tubular

neighborhood about g in H3ð�1Þ: The metric on TðRÞ then has the form

g�1 ¼ dr2 þ sinh2 r dy2 þ cosh2 r ds2;

where s is the parameter for g and yA½0; 2p�: The boundary @TðRÞ is a flat cylinder

S1 � R; with metric

g̃o ¼ sinh2 R dy2 þ cosh2 R ds2: ð4:7Þ

Now choose R so that

2p sinh R ¼ LðsÞ:

There is then a unique free Z-action on the cylinder @TðRÞ such that the quotient

S1 �Z R with the induced metric is the given flat torus ðT2; goÞ and such that the

meridian circle S1 ¼ @D2 of length 2p sinh R in the cylinder is mapped to s:
This action extends to an isometric action on TðRÞ and so produces a hyperbolic

metric g�1 on the solid torus D2 � S1; with boundary isometric to ðT2; goÞ; and with

the geodesic s in T2 bounding the disc D2 in D2 � S1: This metric is the tube of
radius R about the core closed geodesic g: Observe that the length of the core

geodesic g; of distance R to @TðRÞ; is on the order of Oðsinh�1RÞ51; for R large.
It is clear that this hyperbolic metric extends to a complete hyperbolic metric on

D2 � S1 with smooth conformal infinity. Since ðT2; goÞ is the metric g̃o on S1 � R
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divided out by the Z action, the conformal infinity is given by the conformal class

ðT2; ½gN�Þ where

gN ¼ ðe2R dy2 þ e2R ds2Þ=Z: ð4:8Þ

The classes ½gN� and ½go� do not agree, (although ½gN�-½go� on any sequence
where LðsÞ-NÞ: However, the construction above can easily be modified so that
the conformal infinity is fixed instead of fixing the conformal structure go on @TðRÞ:
Namely, for any fixed R; write s0 ¼ s0ðRÞ ¼ cosh R

sinh R
s; so that in these new coordinates,

the metric g̃o in (4.7) has the form

g̃o ¼ sinh2 Rðdy2 þ ðds0Þ2Þ: ð4:9Þ

Now divide D2ðRÞ � R and @D2ðRÞ � R by the same Z action as before, but with
respect to the parameters ðy; s0Þ in place of ðy; sÞ: This gives a complete hyperbolic

metric on D2 � S1 with prescribed conformal infinity ðT2; goÞ; for any choice of

closed geodesic sCðT2; goÞ:
Summarizing, the discussion above proves:

Proposition 4.2. For any given flat structure go on the torus T2; and for any given

simple closed geodesic s in ðT2; goÞ; there is a unique complete hyperbolic metric g�1 on

the solid torus D2 � S1; with ðT2; goÞ as conformal infinity.

As s varies over the class of simple closed geodesics on T2; the resulting hyperbolic
metrics, although of course locally isometric, are not isometric since for instance the
lengths of the core geodesics are distinct; compare with the discussion at the end of
Section 3. In particular, there are infinitely many distinct hyperbolic 3-manifolds, all

diffeomorphic to D2 � S1; whose conformal infinity is an arbitrary but fixed ðT2; goÞ:
As L ¼ LðsÞ-N; the length of the core geodesic g tends to 0. Any sequence of

such metrics thus converges to the complete (rank 2) hyperbolic cusp

gC ¼ dr2 þ e2rgo; ð4:10Þ

on R� T2: This process is the formation of a cusp, or ‘‘opening a cusp’’, cf. [20,37].

Remark 4.3. The process described above of opening a cusp may also be reversed.
Thus, given a complete hyperbolic cusp as in (4.10), the Dehn surgery process above
closes this cusp by filling in with a hyperbolic solid torus, keeping the conformal
structure at infinity fixed. As discussed above, this can be done in infinitely many
non-isometric ways.

More generally, let ðM3; g�1Þ be any complete conformally compact hyperbolic 3-

manifold with cusps, so that the e-thick part of M3 is conformally compact while the
e-thin part consists of a finite number of cusps (4.10), cf. [37, Chapter 5]. Then the
Jorgensen–Thurston theory implies that one can close the cusps by hyperbolic
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manifolds, at least for all sufficiently short core geodesics, and with at most a small
perturbation of the structure of conformal infinity.

In contrast to the situation with solid tori, these manifolds obtained by performing

Dehn surgery on the cusps of ðM3; g�1Þ are generally not diffeomorphic. For a fixed
diffeomorphism type, typically only finitely many such hyperbolic manifolds have a
fixed conformal infinity.

4.4. The construction for hyperbolic 3-manifolds above is special to dimension 3,
and cannot be carried out for hyperbolic manifolds in dimensions X4: However, we
show it can be carried out for AH Einstein metrics in dimension 4, (or greater).

Thus, consider the following T2 AdS black hole metrics; we first discuss these on

the universal cover R2 � R2; and then descend to the quotient R2 � T2: As before, let

gm ¼ gð0Þ
m ¼ V�1 dr2 þ V dy2 þ r2ðds2

1 þ ds2
2Þ; ð4:11Þ

where

V ¼ VðrÞ ¼ r2 � 2m

r
: ð4:12Þ

As previously, we require rXrþ ¼ ð2mÞ1=340; where rþ is the (unique) root of the
equation VðrÞ ¼ 0; while s1; s2AR: The metric is smooth provided y runs over the
parameter interval ½0; b�; where b ¼ bm is given by

b ¼ 4p
3rþ

; ð4:13Þ

In contrast to the situation with genus ga1 black holes, on the space R2 � R2; the
metrics gm are in fact all isometric; the change of parameters (i.e. diffeomorphism)

given by r ¼ m1=3s; y ¼ m1=3c and si ¼ m1=3ti; i ¼ 1; 2; gives an isometry between gm

and g1: Thus, in the following, we set m ¼ 1:
Now we essentially repeat the construction in Section 4.3 on these metrics. Thus,

fix an arbitrary flat structure go on T2; and fix an arbitrary simple closed geodesic s
in ðT2; goÞ: Let L ¼ LðsÞ be the length of s in ðT2; goÞ: Consider first the three-
dimensional metric

g0
m ¼ V�1 dr2 þ V dy2 þ r2 ds2

1; ð4:14Þ

on D2 � R; for V as in (4.12) with m ¼ 1: Choose R so that

VðRÞ1=2 
 b ¼ L:

Thus, at the boundary @ðD2ðRÞ � RÞ; the metric is the flat metric

VðRÞ dy2 þ R2 ds2
1 ð4:15Þ
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on the cylinder S1 � R: The group of Euclidean isometries acts on this space, and

just as before, given ðT2; goÞ there is a unique isometric Z-action on S1 � R such that

the Z-quotient metric of (4.15) is ðT2; goÞ for which the meridian y circle bounding
the disc is taken to s:

This isometric Z-action on the boundary extends to an isometric Z-action on the

interior D2ðRÞ � R and the quotient is a solid torus D2ðRÞ � S1; with @D2ðRÞ ¼ s:
The core geodesic, of distance R to the boundary, has length of order Oðe�RÞ:
Further and as before, the metric extends to a complete metric on D2 � S1:

In the same way as described in (4.8) and (4.9), one may alter this construction
slightly to produce such complete, conformally compact metrics with the conformal

infinity ðT2; goÞ prescribed, in place of prescribing the geometry at distance R:
Finally, return to the 4-metric (4.11) and choose an arbitrary, but fixed, range for

the parameter s2; so that s2A½0; b2�:
To sum up, the analysis above proves:

Proposition 4.4. Given any flat structure ðT2; goÞ on the torus, and any simple closed

geodesic s in ðT2; goÞ; there is a complete AH Einstein metric g on the 4-manifold

R2 � T2; whose conformal infinity is the flat product ðT2; goÞ � S1ðb2Þ; for any given

b240: These metrics on R2 � T2 are all locally isometric, but the isometry type of a

metric in this family is uniquely determined by the data ðT2; goÞ; b2 and s:

Hence, one has an infinite family of AH Einstein metrics with a given conformal
infinity. If si is a sequence of geodesics with LðsiÞ-N; the corresponding metrics gi

converge to the complete hyperbolic cusp metric

gC ¼ dr2 þ e2rgT3 ; ð4:16Þ

on R� T3; where ðT3; gT3Þ ¼ ðT2; goÞ � S1ðb2Þ: Here the convergence is based at
points xi for which tiðxiÞ ¼ 1 for instance, where ti is the geodesic defining function.
Thus, one sees that the regions where the metrics gi differ a definite amount from a
hyperbolic metric are being pushed further and further down the cusp (this
corresponds to letting m-0). We also point out that a brief computation shows that
the gð3Þ term for any of these metrics satisfies gð3Þ ¼ 0; compare with Theorem 3.2.

These examples illustrate that one may, at least in certain situations, open cusps in
the class of AH Einstein metrics. Similar but more general examples may be obtained

by performing Dehn surgery on a closed geodesic in T3 in place of T2 � S1:

Remark 4.5. In analogy to Remark 4.3, it is an interesting open question whether
this process can be reversed in general. Thus, given a complete hyperbolic 4-manifold
M; with smooth conformal infinity @M; and with a finite number of cusps, does
there exist a sequence of AH Einstein manifolds ðMi; giÞ; without cusps, such that
ðMi; giÞ converges to ðM; gÞ; and such that the conformal infinity is either fixed, or
converges to that of ðM; gÞ? Again in analogy to Remark 4.3, it is to be expected that
this requires Mi to range over an infinite collection of topological types in general.
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Remark 4.6. All of the discussion in Sections 4.1, 4.2 and 4.4 above generalizes in a
straightforward way to dimensions n44: Thus, one replaces the surfaces Sg; gX0; of

constant curvature 71; 0, by ðn � 2Þ-dimensional compact Einstein manifolds Sn�2

of Ricci curvature 7ðn � 3Þ; 0. The function V becomes V ¼ c þ r2 � 2m
rn�3; with

c ¼ 71; 0, as before.

For the purposes of the next section for fixed boundary data ðT2; go; b2Þ; consider

the behavior of the geodesic compactifications %gi on T2 � R2; for gi as above with

LðsiÞ-N: First, the geodesic compactification %g of the R� T3 hyperbolic cusp
metric (4.16) has the form

%g ¼ dt2 þ gT3 ; ð4:17Þ

i.e. %g is the flat product metric on Rþ � T3: Here of course t ¼ 2e�r; and the
boundary @M occurs at t ¼ 0: Note that the ‘‘compactification’’ %g is not compact,
due to the cusp. As i-N; the (true) compactifications %gi converge to %g; uniformly on

compact subsets, based at a point say on @M ¼ f0g � T3: In particular, (and this is
the main point), we have

diam %gi
M-N; as i-N ð4:18Þ

on M ¼ R2 � T2:

5. Cusp formation and hyperbolic manifolds

Proposition 4.4 shows that one may close a complete hyperbolic cusp R� T3 in

the class of AH Einstein metrics on the 4-manifold R2 � T2 with a fixed conformal
infinity. This implies in particular that the space of AH Einstein metrics on a fixed
manifold M with a fixed conformal infinity is not, in general, compact; there are
sequences ðM; giÞ of AH Einstein metrics which do not converge to an AH Einstein
metric on the same space.

In this section, we prove a type of converse of this statement, namely that under
reasonable convergence conditions, one can open cusps for AH Einstein metrics only
when the resulting limit is a complete hyperbolic 4-manifold. More generally,
divergent sequences of AH Einstein metrics with controlled conformal infinity can
only limit on complete hyperbolic 4-manifolds with at least one cusp. The exact
statement is given in Theorem 5.3.

If ðM; %gÞ is a geodesic compactification of an AH Einstein manifold ðM; gÞ with
geodesic defining function t; define its width Wid %gðMÞ by

Wid %gðMÞ ¼ supftðxÞ: xAMg: ð5:1Þ

Thus, Wid %gðMÞ is the length of the longest minimizing %g geodesic starting at @M and

orthogonal to @M: Note that Wid %gðMÞ depends on the choice of geodesic
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compactification, i.e. the choice of the boundary metric. Two different choices of the
boundary metric will give rise to different widths, although they can be estimated in
terms of each other by the conformal factor relating the boundary metrics. Observe
that the compactifications %gi of the AH Einstein metrics gi discussed following
Remark 4.6 satisfy

Wid %gi
ðMÞ-N as i-N; ð5:2Þ

corresponding to (4.18).
As an introduction to the technique, we first show that cusps, (or new ends in

general), cannot form when the conformal infinity has positive scalar curvature.

Proposition 5.1. Let ðM; gÞ be an AH Einstein 4-manifold, with boundary metric g:
Suppose that there is a component of @M on which the scalar curvature sg of g satisfies

sgXso40 ð5:3Þ

for some constant so: Then @M is connected and if %g is the geodesic compactification

associated to g; then

Wid %gMpD ¼
ffiffiffi
3

p
p=

ffiffiffiffi
so

p
: ð5:4Þ

Proof. Let @oM be a component of @M satisfying (5.3). For t140 sufficiently small,
let S0ðt1Þ ¼ fxAM: dist %gðx; @oMÞ ¼ t1g; so that S0ðt1Þ is connected and smooth. We

may view S0ðt1ÞCðM; gÞ; so that the function r as in (1.6) has the value r1 ¼ logð2
t1
Þ

on S0ðt1Þ:
We construct now a partial defining function to; i.e. a defining function for the

component @oM in the obvious way. Thus, set

to ¼ 2e�ro ;

where roðxÞ ¼ sgndistðx;S0ðt1ÞÞ þ r1; and sgndist is the signed distance function on
ðM; gÞ to S0ðt1Þ; i.e. sgndistðxÞ ¼ 7distgðx;S0ðt1ÞÞ according to whether tðxÞot1 or

tðxÞ4t1:
Note that if @M ¼ @oM; then t ¼ to is a (full) defining function for the boundary.

Otherwise however, tato and the function to compactifies only the end of ðM; gÞ
corresponding to @oM; in that %go ¼ t2

og is compact only on this boundary

component. The other boundary components of ðM; %goÞ are all of infinite %go-
distance to @oM:

In either case, it then suffices to show that the maximal length L of a (minimizing)
to-geodesic sðtoÞ of %go satisfies (5.4). This will imply that @M is connected, since @M

disconnected implies L ¼ N; giving a contradiction. When @M is connected, %go ¼ %g;
L ¼ Wid %gðMÞ; and so (5.4) also follows.

By (1.19), we have %s0o ¼ 6t�1
o j %D2toj2X0 along s; so that %soðsðtoÞÞ is monotone

increasing along s: Further, (1.4) and (1.5) and (1.13) imply that Ric %go
ðN;NÞ ¼
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1
6%soX

1
4sg; where N ¼ %rto is the unit tangent vector to s: Hence, along sðtoÞ; one

has

Ric %go
ðN;NÞX1

4
so:

Now a standard result (Rauch comparison theorem) in Riemannian comparison
geometry, cf. [35], implies that sðtoÞ must have a focal point at distance

Dp
ffiffiffi
3

p
p=

ffiffiffiffi
so

p
; which gives (5.4).

An alternate, even more elementary argument is as follows. Eq. (1.19) together

with the obvious estimate j %D2toj2X1
3
ð %DtoÞ2 and (1.5) imply %s0oX

1
18

to %s
2
o: Dividing by %s2

o

and integrating gives (5.4) with the slightly weaker estimate D ¼ 6=
ffiffiffiffi
so

p
: &

Remark 5.2. Proposition 5.1 holds in all dimensions, with the same proof, cf. also
Remark 1.5. As such, it gives a simple new proof of the connectedness result of
Witten–Yau [39]. More generally, suppose (5.3) is replaced by the weaker condition
that sgX0 and @M is not connected. Then there is an infinite to-geodesic s of %go

joining @oM with a distinct boundary component of M: The argument of

Proposition 5.1 implies that %so � 0 along s; and hence, via (1.19), D2to � 0 along
s: By (1.5), this means that %go is Ricci-flat and has a parallel vector field rto along s;
and so the metric %go has an infinitesimal splitting as a product of R with a Ricci-flat
metric go: We will see later in Lemma 5.5 that this infinitesimal splitting may be
globalized to a full splitting, using arguments as in the Cheeger–Gromoll splitting
theorem. It follows that either @M is connected or ðM; gÞ is a complete cusp of
the form

g ¼ dr2 þ e2rgo;

where ð@oM; goÞ is a compact Ricci-flat manifold. This result has been proved by
Cai–Galloway [9] using different although related methods. Of course, under the
weaker bound sgX0; even if @M is connected one no longer has the effective

bound (5.4).

We now begin the analysis of the formation of cusps. More generally, we study the
behavior of sequences fgig of AH Einstein metrics on 4-manifolds which have
controlled conformal infinities, but which diverge in the sense that fgig does not
converge to an AH Einstein metric on the same manifold.

Thus, let ðMi; giÞ be a sequence of AH Einstein 4-manifolds, with a fixed boundary

@Mi ¼ @M: Suppose that the conformal infinities ½gi� of gi are Cmþ1;a; mX2; and
converge to a limit, so that there are representative metrics giA½gi� such that gi-g in

Cmþ1;að@MÞ: Let %gi be the associated Cm;a geodesic compactifications, with ti the

associated Cmþ1;a geodesic defining functions. We assume the following:
Convergence condition: The compactifications ðMi; %giÞ converge in the Cm;a

topology, for some mX2; and uniformly on compact subsets, to a limit metric
ðN; %gÞ; with boundary metric g:
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This convergence condition should be understood in light of Proposition 2.7. In
particular, the metrics %gi and %g are smoothed near their cutloci to obtain Cm;a

convergence across the cutlocus. It turns out that this convergence condition is
not a strong assumption at all, but this will only be completely clear in the sequel
paper [4].

Since they are distance functions to @M; the defining functions ti then also

converge to the limit Cmþ1;a geodesic defining function t for %g: Given base points

xiAt�1
i ðtoÞCMi; for some fixed to with 0 otooWid %gi

M; it follows that the AH

Einstein manifolds ðMi; gi; xiÞ converge, uniformly on compact subsets, to a limit

complete Einstein manifold ðN; g; xNÞ; xN ¼ lim xi; with ‘‘compactification’’ %g ¼
t2 
 g: The convergence is in the pointed Gromov–Hausdorff topology based at xi; cf.

[21, Chapter 3], and also in the CN topology, since C2 convergence of Einstein
metrics implies CN convergence, by elliptic regularity.

Now if the width Wid %gi
ðMiÞ of the manifolds ðMi; %giÞ is uniformly bounded

above, it follows by a standard application of the Cheeger–Gromov compactness
theorem, cf. [2,12], that, in a subsequence, the manifolds Mi are all diffeomorphic to
a fixed manifold M; M ¼ N; and %gi- %g in the Cm;a topology on M: (The curvature,
volume and diameter of ðMi; %giÞ are all uniformly bounded.) Hence, in a
subsequence, gi is a sequence of AH Einstein metrics on M; converging to a limit
AH Einstein metric g on M; for which the boundary metrics gi-g; compare again
with Proposition 2.7. In other words, the sequence ðMi; giÞ is not divergent in this
situation.

On the other hand, if

Wid %gi
ðMiÞ-N;

then any limit complete Einstein manifold ðN; gÞ; (again in a subsequence), has a
non-empty collection of ‘‘new’’ ends, whose boundary @NN is at infinite %g-distance

to @N ¼ @M: In particular, although for any fixed ToN; the domains UiðTÞ ¼
t�1
i ½0;T �CMi are diffeomorphic to UðTÞ ¼ t�1½0;T �CN; (for T a regular value and i

sufficiently large), the full manifold N is not diffeomorphic to any Mi: The discussion
concerning and following Proposition 4.4 exhibits examples where the infinite end of
N is a cusp, although this of course does not follow automatically in general.

To state the main result on the structure of ðN; gÞ below, we need the following

two definitions. First, let O ¼ Oð1Þ ¼ t�1½1;NÞCN and let ECO be any end of O;
(note that E is distinct from an end of N corresponding to a boundary component of
@M). Let SEðtÞ ¼ SðtÞ-E; where SðtÞ is the t-level set of the geodesic defining
function t and define

ToðEÞ ¼ supft : infSEðtÞ %so0g: ð5:5Þ

If %sX0 in E; set ToðEÞ ¼ 0: Recall again from (1.19) that %s is non-decreasing along
t-geodesics in ðO; %gÞ:
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Next, define an end ECO as above to be weakly hyperbolic if

jK þ 1jðxÞ-0; as tðxÞ-N in E; ð5:6Þ

where K denotes the sectional curvature of ðE; gÞ at any plane in TxE:
Recall also the definition of a conformally compact hyperbolic manifold with

cusps, as in Remark 4.3 (but in dimension 4 instead of 3). We then have the following
partial characterization of the limits ðN; gÞ obtained above; this result may be
considered as a converse to the results of Section 4.4, cf. Proposition 4.4.

Theorem 5.3. Let ðMi; giÞ be a sequence of AH Einstein 4-manifolds, @Mi ¼ @M;
which satisfy the convergence condition. Suppose that the Euler characteristics wðMiÞ
satisfy wðMiÞpwo; for some wooN; that

Wid %gi
ðMiÞ-N; ð5:7Þ

and that either one of the following two conditions hold:

(i) There is an end ECOCN such that ToðEÞoN:
(ii) ðO; gÞ has a weakly hyperbolic end.

Then the limit ðN; gÞ is a complete conformally compact hyperbolic manifold with

cusps, with conformal infinity ½g� on @M: In particular, ð@M; ½g�Þ is a conformally flat

3-manifold.

Understandably, the proof is rather long and so is broken into several steps.
Step I: First, one needs to control the global size of the AH Einstein manifolds

ðMi; giÞ away from @M:

Lemma 5.4. Under the assumptions of Theorem 5.3, let Oi ¼ fxAðMi; %giÞ:
tiðxÞX1g ¼ fxAðMi; giÞ: riðxÞp log 2g; where ti is the geodesic defining function

and ri is as in (1.6). Then there is a constant VooN such that, for all i;

volgi
OipV o: ð5:8Þ

Proof. For any ðMi; giÞ; the geodesic ‘spheres’ SðtÞ ¼ Sgi
ðtÞ; i.e. the t level sets of the

functions ti; have the asymptotic expansion (3.5):

volgi
SðtÞ ¼ vð0Þt

�3 þ vð2Þt
�1 þ oðtÞ: ð5:9Þ

Now by the convergence condition, the geometry of ðMi; %giÞ between t ¼ 0 and 1 is
uniformly controlled in Cm;a; and so converges smoothly to that of the limit ðN; %gÞ in
this region. So do the defining functions ti-t; and the coefficients vð0Þ; vð2Þ: Thus,

expansion (5.9) is uniform on SðtÞ; in that the lower-order term oðtÞ is small for t

small, independent of i: Hence, for to small but fixed, by integrating (5.9) over the
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region tXto; we obtain, for i sufficiently large,

volgi
BðtoÞp1

3
vð0Þt

�3
o þ vð2Þt

�1
o þ V þ 1;

where V ¼ Vi is the renormalized volume of ðMi; giÞ; cf. (3.6), and BðtoÞ ¼
t�1
i ð½to;NÞÞCðMi; giÞ:

Now by (3.7), the upper bound on wðMiÞ gives a uniform upper bound on V : This
gives a uniform upper bound on volgi

BðtoÞ and hence (5.8) follows. &

Summarizing, we have the following description of the structure of the limit
ðN; g; xNÞ of ðMi; gi; xiÞ: In the collar neighborhood Ui ¼ MiWOi where tip1; the
convergence condition implies that the compactifications %gi converge smoothly to the

compactification %g ¼ t2 
 g of the limit. In particular, each Ui is diffeomorphic to a
collar neighborhood U of @M: By Lemma 5.4, the complementary domains Oi have
uniformly bounded volume, and hence the limit region OCN also has finite volume.
Further, by (5.7), Wid %gO ¼ N; so that OCN has ‘‘new’’ ends, formed from the

limiting behavior of ðMi; giÞ:
Each end E of O is ‘cusp-like’ in that it has finite volume, and so volBxð1Þ-0; as

x-N in E: The proof is now split into two cases, according to hypotheses (i) or (ii).
Step II: The following result proves Theorem 5.3 in case (i) holds.

Lemma 5.5. Suppose that, for some end ECO;

ToðEÞoN: ð5:10Þ

Then ðN; gÞ is a complete conformally compact hyperbolic manifold with at least one

cusp.

Proof. Given (5.10), the monotonicity of %s implies that there is a subend E0CE on
which %sX0 and hence there is a to such that %sX0 on Oto

¼ fxAE: tðxÞXtog: By (1.5),

this means that %H ¼ %Dtp0 on Oto
; where %H is the mean curvature of the level

set SðtÞ; i.e. SEðtÞ; in the direction %rt: Since Wid %gE ¼ N; the discussion in Remark

5.2 shows there is an infinitesimal splitting of ðOto
; %gÞ along a t-geodesic ray s in Oto

:
To globalize this splitting, consider the domain Oto

with respect to the Einstein
metric g: By standard formulas for conformal change, cf. also [2, (1.18)], one has

H ¼ 3 � t %H;

where H is the mean curvature of the Lipschitz hypersurface SðtÞ w.r.t. the outward

normal rr; for r and t related as in (1.6). Since %Hp0 on SðtÞ; tXto; the mean
curvature of ð@Oto

; gÞ satisfies

HX3:

As in the proof of the Cheeger–Gromoll splitting theorem, cf. [6, Chapter 6G], this
estimate also holds in the sense of distributions or support functions at the cut points
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of t on SðtoÞ where SðtoÞ is not smooth. Since we also have Ricg ¼ �3g; the

modification of the Cheeger–Gromoll splitting theorem by Kasue [26], cf. also [13],
implies that ðOto

; gÞ splits globally as a warped product, i.e. as a hyperbolic cusp

metric

gC ¼ dr2 þ e2rgT3 ; ð5:11Þ

on R� T3; where gT3 is a flat metric on the 3-torus T3: It follows that the full
complete manifold ðN; gÞ is hyperbolic, since Einstein metrics are analytic. &

Step III: In this step, we prove Theorem 5.3 in case (ii) holds, so that there is an
end E which is weakly hyperbolic as in (5.6). The next result specifies the geometry of
such an end more precisely, using Lemma 5.4.

Lemma 5.6. A weakly hyperbolic end ðE; gÞ of ðN; gÞ is topologically Rþ � T3 and the

metric asymptotically approaches a hyperbolic cusp metric gC ; as in (5.11), uniformly

on compact sets as t-N: More precisely, for any e40 and ToN; there is a To ¼
Toðe;TÞ such that if tðyÞXTo; then the geodesic annulus

AyðTÞ ¼ fxAE : tðxÞAðT�1tðyÞ;TtðyÞÞg;

diffeomorphic to I � T3; is e-collapsed, in that diamgT3
s oe; where T3

s ¼ t�1ðsÞ:
Moreover, there exist finite covering spaces %AyðTÞ of AyðTÞ; unwrapping the

collapse of the T3 factors, such that the metric g is of the form

gj %AyðTÞ ¼ gC þ ky; ð5:12Þ

where the perturbation ky satisfies jjkyjjoe in the Ck topology on %AyðTÞ; for any

given koN:

Proof. The weakly hyperbolic end ðE; gÞ has uniformly bounded curvature, with
curvature approaching �1 as t-N: Further, Lemma 5.4 implies that ðE; gÞ has
finite volume, so that the volumes of unit balls Byð1Þ tends uniformly to 0 as

tðyÞ-N: This means that the manifolds ðE; g; yÞ; based at points y; are collapsing
with bounded curvature as y tends to N in E: Hence, the annuli AyðTÞ have an F-

structure, cf. [12], formed essentially by the collection of short geodesic loops in
AyðTÞ; for tðyÞ large.

When the curvature is highly pinched about �1; the structure of such collapse is
described by the Margulis lemma, cf. [21,37]. Thus, as in the statement of the lemma,
there are (in fact abelian) covering spaces of the annuli AyðTÞ unwrapping the

collapse; the choice of such covering spaces is not unique, but they may be chosen so
that the injectivity radius and diameter of the fibers of the F-structure are on the
order of 1. (The degree of the covering of course depends on the degree e of the

collapse). In such covering spaces %AyðTÞ; the curvature of the metric is uniformly

close to �1; while the diameter and volume of this region is uniformly bounded,
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away from 0 and N; for tðyÞ sufficiently large. The Cheeger–Gromov compactness
theorem then implies that the metric g is uniformly close to a hyperbolic metric on
%AyðTÞ: Further, the covering transformations are uniformly close to hyperbolic

isometries. In any limit as tðyÞ-N; the covering group is hence Z3; the orbits of the
F-structure are flat 3-tori, and the limit metric is the hyperbolic cusp metric gC in

(5.11). Thus, if tðyÞ is sufficiently large, the metric g on %AyðTÞ is uniformly close to a

hyperbolic cusp metric. Since the metric g is Einstein, the metrics %AyðTÞ are close to

gC in the CN topology.

Finally, since all geodesic annuli AyðTÞ are topologically I � T3; it follows easily

that the end E is topologically Rþ � T3: &

Lemma 5.6 describes the structure of the end E in the region where tb1: Note that
one may let T-N; (sufficiently slowly), as To-N in Lemma 5.6. In particular, if
yk is any divergent sequence in E; i.e. tðykÞ-N in ðE; gÞ; then the based sequence
ðE; g; ykÞ has subsequences converging, after unwrapping the collapse as above, to
the complete hyperbolic cusp metric gC : The limit parameter r ¼ rN in (5.11) is then
given by

rN ¼ lim
k-N

ðr � rðykÞÞ

with r ¼ logð2
t
Þ as in (1.6). Thus, rNðyÞ ¼ 0; where y ¼ lim yk is the limit of the base

points yk: (This is of course analogous to the classical construction of Busemann
functions.)

The asymptotic behavior tb1 of the ‘compactification’ %g ¼ t2 
 g of ðE; gÞ has a
similar description. Thus let tk be the geodesic defining function associated with the
function r � rðykÞ; so that

tk ¼ 1

tðykÞ

 t: ð5:13Þ

Thus tk renormalizes t at yk; in that tk is a geodesic defining function with tkðykÞ ¼ 1:

The metrics %gk ¼ t2
k 
 g ¼ ðtðykÞÞ�2 
 %g; when based at yk; and unwrapped by passing

to covers of T3 as above, have a subsequence converging to the flat product metric

gF ¼ dt2 þ gT3 ; ð5:14Þ

on F ¼ Rþ � T3; this follows for example from formulas (1.3)–(1.5) and (1.19),
compare with (4.17). Here, the limit parameter t is given by t � tN ¼ lim

k-N

tk;

associated to rN as above. Of course for y ¼ lim yk as above, tðyÞ ¼ tNðyÞ ¼ 1; so

that yAF has distance 1 to @F ¼ f0g � T3:
This discussion holds for any divergent sequence fykg in E: Note, however, that

we do not assert that the flat structure on T3 is independent of the sequence fykg: A
priori it is possible that different sequences may give rise to flat limits (5.14) with

distinct flat structures on T3; although if yk and y0
k are distinct sequences with
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tðykÞ=tðy0
kÞ bounded away from 0 and infinity, then the limit metrics are the same,

(i.e. isometric). This possibility of the non-uniqueness of the ‘tangent cones at
infinity’, does not play any role, however, in the remainder of the proof.

It is worth emphasizing again that, for any divergent sequence fykg; tðykÞ-N in
ðE; gÞ; the sequence of metrics %gk as k-N describes the normalized asymptotic
behavior in regions about yk of the fixed metric ðE; %gÞ; in that the metrics f %gkg are
just rescalings and unwrappings of %g based at yk:

An end ECO having the structure described in Lemma 5.6 will be called an
asymptotically hyperbolic cusp. Theorem 5.3 is now an immediate consequence of the
following rigidity result.

Proposition 5.7. Let ðN; gÞ be an AH Einstein 4-manifold, with at least one

asymptotically hyperbolic cusp E: Then ðN; gÞ is hyperbolic.

Proof. As described above, for any divergent sequence yk in E; the Riemannian
manifolds ðE; g; ykÞ converge, in a subsequence and uniformly on compact subsets,
to a complete hyperbolic cusp after unwrapping the collapse. The limit parameter
r ¼ rN is normalized by rðyÞ ¼ 0; where y is the limit base point. Thus, fykg
determines a sequence of Einstein perturbations of the hyperbolic cusp metric (5.11).
If ðE; gÞ itself is not hyperbolic, then the based metrics ðE; g; ykÞ are not hyperbolic,
so that the sequence of perturbations is non-trivial. We will prove that this
assumption leads to a contradiction.

For computation, it is convenient, (although not necessary), to work with the

compactification %g: Thus, as described above, the compactifications %gk ¼ t2
k 
 g based

at yk converge, in a subsequence, to a flat product metric gF (5.14) on Rþ � T3; again
after unwrapping the collapse. The convergence of %gk to gF is smooth and uniform

on compact subsets of Rþ � T3; but is not smooth at the boundary f0g � T3:
Now view the metrics %gk as perturbations of the limit flat metric gF : Note that the

metrics %gk are all Bach-flat, i.e. satisfy the Bach equation (2.5). If any %gk is flat on
some open set UCE containing some yk; then g is locally conformally flat in U :
Since g; being Einstein, is analytic, it is then everywhere locally conformally flat and
hence ðN; gÞ is hyperbolic, i.e. the result follows in this case. Thus, we may and do
assume that %gk is not flat on any open set, for all k:

To understand the behavior of %gk near the flat limit gF ; consider the linearization.
Thus write

%gk ¼ gF þ skhk; ð5:15Þ

where sk-0 and hk is a sequence of symmetric bilinear forms with skhk-0 smoothly
on compact subsets. As above, it is understood here and below that the metrics %gk

are lifted to covering spaces unwrapping the collapse. The parameter sk is chosen to
measure the local size of the curvature at the base point yk in that

sk ¼
Z

Byk
ð1
2
Þ
jR %gk

j2 dV

 !1=2

: ð5:16Þ
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Since %gk is not flat anywhere, sk40; for all k: The convergence %gk-gF ; (in a

subsequence), is smooth, and so the forms hk are locally bounded, away from f0g �
T3; and converge smoothly to a limit symmetric bilinear form h on Rþ � T3; with
jjhjjB1 at the base point y ¼ lim yk: Further, since the convergence of %gk to gF

requires unwrapping to larger and larger covers, the limit form h is invariant under

the T3 action on Rþ � T3:
The limit h is not uniquely defined, since one may alter the convergence %gk-gF

by diffeomorphisms converging to the identity; this corresponds to changing h to

h þ dnX ; for some vector field X : To normalize, h may be chosen so that

bgF
ðhÞ ¼ 0; ð5:17Þ

where bgF
is the Bianchi operator of gF ; bgF

ðhÞ ¼ dh þ 1
2

d tr h; where the divergence

and trace are w.r.t gF ; cf. also [7].
Now the form h is a solution of the linearized Bach equations at the flat metric gF

and the deviation of %gk from gF is measured, to first order, by the size of the
linearization h; in that

%gk ¼ gF þ skh þ oðskÞ; ð5:18Þ

where oðskÞ5sk on any given compact subset of Rþ � T3: In particular, the
curvature R %gk

on the annuli Ayk
ðTÞ satisfies

jR %gk
jBskj@2h þ Q1ðhÞj; ð5:19Þ

where Q1ðhÞ involves only h and its first derivative. Note that jR %gk
jBsk on the L2-

average in Byk
ð1

2
Þ; by (5.16). The following lemma gives the structure of any such

linearization h which arises from an Einstein perturbation of a hyperbolic cusp
metric, as above.

Lemma 5.8. Any T3 invariant symmetric bilinear form h on Rþ � T3 constructed as

above and satisfying (5.17) is given by

h ¼ Cð0Þ þ Cð1Þt þ Cð2Þt2 þ Cð3Þt3 þ Cð4Þt4; ð5:20Þ

where the coefficients CðiÞ are constant, i.e. parallel forms, on Rþ � T3; and t ¼ tN is

the parameter on Rþ; as in (5.14).

Proof. Since the limit is flat, it is easily seen from (2.5) that the linearized Bach
equation is

2DnDðRic0ðhÞÞ ¼ �2

3
D2s0 � 1

3
ðDs0ÞgF ; ð5:21Þ

where Ric0ðhÞ ¼ d
ds

RicðgF þ shÞ is the linearization of the Ricci curvature at the flat

metric gF and similarly s0 ¼ s0ðhÞ is the linearization of the scalar curvature, in the
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direction h: From standard formulas, cf. [6, Chapter 1K], the normalization (5.17) at
the flat metric gives

Ric0ðhÞ ¼ 1

2
DnDh and s0ðhÞ ¼ �1

2
D tr h: ð5:22Þ

Hence, (5.21) becomes

ðDnDÞ2
h ¼ 1

3
D2ðD tr hÞ þ 1

6
ðDD tr hÞgF : ð5:23Þ

The task now is to determine the T3 invariant solutions of (5.23). To do this, let ei

be an orthonormal framing for the flat metric gF ; with e1 ¼ rt; and ei; i ¼ 2; 3; 4

tangent to the T3 factor and let yi be the corresponding coframing. Thus

h ¼
X

hijyi 
 yj;

where hij ¼ hijðtÞ; since h is T3 invariant. It is straightforward to compute that the

Bianchi normalization (5.17) gives the equations

@thðe1; e1Þ ¼
1

2
@t tr h; @thðe1; eiÞ ¼ 0; iX2: ð5:24Þ

Next, recall from (1.5) that the scalar curvature of a geodesic compactification is

given by s ¼ �6Dt
t
; (as usual we drop the overbars). Hence, s0 ¼ 6t�2ðDtÞt0 �

6t�1ðD0ÞðtÞ � 6t�1Dðt0Þ; where t0 is the linearization of t in the direction h: The first
term here vanishes, since Dt ¼ 0 on gF : For the second term, from [6, Chapter 1K],

ðD0ÞðtÞ ¼ �/D2t; hSþ/dt; bðhÞS ¼ 0; by (5.17) and the fact that D2t ¼ 0 on gF :
Thus,

s0 ¼ �6t�1Dðt0Þ ¼ �6t�1@t@tðt0Þ; ð5:25Þ

here the second equality follows from the fact that t0 is only a function of t; since h is.
To compute @tðt0Þ; let gs ¼ gF þ sh and let ts be distance functions w.r.t. gs

converging to the distance function t ¼ tN on ðF ; gF Þ: (For example for s ¼ sk as in

(5.18), ts ¼ tsk
¼ tk is given as in (5.13)). We have ts ¼ t þ st0 þ oðsÞ and jr %gs

tsj2 ¼ 1;

i.e. %gij
s @its@j ts ¼ 1: Taking the derivative w.r.t. s then gives, at gF ;

2@tðt0Þ ¼ 2/rt0;rtS ¼ hðrt;rtÞ ¼ hðe1; e1Þ:

Combining this with (5.24) and (5.25) results in

s0 ¼ �3

2
t�1@t tr h; ð5:26Þ

which, combined with (5.22) gives @t@t tr h ¼ 3t�1@t tr h: Hence, @t tr h ¼ cot3 and so

tr h ¼ co

4
t4 þ c1; ð5:27Þ
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for some constants co; c1: Thus (5.23) reduces to the fourth-order equation

h
ðivÞ
ij ¼ 2cod1id1j þ codij ;

which implies the result. &

The polynomials of order 1, i.e. the constant and linear forms in t in (5.20), give
rise to trivial, i.e. flat deformations of gF ; and so do not contribute to the curvature
in (5.19) or (5.22). Since by construction, i.e. by the choice of sk in (5.16), h is non-
trivial, h contains polynomials of degree at least 2. Hence

r2h ¼ rTrT h ¼ 2Cð2Þ þ 6Cð3Þt þ 12Cð4Þt2: ð5:28Þ

Observe that in the context of the perturbation %gk in (5.15), (5.19ff) implies that Cð2Þ

is uniformly bounded away from 0 and N:
Now return to the geometry of the metric ðE; gÞ or ðE; %gÞ; (with the original

defining function t; in place of t ¼ tN above). Observe that the results above hold for
any divergent sequence of base points fykg in ðE; %gÞ; i.e. tðykÞ-N: This means that

for any yAE with tðyÞ sufficiently large, the rescaled metrics %gy ¼ t2
y 
 g; ty ¼ t=tðyÞ;

based at y; are always of form (5.18) on large annuli, with h ¼ hy of form (5.20). As

noted following (5.13), observe also that %gy ¼ tðyÞ�2
%g; i.e. %gy is a constant (not

conformal) rescaling of %g:
Now on the one hand, by the weakly hyperbolic assumption (5.6), all the rescaled

metrics %gy tend to the flat metric as tðyÞ-N (i.e. the parameter sk; now sy; in (5.16)

tends to 0). On the other hand, (5.28) and (5.19) show that, at any given y; the
curvature of %gy; although of necessity small, at least remains bounded away from 0

on ðAyðTÞ; %gyÞ; for Tb1 and ty large. In other words, for any y0AðAyðTÞ; %gyÞ with

tðy0ÞbtðyÞ; one has

jR %gy
jðy0ÞXcojR %gy

jðyÞ;

where co is a fixed numerical constant. For any such y0 since %gy0 ¼ ðtðyÞ=tðy0ÞÞ2
%gy;

and tðyÞ=tðy0Þ51; it follows that

jR %gy0 jðy
0Þ ¼ ðtðy0Þ=tðyÞÞ2jR %gy

jðy0ÞbjR %gy
jðyÞj: ð5:29Þ

The estimate (5.29) implies, for instance by iteration, that the curvature of %gy cannot

decrease to 0 as tðyÞ-N in E: This is of course a contradiction.

This contradiction implies that there are no non-trivial T3-invariant Bach-flat
deformations of the flat metric arising in this way, and hence no non-trivial
deformations of the hyperbolic cusp metric among Einstein metrics. As explained at
the beginning of the proof, this contradiction proves Proposition 5.7, which thus also
completes the proof of Theorem 5.3. &
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It is an interesting open question whether Theorem 5.3 remains valid without one
of the hypotheses (i) or (ii).
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