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Abstract

The dissipated spaces form a class of compacta which contains both the scattered compacta and the compact LOTSes (linearly
ordered topological spaces), and a number of theorems true for these latter two classes are true more generally for the dissipated
spaces. For example, every regular Borel measure on a dissipated space is separable.

The standard Fedorčuk S-space (constructed under ♦) is dissipated. A dissipated compact L-space exists iff there is a Suslin
line.

A product of two compact LOTSes is usually not dissipated, but it may satisfy a weakening of that property. In fact, the degree
of dissipation of a space can be used to distinguish topologically a product of n LOTSes from a product of m LOTSes.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

All topologies discussed in this paper are assumed to be Hausdorff. As usual, a subset of a space is perfect iff it is
closed and nonempty and has no isolated points, so X is scattered iff X has no perfect subsets.

There are many constructions in the literature which build a compactum X as an inverse limit of metric compacta
Xα for α < ω1, with the bonding maps π

β
α :Xβ � Xα for α < β < ω1. In some cases, as in [7,11,12], the construction

has the property that for each α,β , (π
β
α )−1{x} is a singleton for all but countably many x ∈Xα . We shall call such π

β
α

tight maps; these are discussed in greater detail in Section 2. The spaces X so constructed are examples of dissipated
compacta; these are discussed in Section 3. Section 7 shows that the property of tightness is absolute for transitive
models of set theory.

The precise definition of “dissipated” in Section 3 will be that there are “sufficiently many” tight maps onto metric
compacta; so the definition will not mention inverse limits. Then, Section 6 will relate this definition to inverse limits.

Dissipated compacta include the scattered compacta, the metric compacta, and the compact LOTSes (totally or-
dered spaces with the order topology). Section 3 also describes the more general notion of κ-dissipated, which gets
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weaker as κ gets bigger; “dissipated” is the same as “2-dissipated”, while “1-dissipated” is the same as “scattered”.
Every regular Borel measure on a 2ℵ0 -dissipated compactum is separable (see Section 5).

If X is the double arrow space of Alexandroff and Urysohn, then X is a non-scattered LOTS and hence is 2-dis-
sipated but not 1-dissipated, while Xn+1 is (2n + 1)-dissipated but not 2n-dissipated. Considerations of this sort can
be used to distinguish topologically a product of n LOTSes from a product of m LOTSes; see Section 4.

2. Tight maps

As usual, f :X → Y means that f is a continuous map from X to Y , and f :X � Y means that f is a continuous
map from X onto Y .

Definition 2.1. Assume that X,Y are compact and f :X → Y .

• A loose family for f is a disjoint family P of closed subsets of X such that for some non-scattered Q ⊆ Y ,
Q= f (P ) for all P ∈ P .

• f is κ-tight iff there are no loose families for f of size κ .
• f is tight iff f is 2-tight.

This notion gets weaker as κ gets bigger. f is 1-tight iff f (X) is scattered, so that “2-tight” is the first non-trivial
case. f is trivially |X|+-tight. The usual projection from [0,1]2 onto [0,1] is not 2ℵ0 -tight.

Some easy equivalents to “κ-tight”:

Lemma 2.2. Assume that X,Y are compact and f :X → Y . Then (1)↔ (2). If κ is finite, then (1)↔ (3); if also Y is
metric, then all five of the following are equivalent:

(1) There is a loose family of size κ .
(2) There is a disjoint family P of perfect subsets of X with |P| = κ and a perfect Q⊆ Y such that Q= f (P ) for all

P ∈P .
(3) There are distinct ai ∈ X for i < κ with all f (ai) = b ∈ Y such that whenever Ui is a neighborhood of ai for

i < κ ,
⋂

i<κ f (Ui) is not scattered.
(4) For some metric M and ϕ ∈ C(X,M), {y ∈ Y : |ϕ(f−1{y})|� κ} is uncountable.
(5) Statement (4), with M = [0,1].

Proof. (2)→ (1) is obvious. Now, assume (1), and let P be a loose family of size κ , with Q= f (P ) for P ∈ P . Let
Q′ be a perfect subset of Q, and, for P ∈ P , let P ′ be a closed subset of P ∩ f−1(Q′) such that f �P ′ :P ′ � Q′ is
irreducible. Then {P ′: P ∈P} satisfies (2).

From now on assume that κ is finite.
(3)→ (1) and (5)→ (4) are obvious.
For (1)→ (3), use compactness of

∏
i Pi and the fact that a finite union of scattered spaces is scattered.

For (1) → (5): If P = {Pi : i < κ} is a loose family, with Q = f (Pi), apply the Tietze Theorem to get ϕ ∈
C(X, [0,1]) such that ϕ(x)= 2−i for all x ∈ Pi .

Now, we prove (4) → (1) when Y is metric. Fix ϕ as in (4). We may assume that M = ϕ(X), so that M is
compact. Let B be a countable base for M . Then we can find Bi ∈ B for i < κ such that the Bi are disjoint and such
that Q := {y ∈ Y : ∀i < κ[ϕ(f−1{y})∩Bi �= ∅]} is uncountable, and hence not scattered (since Y is metric). Q is also
closed. Let Pi = f−1(Q)∩ ϕ−1(Bi). Then {Pi : i < κ} is a loose family. �
Lemma 2.3. If X,Y are compact LOTSes and f :X → Y is order-preserving (x1 < x2 → f (x1) � f (x2)), then f is
tight.

Proof. If not, we would have a0 < a1 and b as in (3) of Lemma 2.2. Let U0,U1 be open intervals in X with disjoint
closures such that each ai ∈Ui . But then f (U0)∩ f (U1)= {b}, a contradiction. �
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In many cases, the loose family will be defined uniformly via a continuous function, and we may replace the
cardinal κ in Definition 2.1 by some compact space K of size κ :

Definition 2.4. Assume that X,Y,K are compact spaces and f :X → Y . Then a K-loose function for f is a
ϕ : dom(ϕ)→K such that: dom(ϕ) is closed in X, and for some non-scattered Q⊆ Y , ϕ(f−1{y})=K for all y ∈Q.

Note that we then have a loose family P = {Pz: z ∈ K} of size |K|, where Pz = f−1(Q) ∩ ϕ−1{z}. For finite n,
we may view the ordinal n as a discrete topological space, so an n-loose function is equivalent to a loose family
P = {Pi : i < n}, since ϕ can map Pi to i ∈ n. The same phenomenon holds for ℵ0, but seems harder to prove:

Theorem 2.5. If X,Y are compact and f :X → Y , then there is an infinite loose family iff there is an (ω + 1)-loose
function.

This will be proved in Section 7. Beyond ℵ0, there is no simple equivalence between the cardinal version and the
topological version of looseness. At 2ℵ0 , we shall use the following terminology to avoid possible confusion between
the Cantor set 2ω and the cardinal c= 2ℵ0 :

Definition 2.6. Assume that X,Y are compact and f :X → Y .

• A strongly c-loose family for f is a K-loose function ϕ : dom(ϕ)→K , where K is the Cantor set 2ω.
• f is weakly c-tight iff there is no strongly c-loose function for f .

In this paper, whenever we produce a loose family of size 2ℵ0 , it will usually be strongly c-loose. However, if we
view c+ 1 as a compact ordinal and let X = Y × (c+ 1), then assuming that Y is not scattered, the usual projection
f :X � Y has an obvious loose family of size c but no strongly c-loose family.

When X,Y are both metric, the κ-tightness of f is related to the sizes of the sets f−1{y} by:

Theorem 2.7. If X,Y are compact metric and f :X → Y , then f is κ-tight iff {y ∈ Y : |f−1{y}| � κ} is countable.
f is weakly c-tight iff f is c-tight.

In particular, if f :X � Y , then f is tight iff f−1{y} is a singleton for all but countably many y, as we said in the
Introduction.

For both “iff”s, the ← direction is trivial and is true for any X,Y . For κ = 3, say, the proof of the → direction will
show that if there are uncountably many y ∈ Y such that f−1{y} contains three or more points, then for some perfect
Q⊆ Y , we can, on Q, choose three of these points continuously, producing disjoint perfect P0,P1,P2 ⊆X which f

maps homeomorphically onto Q, so {P0,P1,P2} is a loose family of size 3.
Since X is second countable, each f−1{y} is either countable or of size 2ℵ0 , so it is sufficient to prove the theorem

for the cases κ � ℵ0 and κ = 2ℵ0 . However, for κ = 2ℵ0 , we can get more detailed results. For example, if there are
uncountably many y ∈ Y such that f−1{y} contains a Klein bottle, then we can choose the bottle continuously on a
perfect set (see Theorem 2.9). This “continuous selector” result follows easily from standard descriptive set theory.
First, observe:

Lemma 2.8. Suppose that g :Φ → Y , where Y is a Polish space, Φ is an analytic subset of some Polish space, and
g(Φ) is uncountable. Then there is a Cantor subset C ⊆Φ such that g is 1–1 on C.

Proof. Let h :ωω � Φ , apply the classical argument of Suslin to obtain a Cantor subset D ⊆ ωω such that g ◦ h is
1–1 on D, and let C = h(D). �
Theorem 2.9. Assume that X,Y,Z are compact metric, f :X → Y , and there are uncountably many y ∈ Y such that
f−1{y} contains a homeomorphic copy of Z. Then there is a perfect Q⊆ Y and a 1–1 map i :Q×Z →X such that
f (i(q,u))= q for all (q,u) ∈Q×Z.
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Proof. Assume that Z �= ∅. Fix metrics dZ, dX on Z,X, and give C(Z,X) the usual uniform metric, which makes it
a Polish space. Let Φ be the set of all ϕ ∈ C(Z,X) such that ϕ is 1–1 and ϕ(Z)⊆ f−1{y} for some (unique) y ∈ Y .
Observe that Φ is an Fσδ set, since the “ϕ is 1–1” can be expressed as:

∀ε > 0 ∃δ > 0 ∀u,v ∈ Z
[
dZ(u, v) � ε → dX

(
ϕ(u),ϕ(v)

)
� δ

]
.

Define g :Φ → Y so that g(ϕ) is the y ∈ Y such that ϕ(Z)⊆ f−1{y}. Using Lemma 2.8, let C ⊆Φ be a Cantor subset
with g 1–1 on C, let Q= g(C), and let i(g(ϕ),u)= ϕ(u). �
Proof of Theorem 2.7. To prove the → direction of the first “iff” in the three cases κ < ℵ0, κ =ℵ0, and κ = c, apply
Theorem 2.9, respectively, with Z the space κ (with the discrete topology), ω + 1, and 2ω. This also yields the →
direction of the second “iff”. �

Of course, we are using the fact that every uncountable metric compactum contains a copy of the Cantor set. One
could also prove Theorem 2.7 using the following, plus the fact that every uncountable metric compactum maps onto
[0,1]:

Theorem 2.10. Assume that X,Y,K are compact metric with f :X → Y , and assume that for uncountably many
y ∈ Y , there is a closed subset of f−1{y} which can be mapped onto K . Then there is a K-loose function for f .

Proof. Let H be the Hilbert cube, [0,1]ω. We may assume that K ⊆H . Then, for uncountably many y ∈ Y , there is
a ψ ∈ C(X,H) such that ψ(f−1{y})⊇K . Let Ψ = {(y,ψ) ∈ Y ×C(X,H): ψ(f−1{y})⊇K}, and let g(y,ψ)= y.
Applying Lemma 2.8, let C ⊆ Ψ be a Cantor set on which g is 1–1, and let Q = g(C) ⊆ Y . For (y,ψ) ∈ C, let
Ey = {x ∈ X: ψ(x) ∈ K}. Define ϕ so that dom(ϕ) = ⋃{Ey : y ∈ Q}, and ϕ(x) = ψ(x) whenever x ∈ dom(ϕ) and
(y,ψ) ∈ C. Then ϕ is a K-loose function. �

Theorems 2.7, 2.9, and 2.10 can fail when X is not metric; counter-examples are provided by the double arrow
space and some related spaces described by:

Definition 2.11. I = [0,1]. If S ⊆ (0,1), then IS is the compact LOTS which results by replacing each x ∈ S by a pair
of neighboring points, x− < x+. The double arrow space is I(0,1).

IS has no isolated points because 0,1 /∈ S. The double arrow space is obtained by splitting all points other than
0,1. I∅ = I , and IQ∩(0,1) is homeomorphic to the Cantor set.

Lemma 2.12. For each S ⊆ (0,1), IS is a compact separable LOTS with no isolated points. IS is second countable iff
S is countable.

Now, let Y = [0,1], let S ⊆ (0,1), let X = IS and let f :X � Y be the natural map. Then f is 2-tight by
Lemma 2.3, but S = {y ∈ Y : |f−1{y}| � 2} need not be countable, so Theorems 2.7, 2.9, and 2.10 fail here when
S is uncountable (and hence X is not metric). However, one can apply these theorems in some generic extension, to
get a (perhaps strange) alternate proof that f is 2-tight. Roughly, if V [G] makes S countable, then X,Y will both
be compact metric in V [G], so Theorem 2.7 implies that f is 2-tight in V [G] (because S is countable); but then by
absoluteness, f is 2-tight in V . Absoluteness of tightness is discussed more precisely in Section 7.

The composition properties of tight maps are given by:

Lemma 2.13. Assume that X,Y,Z are compact, m,n are finite, f :X � Y , and g :Y � Z. Then:

(1) If g ◦ f is n-tight then g is n-tight.
(2) If f and g are tight, then g ◦ f is tight.
(3) If f is (m+ 1)-tight and g is (n+ 1)-tight, then g ◦ f is (mn+ 1)-tight.
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Proof. (1) is trivial, and (2) is a special case of (3).
For (3), assume that f is (m + 1)-tight, g is (n + 1)-tight, and g ◦ f is not (mn + 1)-tight; we shall derive a

contradiction. Fix disjoint closed P0,P1, . . . ,Pmn ⊆ X with g(f (P0)) ∩ g(f (P1)) ∩ · · · ∩ g(f (Pmn)) not scattered.
Shrinking X,Y,Z, and the Pi , we may assume, without loss of generality, that X = P0 ∪ P1 ∪ · · · ∪ Pmn and that
g(f (Pi)) = Z for each i. For each s ⊆ {0,1, . . . ,mn}, let Qs = ⋂

i∈s f (Pi). Shrinking the Pi , we may assume,
without loss of generality, that each Qs ⊆ Y is either empty or not scattered; to see this, for a fixed s: If Qs is scattered,
then so is g(Qs); if R is a perfect subset of Z\g(Qs), then we may replace Z by R and each Pi by Pi ∩f−1(g−1(R)).

Now, using compactness of P0 × P1 × · · · × Pmn, as in the proof of Lemma 2.2, fix ai ∈ Pi for i � mn such that
g(f (U0)) ∩ · · · ∩ g(f (Umn)) is not scattered whenever each Ui is a neighborhood of ai . Then at least one of the
following two cases holds:

Case 1. Some n+ 1 of the f (a0), . . . , f (amn) are different. without loss of generality, these are f (a0), f (a1), . . . ,

f (an). Choose the Ui so that the f (U0), f (U1), . . . , f (Un) are all disjoint. But then g(f (U0)) ∩ · · · ∩ g(f (Un)) ⊇
g(f (U0))∩ · · · ∩ g(f (Umn)) is not scattered, contradicting the (n+ 1)-tightness of g.

Case 2. Some m + 1 of the f (a0), . . . , f (amn) are the same. without loss of generality, f (a0) = f (a1) = · · · =
f (am). Let s = {0,1, . . . ,m}. Then Qs �= ∅, so Qs =⋂

i�m f (Pi) is not scattered, contradicting the (m+1)-tightness
of f . �

The “mn+1” in (3) cannot be reduced; for example, let Y = Z×n and X = Y ×m, with f,g the natural projection
maps.

There is a similar result, with a similar proof, involving products:

Lemma 2.14. Assume that for i = 0,1: Xi,Yi are compact, fi :Xi → Yi is (mi + 1)-tight, mi � ni < ω, and
|f−1

i {y}|� ni for all y ∈ Yi . Then f0 × f1 :X0 ×X1 → Y0 × Y1 is (max(m0n1,m1n0)+ 1)-tight.

Proof. Let L= max(m0n1,m1n0), and let f = f0 ×f1. In view of Lemma 2.2, it is sufficient to fix any L+1 distinct
points a0, a1, . . . , aL ∈X0 ×X1 with all f (aα)= b ∈ Y0 × Y1, and show that one can find neighborhoods Uα of aα

for α = 0,1, . . . ,L such that
⋂

α f (Uα) is scattered.
Let b = (b0, b1) and aα = (aα

0 , aα
1 ).

Note that although the aα are all distinct points, the aα
0 need not be all different and the aα

1 need not be all
different. However, |{aα

0 : 0 � α � L}| � m0 + 1: If not, then using f (aα) = b and |f−1
1 {b1}| � n1, we would have

L+ 1 � m0n1, a contradiction. Likewise, |{aα
1 : 0 � α � L}|� m1 + 1.

Now, using Lemma 2.2 and the fact that each fi :Xi → Yi is (mi + 1)-tight, choose neighborhoods Uα
i of aα

i such

that
⋂

α f (Uα
i ) is scattered for i = 0,1. The Uα

i can depend just on the value of aα
i (that is aα

i = a
β
i → Uα

i = U
β
i ).

Finally, let Uα =Uα
0 ×Uα

1 . �
The bound on the |f−1

i {y}| cannot be removed here. For example, for each cardinal κ , one can find compact perfect
LOTSes X0,X1, Y0, Y1 with order-preserving fi :Xi � Yi such that all point inverses have size at least κ . Then the
fi are tight by Lemma 2.3, but f0 × f1 is not κ-tight.

A variant of the product of maps is much simpler to analyze:

Lemma 2.15. Assume that � ∈ ω and fi :X → Yi is κ-tight for each i < �, where X and the Yi are compact. Then the
map x �→ (f0(x), . . . , f�−1(x)) from X to

∏
i<� Yi is also κ-tight.

We now consider the opposite of tight maps:

Definition 2.16. If X,Y are compact and f :X → Y , then f is nowhere tight iff f (X) is not scattered and there is no
closed P ⊆X such that f �P is tight and f (P ) is not scattered.

Note also that if X,Y are metric compacta with f :X � Y and Y not scattered, then there is a Cantor set P ⊆ X

such that f �P is 1–1, so

Lemma 2.17. If X,Y are compact and f :X → Y is nowhere tight, then X is not second countable.
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A further limitation on nowhere tight maps:

Lemma 2.18. If f :X → Y is nowhere tight, then f is not weakly c-tight.

Proof. We shall get a non-scattered Q⊆ Y and disjoint non-scattered sets P k ⊆X for k ∈ 2ω so that each f (P k)=Q.
We shall build the P k and Q by a tree argument. Each P k will be non-scattered because it will be formed using a
Cantor tree of closed sets, so we shall actually get a doubly indexed family. So, we build Qs ⊆ Y for s ∈ 2<ω and
P t

s ⊆X for s, t ∈ 2<ω with lh(s)= lh(t) satisfying:

(1) P t
s is closed, f (P t

s )=Qs , and Qs is not scattered.
(2) The sets Qs�0,Qs�1 are disjoint subsets of Qs .
(3) The sets P t�0

s�0 , P t�1
s�0 , P t�0

s�1 , P t�1
s�1 are disjoint subsets of P t

s .

We construct these inductively. P 1
1 and Q1 exist (where 1 is the empty sequence) because f (X) is not scattered. Now,

say we have Qs and P t
s for all s, t with lh(s)= lh(t)= n. Fix s.

First, get disjoint closed non-scattered Q̃s�0, Q̃s�1 ⊆Qs , and let P̃ t
s�μ = P t

s ∩ f−1(Q̃s�μ) for each t of length n

and each μ = 0,1. Then, use “nowhere tight” 2n times to get Qs�μ ⊆ Q̃s�μ and P t�ν
s�μ ⊆ P̃ t

s�μ for each μ,ν = 0,1

and each t of length n so that each f (P t�ν
s�μ)=Qs�μ and each Qs�μ is non-scattered.

For h, k ∈ 2ω, define Qh = ⋂
n∈ω Qh�n and P k

h = ⋂
n∈ω P

k�n
h�n , let Q = ⋃{Qh: h ∈ 2ω}, and let Ph = ⋃{P k

h : k ∈
2ω} and P k = ⋃{P k

h : h ∈ 2ω}. Then f (Ph) = Qh and f (P k) = Q, and the ϕ of Definition 2.6 sends P k to k ∈ 2ω,
with dom(ϕ)=⋃

k Pk . �
Corollary 2.19. If X,Y are compact, f :X � Y , w(X) < c, Y is metric and not scattered, and f is weakly c-tight,
then X has a Cantor subset.

Proof. Since f is not nowhere tight, we may assume, shrinking X and Y , that f is tight. Let κ =w(X), and let B be
a base for X with |B| = κ . Whenever B0,B1 ∈ B with B0 ∩B1 = ∅, let S(B0,B1)= f (B0)∩ f (B1). Each S(B0,B1)

is scattered, and hence countable, so at most κ points of Y are in some S(B0,B1), so there is a K ⊆ Y homeomorphic
to the Cantor set with K is disjoint from all S(B0,B1). |f−1{y}| = 1 for all y ∈ K , so f−1(K) is homeomorphic
to K . �

Note that we have not yet given any examples of nowhere tight maps. The argument of Corollary 2.19 shows that
one class of examples is given by:

Example 2.20. If X,Y are compact, f :X � Y , w(X) < c, Y is metric and not scattered, and X has no Cantor subset,
then f is nowhere tight.

Of course, under CH, this class of examples is empty. More generally, the class is empty under MA (or just the
assumption that R is not the union of < c meager sets), since then every non-scattered compactum of weight less
than c contains a Cantor subset (see [12]). However, by Dow and Fremlin [5], it is consistent to have a non-scattered
compactum X of weight ℵ1 < c with no convergent ω-sequences, and hence with no Cantor subsets; in the ground
model, CH holds, and X is any compact F-space (so w(X) can be ℵ1); then, the extension adds any number of random
reals.

A class of ZFC examples of nowhere tight maps with w(X)= c is given by:

Example 2.21. If X,Y are compact, f :X � Y , X is a compact F-space and Y is metric and not scattered, then f is
nowhere tight.

Proof. Here, it is sufficient to prove that f is not tight, since any f �P :P � f (P ) will have the same properties.
Also, shrinking Y , we may assume that Y has no isolated points.
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First, choose a perfect Q⊆ Y which is nowhere dense in Y . Then, choose a discrete set D = {dn: n ∈ ω} ⊆ Y\Q
with D =D ∪Q and each f−1{dn} not a singleton. Then, choose xn, zn ∈ f−1{dn} with xn �= zn. Now, since X is an
F-space, cl{xn: n ∈ ω} and cl{zn: n ∈ ω} are two disjoint copies of βN in X which map onto D. �
3. Dissipated spaces

Only a scattered compactum X has the property that all maps from X are tight: If X is not scattered, then X maps
onto [0,1]2; if we follow that map by the usual projection onto [0,1], we get a map from X onto [0,1] which is not
even weakly c-tight.

The dissipated compacta have the property that unboundedly many maps onto metric compacta are tight:

Definition 3.1. Assume that X,Y,Z are compact, f :X → Y , and g :X → Z. Then f � g, or f is finer than g, iff
there is a Γ ∈ C(f (X),g(X)) such that g = Γ ◦ f .

Lemma 3.2. Assume that X,Y,Z are compact, f :X → Y , and g :X → Z. Then f � g iff ∀x1, x2 ∈ X[f (x1) =
f (x2)→ g(x1)= g(x2)].

Proof. For ←, let Γ = {(f (x), g(x)): x ∈X} ⊆ f (X)× g(X). �
Definition 3.3. X is κ-dissipated iff X is compact and whenever g :X → Z, with Z metric, there is a finer κ-tight
f :X → Y for some metric Y . X is dissipated iff X is 2-dissipated. X is weakly c-dissipated iff X is compact and
whenever g :X → Z, with Z metric, there is a finer weakly c-tight f :X → Y for some metric Y .

So, the 1-dissipated compacta are the scattered compacta. Metric compacta are trivially dissipated because we can
take Y = X, with f the identity map. Besides the spaces from [7,11,12], an easy example of a dissipated space is
given by:

Lemma 3.4. If X is a compact LOTS, then X is dissipated.

Proof. Fix g,Z as in Definition 3.3. On X, use [x1, x2] for the closed interval [min(x1, x2),max(x1, x2)], and define
x1 ∼ x2 iff g is constant on [x1, x2]. Then ∼ is a closed equivalence relation, so define Y =X/∼ with f :X � Y the
natural projection. Then Y is a LOTS and f is order-preserving, so f is tight by Lemma 2.3, and f � g by Lemma 3.2.
To see that Y is metrizable, fix a metric on Z, and then, on Y , define d(f (x1), f (x2))= diam(g([x1, x2])). �

By Corollary 2.19, if w(X) < c and X is c-dissipated and not scattered, then X has a Cantor subset, while the
double arrow space is an example of an X with w(X)= c which is 2-dissipated and has no Cantor subset.

Note that just having one tight map g from X onto some metric compactum Z is not sufficient to prove that X is
dissipated, since the tightness of g says nothing at all about the complexity of a particular g−1{z}. Trivial counter-
examples are obtained with |Z| = 1 and g a constant map. However, if all g−1{z} are scattered, then just one tight g

is enough:

Lemma 3.5. Suppose that g :X → Z is κ-tight and all g−1{z} are scattered. Fix f :X → Y with f � g. Then f is
κ-tight. In particular, if Z is also metric, then X is κ-dissipated.

Proof. Fix Γ ∈ C(f (X),g(X)) such that g = Γ ◦ f . Suppose that P were a loose family for f of size κ ; then we
have Q ⊆ f (X) with Q = f (P ) for all P ∈ P , and Q is not scattered. But Γ (Q) is scattered, since g is κ-tight and
g(P ) = Γ (f (P )) = Γ (Q) for all P ∈ P . It follows that we can fix z ∈ Z with Q ∩ Γ −1{z} not scattered. But then
f (g−1{z})= Γ −1{z} is not scattered, which is impossible, since g−1{z} is scattered. �

We next consider the degree of dissipation of products:
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Lemma 3.6. Let X =A×B , where A,B are compact, B is not scattered, and assume that for each ϕ ∈ C(A, [0,1]ω)

there is a z ∈ [0,1]ω with |ϕ−1{z}| � κ . Then X is not κ-dissipated. If for each ϕ ∈ C(A, [0,1]ω) there is a z such
that ϕ−1{z} is not scattered, then X is not weakly c-dissipated.

Proof. Since B is not scattered, fix h :B � [0,1], and define g :X � [0,1] by g(a, b)= h(b). Now, fix any f :X → Y

with f finer than g and Y metric. We shall show that f is not κ-tight.
Define f̂ :A → C(B,Y ) by (f̂ (a))(b) = f (a, b). Since the range of f̂ is compact and hence embeddable in the

Hilbert cube, we can fix ζ ∈ C(B,Y ) such that E := {a: f̂ (a) = ζ } has size at least κ . Let Q = ζ(B); |Q| = c by
f � g, so Q is not scattered. For a ∈E, let Pa = {a} ×B . Then {Pa : a ∈E} is a loose family of size at least κ .

The second assertion is proved similarly. �
Note that A might be scattered; for example, A could be the ordinal κ + 1 (if κ is uncountable and regular) or

the one point compactification of a discrete space of size κ (if κ is uncountable). B may be second countable; for
example, B can be the Cantor set.

A class of spaces A to which Lemma 3.6 applies is produced by:

Lemma 3.7. Suppose that f :
∏

α<κ Xα → M , where M is compact metric and, for each α, Xα is compact and not
metrizable. Then there are two-element sets Eα ⊆Xα for each α such that f is constant on

∏
α<κ Eα .

Proof. For p ∈∏
α<δ Xα , define f̂p :

∏
α�δ Xα →M by: f̂p(q)= f (p�q). Then inductively choose Eα so that for

all δ � κ , the functions f̂p are the same for all p ∈∏
α<δ Eα . Say δ < κ and we have chosen Eα for α < δ. Let g = f̂p

for some (any) p ∈∏
α<δ Eα , and define g∗ ∈ C(Xδ,C(

∏
α>δ Xα,M)) by: (g∗(x))(q)= g(x�q). Then g∗ maps Xδ

into a metric space of functions, so ran(g∗) is a compact metric space, so g∗ cannot be 1–1, so choose Eδ of size 2
with g∗ constant on Eδ . �
Theorem 3.8. Assume that each Xk is compact:

(1) If Xn is not scattered and Xk , for k < n, is not metrizable, then
∏

k�n Xk is not 2n-dissipated.
(2) If each Xk is not metrizable, then

∏
k<ω Xk is not weakly c-dissipated.

Proof. For (1), apply Lemma 3.6 with A = ∏
k<n Xk and B = Xn. For (2), apply Lemma 3.6 with A = ∏

k<ω X2k

and B =∏
k<ω X2k+1 . �

In (1), if all Xk are scattered, then
∏

k�n Xk is scattered and hence dissipated. As an example of (1) applied to

LOTSes, if S ⊆ (0,1) is uncountable, then (IS)2 is not dissipated (2-dissipated), (IS)3 is not 4-dissipated, and (IS)4

is not 8-dissipated. By Theorem 3.9, these three spaces are, respectively, 3-dissipated, 5-dissipated, and 9-dissipated.
However, Lemma 3.6 shows that for any κ , we can find a product of two LOTSes which is not κ-dissipated.

The following theorem will often suffice to compute the degree of dissipation of a finite product of separable
LOTSes:

Theorem 3.9. Assume that n is finite and Xi , for i � n, is a compact separable LOTS. Then
∏

i�n Xi is (2n + 1)-
dissipated. Furthermore, if all the Xi are not scattered, and at most one of the Xi is second countable, then

∏
i�n Xi

is not (2n)-dissipated.

Proof. Let Di ⊆Xi be countable and dense. Choose fi ∈ C(Xi, [0,1]) such that fi is order-preserving and is 1–1 on
Di (such a function fi exists; see the proof of Lemma 3.6 in [10]). Note that each |f−1

i {y}|� 2, and, by Lemma 2.3,
each fi is 2-tight. Applying Lemma 2.14 and induction,

∏
i�n fi is (2n+1)-tight. Then

∏
i�n Xi is (2n+1)-dissipated

by Lemma 3.5.
The “furthermore” is by Theorem 3.8. �
Next, we note that “dissipated” is a local property:
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Definition 3.10. Let K be a class of compact spaces. K is closed-hereditary iff every closed subspace of a space in K

is also in K. K is local iff K is closed-hereditary and for every compact X: if X is covered by open sets whose closures
lie in K, then X ∈ K.

Classes of compacta which restrict cardinal functions (first countable, second countable, countable tightness, etc.)
are clearly local, whereas the class of compacta which are homeomorphic to a LOTS is closed-hereditary, but not
local. To prove that “dissipated” is local, we use as a preliminary lemma:

Lemma 3.11. Let X be an arbitrary compact space, with K ⊆ U ⊆ X, such that U is open, K is closed, and U is
κ-dissipated. Fix g :U → Z, with Z compact metric. Then there is an f :X → Y , with Y compact metric, f κ-tight,
and f �K � g�K .

Proof. Fix ϕ :X → [0,1] with ϕ(K) = {0} and ϕ(∂U) = {1}. First get f0 :U → Y0, with Y0 compact metric, f0 κ-
tight, f0 � g, and f0 � ϕ�U (just let f0 refine x �→ (g(x),ϕ(x))). Then f0(K) ∩ f0(∂U) = ∅. Let Y = Y0/f0(∂U),
obtained by collapsing f0(∂U) to a point, p. Let f1 :U → Y be the natural map, and extend f1 to f :X → Y by
letting f1(X\U)= {p}. �
Lemma 3.12. For any κ , the class of κ-dissipated compacta is a local class.

Proof. For closed-hereditary: Assume that X is κ-dissipated and K is closed in X. Fix g :K → Z, with Z metric.
Then we may assume that Z ⊆ Iω , so that g extends to some g̃ :X → Iω . Then there is a κ-tight f̃ :X → Y for some
metric Y , with f̃ � g̃. If f = f̃ �K , then f is κ-tight and f � g.

For local: Assume that X = ⋃
i<� Ui , where each Ui is open and Ui is κ-dissipated. Fix g :X → Z, with Z

metric. Choose closed Ki ⊆ Ui such that X = ⋃
i<� Ki . Then apply Lemma 3.11 and choose fi :X → Yi , with Yi

compact metric, fi κ-tight, and fi�Ki � g�Ki . Then the map x �→ (f0(x), . . . , f�−1(x)) refines g, and is κ-tight by
Lemma 2.15. �

Many classes of compacta are closed under continuous images, but this is not true in general of the class of κ-
dissipated spaces:

Example 3.13. There is a continuous image of a 3-dissipated space which is not c-dissipated.

Proof. Let T = (D(c) ∪ {∞}) × 2ω, where D(c) ∪ {∞} is the 1-point compactification of the ordinal c with the
discrete topology. Then T is not c-dissipated by Lemma 3.6. Let Fα , for α < c, be disjoint Cantor subsets of 2ω such
that for some g : 2ω � 2ω, each g(Fα) = 2ω. Let X = {∞} × 2ω ∪⋃

α<c({α} × Fα)⊆ T . Then X is 3-dissipated by
Lemma 3.5 because the natural projection onto 2ω is 3-tight and all point inverses are scattered (of size � 2). But also,
T is a continuous image of X via the map 1× g, (u, z) �→ (u, g(z)). �

Of course, the continuous image of a 1-dissipated (= scattered) compactum is 1-dissipated. We do not know about
the dissipated (= 2-dissipated) spaces; perhaps 2 is a special case.

4. LOTS dimension

We shall apply the results of Section 3 to products of LOTSes. Each In has dimension n under any standard notion
of topological dimension, so that In+1 is not embeddable into In. Now, say we wish to prove such a result replacing
I by some totally disconnected LOTS X. Then standard dimension theory gives all Xn dimension 0. Furthermore, the
result is false; for example, Xn+1 ∼=Xn if X is the Cantor set. However, if X is the double arrow space, then Xn+1 is
not embeddable into Xn. To study this further, we introduce a notion of LOTS dimension:

Definition 4.1. If X is any Tychonov space, then Ldim0(X) is the least κ such that X is embeddable into a product
of the form

∏
α<κ Lα , where each Lα is a LOTS. Then Ldim(X), the LOTS dimension of X, is the least κ such that

every point in X has a neighborhood U such that Ldim0(U) � κ .
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Lemma 4.2. The class of compacta X such that Ldim(X) � κ is a local class.

If X is any compact n-manifold, then Ldim(X) = n < Ldim0(X). We follow the usual convention that the empty
product

∏
α<0 Lα is a singleton, so that Ldim(X)= 0 iff X is finite, although Ldim0(X)= 1 if 1 < |X|< ℵ0.

Lemma 4.3. If X is compact, infinite, and totally disconnected, then Ldim(X)= Ldim0(X).

Proof. Use the fact that a disjoint sum of LOTSes is a LOTS. �
By Tychonov, Ldim(X) � w(X), taking each Lα = I . In this section, we focus mainly on spaces whose LOTS

dimension is finite, although this cardinal function might be of interest for other spaces. For example, Ldim(βN) =
2ℵ0 ; this is easily proved using the theorem of Pospíšil that there are points in βN of character 2ℵ0 . We shall show
(Lemma 4.5) that Ldim((IS)n) = n whenever S is uncountable. When S is countable, this is false if S is dense in I

(then (IS)n ∼= IS is the Cantor set) and true if S is not dense in I (by standard dimension theory; not by the results of
this paper). More generally, we shall prove:

Theorem 4.4. Let Zj , for 1 � j � s, be a compact LOTS. Assume that s = r +m, where r,m � 0. For r + 1 � j � s,
assume that Zj has either has an increasing or decreasing ω1–sequence. For 1 � j � r , assume that there is a
countable Dj ⊆ Zj such that Dj is not scattered, and assume that at most one of the Dj is second countable. Then
Ldim(

∏s
j=1 Zj )= s.

The following lemma handles the case r = s,m= 0 if we replace each Zj by Lj =Dj .

Lemma 4.5. Assume that n is finite and Lj , for j < n, is a compact separable LOTS. Also, assume that all the Lj are
not scattered, and that at most one of the Lj is second countable. Then Ldim(

∏
j<n Lj )= n.

Proof. This is trivial if n � 1, so assume that n � 2. Clearly, Ldim(
∏

j<n Lj ) � Ldim0(
∏

j<n Lj ) � n. Also, by

Theorem 3.9,
∏

j<n Lj is not 2n−1-dissipated.
To see that Ldim0(

∏
j<n Lj ) � n, assume that we could embed

∏
j<n Lj into

∏
i<(n−1) Xi , where each Xi is

a LOTS. Since the continuous image of a compact separable space is compact and separable, we may assume that
each Xi is compact and separable, so that

∏
i<(n−1) Xi and

∏
j<n Lj , are (2n−2 + 1)-dissipated by Theorem 3.9,

a contradiction since 2n−2 + 1 � 2n−1.
Now, assume that Ldim(

∏
j<n Lj ) < n. Then we could cover

∏
j<n Lj by finitely many open boxes, each of the

form
∏

j<n Uj , with each Uj an open interval in Lj , such that each open box satisfies Ldim0(
∏

j<n Uj ) < n. But for

at least one of these open boxes, the Uj would satisfy all the same hypotheses satisfied by the Lj , so that we would
again have a contradiction. �

In particular, if L is the double arrow space, then Ln+1 is not embeddable into Ln. Similar results were obtained by
Burke and Lutzer [2] and Burke and Moore [3] for the Sorgenfrey line J , which may be viewed as {z+: z ∈ (0,1)} ⊆ L.
We do not see how to derive our results directly from [2,3], since a map ϕ :Ln+1 → Ln need not preserve order, so it
does not directly yield a map from Jn+1 to Jn.

We now extend Lemma 4.5 to include LOTSes which have an increasing or decreasing ω1-sequence. First some
preliminaries:

Definition 4.6. [A]n↑ = {(α1, . . . , αn) ∈ An: α1 < · · · < αn}, where 1 � n < ω and A ⊆ ω1. We give [A]n↑ the
topology it inherits from (ω1)

n. The club filter Fn on [ω1]n↑ is generated by all the [C]n↑ such that C is club in ω1.
In is the dual ideal to Fn.

Lemma 4.7. If B ⊆ [ω1]n↑ is a Borel set, then B ∈Fn or B ∈ In.
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Proof. Since the In and Fn are countably complete, it is sufficient to prove this for closed sets K . The case n = 1
is obvious, so we proceed by induction. We assume the lemma for n, fix a closed K ⊆ [ω1](n+1)↑, and show that
K ∈Fn+1 or K ∈ In+1. Applying the lemma for n: For each α0 < ω1, choose ν(α0) ∈ {0,1} and a club Cα0 ⊆ (α0,ω1)

such that for all (α1, . . . , αn) ∈ [Cα0]n↑:

ν(α0)= 0 → (α0, α1, . . . , αn) /∈K; ν(α0)= 1 → (α0, α1, . . . , αn) ∈K. (∗)

Let C = {δ: δ ∈⋂{Cα0 : α0 < δ}}. Then C is club and (∗) holds for all (α0, α1, . . . , αn) ∈ [C](n+1)↑. Also, D := {α0 ∈
C: ν(α0) = 1} is closed because K is closed. [D](n+1)↑ ⊆K , so if D is club, then K ∈ Fn+1. If D is bounded, then
C\D contains a club, and then K ∈ In+1. �
Definition 4.8. If L is a LOTS, f ∈ C([ω1]m↑,L), and ψ ∈ C([ω1]n↑,L), then ψ is derived from f iff n � m and for
some i1, . . . im: 1 � i1 < · · · < im � n and ψ(α1, . . . , αn) = f (αi1, . . . , αim) for all (α1, . . . , αn) ∈ [ω1]n↑. Then a set
E ⊆ [ω1]n↑ is derived from f iff E is of the form {�α: ψ1(�α) < ψ2(�α)} or {�α: ψ1(�α) � ψ2(�α)} or {�α: ψ1(�α)=ψ2(�α)},
where ψ1,ψ2 are derived from f .

Lemma 4.9. Suppose that f ∈ C([ω1]m↑,L), where L is a compact LOTS. Then there is a club C, a continuous
g :C → L, and a j ∈ {1,2, . . . ,m}, such that for all �α = (α1, . . . , αm) ∈ [C]m↑, we have f (�α) = g(αj ), and g is
either strictly increasing or strictly decreasing or constant.

Proof. Applying Lemma 4.7, and then restricting everything to a club, we may make the following homogeneity
assumption: for all n � m and all E ⊆ [ω1]n↑ which are derived from f , either E = ∅ or E = [ω1]n↑. Then, our club
C will be all of ω1. We first consider the special cases m= 1 and m= 2.

For m= 1, we have f ∈ C(ω1,L). Applying homogeneity to the three derived sets {(α,β) ∈ [ω1]2↑: f (α)�f (β)},
where � is one of <, >, and =, we see that f is either strictly increasing or strictly decreasing or constant.

Likewise, for m > 1, if we succeed in getting f (�α) = g(αj ), then g must be either strictly increasing or strictly
decreasing or constant.

Next, fix f ∈ C([ω1]2↑,L). If α < β < γ → f (α,β)= f (α, γ ), then f (α,β)= g(α), and we are done, so without
loss of generality, assume α < β < γ → f (α,β) < f (α,γ ). Let Bα = {f (α,β): α < β < ω1}, which is a subset of
L of order type ω1. Let h(α) = sup(Bα). Fix α < α′ < ω1. There are now three cases; Cases 2 and 3 will lead to
contradictions:

Case 1. h(α)= h(α′): By continuity of f , there is a club C ⊆ (α′,ω1) such that f (α,β)= f (α′, β) for all β ∈ C.
Applying homogeneity, we have α < α′ < β → f (α,β)= f (α′, β), so f (α,β)= g(β).

Case 2. h(α) < h(α′): Fix β such that α < α′ < β and f (α′, β) > f (α,γ ) for all γ . Then by homogeneity,
α < α′ < β < γ → f (α, γ ) < f (α′, β) for all α,α′, β, γ . Let α′ be a limit and consider α ↗ α′: we get, by continuity,
α′ < β < γ → f (α′, γ ) � f (α′, β), contradicting α < β < γ → f (α,β) < f (α,γ ).

Case 3. h(α) > h(α′): Fix β such that α < α′ < β and f (α,β) > f (α′, γ ) for all γ . Then by homogeneity,
α < α′ < β < γ → f (α′, γ ) < f (α,β) for all α,α′, β, γ . Letting α ↗ α′, we get a contradiction as in Case 2.

Finally, fix m � 2 and assume that the lemma holds for m. We shall prove it for m + 1, so fix f ∈
C([ω1](m+1)↑,L). Temporarily fix (α1, . . . , αm−1) ∈ [ω1](m−1)↑, and let f̃ (αm,αm+1)= f (α1, . . . , αm−1, αm,αm+1);
so f̃ ∈ C([(αm−1,ω1)]2↑,L). Applying the m= 2 case, f̃ is really just a function of one of its arguments, so that f

just depends on an m-tuple (either (α1, . . . , αm−1, αm+1) or (α1, . . . , αm−1, αm)), so we may now apply the lemma
for m. �

It is easy to see from this lemma that Ldim((ω1 + 1)m)=m, but we now want to consider products of (ω1 + 1)m

with separable LOTSes.

Lemma 4.10. Suppose that f ∈ C(X × [ω1]m↑,L), where L is a compact LOTS and X is compact, nonempty, first
countable, and separable. Then there is a club C ⊆ ω1, a nonempty open U ⊆ X, a g ∈ C(U × C,L), and a j ∈
{1,2, . . . ,m} such that f (x, �α)= g(x,αj ) for all �α = (α1, . . . , αm) ∈ [C]m↑ and all x ∈U , and such that either

(1) For all x ∈U , the map �α �→ f (x, �α) is constant on [C]m↑, or
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(2) For all x ∈U , the map ξ �→ g(x, ξ) is strictly increasing on C, or
(3) For all x ∈U , the map ξ �→ g(x, ξ) is strictly decreasing on C.

Proof. First, let K be the set of all x such that �α �→ f (x, �α) is constant on some set in Fm. Then K is closed, since
X is first countable, so, replacing X by some U , we may assume that K = X or K = ∅. If K = X, then intersecting
the clubs for x in a countable dense set, we get one club C such that (1) holds.

Now, assume that K = ∅. Applying Lemma 4.9, for each x ∈ X choose a club Cx , a gx ∈ C(Cx,L), and jx ∈
{1,2, . . . ,m} and a μx ∈ {−1,1} such that for all �α = (α1, . . . , αm) ∈ [Cx]m↑, we have f (x, �α) = gx(αjx ), and each
gx is either strictly increasing (when μx = 1) or strictly decreasing (when μx =−1).

For each j,μ, let H
μ
j = {x: jx = j & μx = μ}. Then the H

μ
j are disjoint, and they are also closed (since K = ∅).

Since
⋃

j,μ H
μ
j =X, U can be any nonempty H

μ
j . �

In situations (2) or (3), we shall apply:

Lemma 4.11. Suppose that g ∈ C(X× (ω1 + 1),L), where L is a compact LOTS and X is compact, and suppose that
g(x, ξ) < g(x,η) for each x ∈X and each ξ < η < ω1. Let h(x)= g(x,ω1). Then h(X) is finite.

Proof. Assume that h(X) is infinite. Then, choose cn ∈ X for n ∈ ω such that the sequence 〈h(cn): n ∈ ω〉 is either
increasing strictly or decreasing strictly. Let c ∈X be any limit point of 〈cn: n ∈ ω〉, and note that h(cn)→ h(c). Also
note that h(x)= sup{g(x, ξ): ξ < ω1} for every x. Consider the two cases:

Case 1. 〈h(cn): n ∈ ω〉 is increasing strictly. Then we can fix a large enough countable γ such that g(cn,ω1) <

g(cn+1, γ ) for all n. Then we have the ω-sequence, g(c0, γ ) < g(c0,ω1) < g(c1, γ ) < g(c1,ω1) < g(c2, γ ) <

g(c2,ω1) < · · ·, whose limit must be g(c, γ )= g(c,ω1), contradicting g(c, γ ) < g(c,ω1),
Case 2. 〈h(cn): n ∈ ω〉 is decreasing strictly. Then we can fix a large enough countable γ such that g(cn, γ ) >

g(cn+1,ω1) for all n. Then we have the ω-sequence, g(c0,ω1) > g(c0, γ ) > g(c1,ω1) > g(c1, γ ) > g(c2,ω1) >

g(c2, γ ) > · · ·, whose limit must be g(c,ω1)= g(c, γ ), contradicting g(c,ω1) > g(c, γ ). �
Now if h(X) is finite, we can always shrink X to a U on which h is constant. Then note that if h(b) = h(c) and

ξ �→ g(x, ξ) is always an increasing function, then there is a club on which g(b, ξ) = g(c, ξ). Putting these last two
lemmas together, we get:

Lemma 4.12. Suppose that f ∈ C(X× (ω1 + 1)m,L), where L is a compact LOTS and X is compact, nonempty, first
countable, and separable. Then there is a club C ⊆ ω1 and a nonempty open U ⊆X such that either:

(1) For some j ∈ {1,2, . . . ,m} and some continuous g :C → L: f (x, �α) = g(αj ) for all x ∈ U and all �α ∈ [C]m↑
and g is either strictly increasing or strictly decreasing, or

(2) For some h ∈ C(U,L): f (x, �α)= h(x) for all x ∈U and all �α ∈ [C]m↑.

Lemma 4.13. Assume that X is compact, perfect, first countable, and separable, and Ldim(X× (ω1 +1)m) � n. Then
n > m and there is a nonempty open U ⊆X such that Ldim0(U) � n−m.

Proof. First, restricting everything to the closure of an open box, we may assume that Ldim0(X × (ω1 + 1)m) � n.
Fix a continuous 1–1 f :X× (ω1 + 1)m →∏n

r=1 Lr , where each Lr is a compact LOTS. Applying Lemma 4.12 to
the projections, fr :X× (ω1 +1)m → Lr , and permuting the Lr , we obtain a club C and a U such that on U ×[C]m↑:

f (x, �α)= (
g1(αj1), . . . , gp(αjp ), h1(x), . . . , hq(x)

)
,

where p + q = n. Then {j1, . . . , jp} = {1, . . . ,m}, since f is 1–1. Thus, p � m, so q � n−m, and for any fixed �α,
the map x �→ (h1(x), . . . , hq(x)) embeds U into

∏q

i=1 Lp+i . �
Proof of Theorem 4.4. Let n = Ldim(

∏s
j=1 Zj ). Clearly n � s. To prove that n � s, we may replace each Zj by

a closed subset and assume that Zj = ω1 + 1 when r + 1 � j � s, while Zj = Dj when 1 � j � r . We may also
assume that whenever Zj = Dj is not second countable, no open interval in Zj is second countable (since there
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is always a closed subspace with this property). Let X = ∏r
j=1 Zj , and apply Lemma 4.13 to obtain U ⊆ X with

Ldim(U) � n−m. Since Ldim(U)= r by Lemma 4.5, we have r � n−m, so s = r +m � n. �
Note that this theorem does not cover all possible products of LOTSes. For example, one can show by a direct

argument that Ldim((ω+1)× IS)= 2 whenever S is uncountable, although (ω+1)× IS is dissipated, so the methods
used in the proof of Theorem 4.4 do not apply. Also, Theorem 4.4 says nothing about Aronszajn lines, which have
neither an increasing or decreasing ω1-sequence, nor a countable subset whose closure is not second countable. In
particular, it is not clear whether one can have a product of three compact Aronszajn lines which is embeddable into
a product of two LOTSes.

In some sense, this “dimension theory” for products of totally disconnected LOTSes is more restrictive, not less
restrictive, than the classical dimension theory for In, since there is also a limitation on dimension-raising maps. For
example, Peano [18] shows how to map I onto I 2, but his map has many changes of direction, so it does not define a
map from IS onto (IS)2. In fact, this is impossible:

Proposition 4.14. If S is uncountable, then there is no compact LOTS L such that L maps continuously onto (IS)2.

Proof. Say f :L � (IS)2. Replacing L by a closed subset, we may assume that f is irreducible. Then, L must be
separable, since (IS)2 is separable. It follows (see Lutzer and Bennett [17]) that L is hereditarily separable, which
implies (by continuity of f ) that (IS)2 is hereditarily separable, which is false. �

We do not know whether, for example, one can map L2 onto (IS)3. Again, we may assume that L is separable, so
that L2 is 3-dissipated, while (IS)3 is not even 4-dissipated. However, as we know from Example 3.13, a continuous
image of a 3-dissipated space need not be even c-dissipated.

5. Measures, L-spaces, and S-spaces

As usual, if X is compact, a Radon measure on X is a finite positive regular Borel measure on X, and if f :X → Y

and μ is a measure on X, then μf−1 denotes the induced measure ν on Y , defined by ν(B) = μ(f−1(B)). We shall
prove some results relating μ to ν in the case that f is tight, and use this to prove that Radon measures on dissipated
spaces are separable. We shall also make some remarks on compact L-spaces and S-spaces which are dissipated.

Definition 5.1. For any space X, ro(X) denotes the regular open algebra of X. If B is any boolean algebra and b ∈ B
with b �= 0, then b↓ denotes the algebra {x ∈ B: x � b}; so 1b↓ = b. A Suslin algebra is an atomless ccc complete
boolean algebra which is (ω,ω)-distributive.

So, there is a Suslin tree iff there is a Suslin algebra. We shall prove:

Theorem 5.2. If X is compact, ccc, not separable, and ℵ0-dissipated, then in ro(X) there is a non-zero b such that b↓
is a Suslin algebra.

Of course, this is well-known in the case where X is a LOTS, and is part of the proof that a Suslin line yields a
Suslin tree. Since a Suslin line is a compact L-space and is 2-dissipated (by Lemma 3.4), we have

Corollary 5.3. There is an ℵ0-dissipated compact L-space iff there is a Suslin line.

As usual, the support of a Radon measure μ is the smallest closed H ⊆ X such that μ(H) = μ(X). For this H ,
ro(H) cannot be a Suslin algebra, so

Corollary 5.4. If X is ℵ0-dissipated, then the support of every Radon measure on X is a separable topological space.

In these two corollaries, the “ℵ0” cannot be replaced by “ℵ1”, since the usual compact L-space construction shows
the following (see Section 6 for a proof):
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Proposition 5.5. CH implies that there is a compact L-space X which is both c-dissipated and the support of a Radon
measure μ. Furthermore, μ is atomless, and, in X, the ideals of null subsets, meager subsets, and separable subsets
all coincide.

Turning to compact S-spaces, the usual CH construction [14] yields one which is scattered, and hence dissipated.
Less trivially, the construction of Fedorčuk [7] shows, under ♦, that there is a dissipated compact S-space with no
isolated points and no non-trivial convergent ω-sequences; see Section 6 for further remarks on this construction.

Proof of Theorem 5.2. Since X is ccc, we may replace X by some regular closed set and assume that X is nowhere
separable—that is, the closure of every countable subset is nowhere dense. Assume that in ro(X) no b↓ is Suslin, and
we shall derive a contradiction.

Since X is ccc, the fact that no b↓ is Suslin implies that there are open Fσ sets V
j
n for n, j ∈ ω such that for each n,

the V
j
n for j ∈ ω are disjoint and

⋃
j V

j
n is dense, and such that for each ϕ ∈ ωω,

⋂
n V

ϕ(n)
n has empty interior. There

is then a compact metric Y and an f :X � Y such that V
j
n = f−1(f (V

j
n )) for each n, j . Note that this implies that

each f (V
j
n ) is open, since f (V

j
n )= Y \ f (X\V j

n ).
Replacing f by a finer map, we may also assume that f is ℵ0-tight.
Observe that f−1{y} is nowhere dense for each y ∈ Y , since either f−1{y} ⊆ ⋂

n V
ϕ(n)
n for some ϕ ∈ ωω, or

f−1{y} ⊆X \⋃
j V

j
n for some n.

Now, construct open Us ⊆ X and closed Ks ⊆ X for s ∈ 2<ω as follows: U() = X, and each Us�i ⊆ Us\Ks ,
with f (Us�0) ∩ f (Us�1) = ∅. Also, Ks ⊆ Us , with f (Ks) = f (Us) and f �Ks � f (Ks) irreducible. Note that Ks

is separable and Us is nowhere separable, so that the construction can continue. More specifically, to choose Us�0
and Us�1: First, find p0,p1 ∈ Us\Ks such that f (p0) �= f (p1); this is possible since otherwise we would have
f (Us\Ks)⊆ {y}, contradicting the fact that f−1{y} is nowhere dense. Next, find open Wi ⊆ Y with f (pi) ∈Wi and
W0 ∩W1 = ∅. Then, choose Us�i with Us�i ⊆Us�i ⊆ (Us\Ks)∩ f−1(Wi).

Let Qn = ⋃{f (Ks): s ∈ 2n}, and let Q = ⋂
n Qn, which is a non-scattered subset of Y . Let Pn = f−1(Q) ∩⋃{Ks : s ∈ 2n}. Then the Pn are disjoint and each f (Pn)=Q, contradicting the ℵ0-tightness of f . �

To study measures further, we use the following standard definitions:

Definition 5.6. If μ is any finite measure on X, then ma(μ) denotes the measure algebra of μ—that is, the algebra
of measurable sets modulo the null sets. If f :X → Y , μ is a finite measure on X, and ν = μf−1, then f ∗ : ma(ν)→
ma(μ) is defined by f ∗([A])= [f−1(A)].

ma(μ) is a complete metric space with metric d([A], [B]) = μ(A�B), where [A], [B] denote the equivalence
classes of the sets A,B . Note that we do not require f to be onto here, although Y\f (X) is a ν–null set. f ∗ is an
isometric isomorphism onto some complete subalgebra f ∗(ma(ν))⊆ ma(μ).

As usual, a measure μ on X is separable iff Lp(μ) is a separable metric space for some (equivalently, for all)
p ∈ [1,∞). Also μ is separable iff ma(μ) is a separable metric space iff ma(μ) is countably generated as a complete
boolean algebra. Separability of μ is not related in any simple way to the separability of any topology that X may
have. Following [6]:

Definition 5.7. MS is the class of all compact spaces X such that every Radon measure on X is separable.

We shall prove:

Theorem 5.8. If X is a weakly c-dissipated space then X is in MS.

In view of Lemma 3.4, Theorem 5.8 generalizes the result from [6] that every compact LOTS is in MS. Note that
a space in MS need not be c-dissipated. For example, MS is closed under countable products (see [6]), but an infinite
product of non-metric compacta is never weakly c-dissipated (see Theorem 3.8).

Theorem 5.8 will be an easy corollary of some general results about measures induced by weakly c-tight f :X � Y ,
where X,Y are compact. Say μ is a Radon measure on X, with ν = μf−1. Even if f is tight (i.e., 2-tight), the
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separability of ν does not imply the separability of μ; for example, ν may be a point mass concentrating on {y}, in
which case μ can be any measure supported on f−1{y} with μ(f−1{y})= ν{y}. However, if ν is atomless, then the
form of ν will restrict the form of μ. There are really two kinds of ways that ν might determine μ. We shall denote
the stronger way as “X is skinny” and the weaker way as “X is slim”. We shall define “skinny” and “slim” also for
arbitrary closed subsets of X:

Definition 5.9. Suppose that X,Y are compact, f :X → Y , μ is a Radon measure on X, and ν = μf−1. Then:

• X is skinny with respect to f,μ iff for all closed K ⊆X, μ(K)= ν(f (K)).
• X is slim with respect to f,μ iff f ∗ : ma(ν)→ ma(μ) maps onto ma(μ).

If H is a closed subset of X, then we say that H is skinny (resp., slim) with respect to f,μ iff H is skinny (resp., slim)
with respect to f �H,μ�H .

Note that the equation μ(K)= ν(f (K)) shows that if X is skinny, then ν determines μ; there is no Radon measure
μ′ �= μ such that ν = μ′f−1.

Lemma 5.10. If X is skinny with respect to f,μ, then X is slim.

Proof. If K ⊆X is closed, then μ(K)= μ(f−1(f (K))) implies that [K] = [f−1(f (K))] = f ∗([f (K)]) in ma(μ).
Thus, [K] ∈ ran(f ∗) for all closed K ⊆X, which implies that f ∗ is onto. �

The converse is false. For example, suppose that H is a closed subset of X such that μ is supported on H and f �H
is 1–1. Then X is slim, since ma(μ)∼= ma(μ�H), but X need not be skinny, since there may well be closed K disjoint
from H with X = f−1(f (K)); then μ(K) = 0 but ν(f (K)) = μ(X). In this example, H is skinny with respect to
f,μ. Some examples of skinny sets on which the function f is not 1–1 are given by:

Lemma 5.11. Suppose that X,Y are compact, f :X → Y is tight, μ is a Radon measure on X, and ν = μf−1 is
atomless. Then X is skinny with respect to f,μ.

Proof. If X is not skinny, fix a closed K ⊆X with μ(K) < ν(f (K)), so that μ(f−1(f (K)) \K) > 0. Then choose a
closed L⊆ f−1(f (K))\K with μ(L) > 0. Then K,L are disjoint in X and ν(f (K)∩f (L))= ν(f (L)) � μ(L) > 0,
so f (K)∩ f (L) cannot be scattered, since ν is atomless, so f is not tight. �

One cannot replace “tight” by “3-tight” here. For example, say X = Y ×{0,1}, with f the natural projection, which
is 2-tight. If ν is any Radon measure on Y , and on X we let μ(E0 × {0} ∪E1 × {1})= 1

2 (ν(E0)+ ν(E1)), then X is
not skinny (or even slim). Here, X is the union of two skinny subsets, and this situation generalized to:

Lemma 5.12. Suppose that X,Y are compact, f :X � Y is ℵ0-tight and μ is a Radon measure on X with μf−1

atomless. Then there is a countable family H of disjoint skinny subsets of X such that μ(X)=∑{μ(H): H ∈H}.
Proof. If this fails, then the usual exhaustion argument lets us shrink X and assume that μ(X) > 0 and there are no
closed skinny H ⊆X of positive measure. We now build an infinite loose family as follows:

Construct a tree of closed Hs ⊆ X for s ∈ 2<ω; so Hs�0,Hs�1 will be disjoint closed subsets of Hs , and also
f (Hs�0)∩ f (Hs�1)= ∅. Each Hs will have positive measure. H() can be X.

Given Hs : Since Hs is not skinny, we can choose a closed Ks ⊂Hs with μ(Hs ∩ (f−1(f (Ks)) \Ks)) > 0. Then,
since μ is regular and μf−1 is atomless, we can choose closed Hs�0,Hs�1 ⊆ Hs ∩ (f−1(f (Ks)) \ Ks) with each
μ(Hs�i) > 0 and f (Hs�0)∩ f (Hs�1)= ∅.

Now, let Qn =⋃{f (Hs): s ∈ 2n} and let Q=⋂
n Qn; so, Q is non-scattered. Let Pn = f−1(Q)∩⋃{Ks : s ∈ 2n}.

Then {Pn: n ∈ ω} is a loose family. �
It follows that the measure algebra of μ is a countable sum of measure algebras isomorphic to algebras derived

from measures on Y . Note that the Ks in this proof may be null sets, so one cannot split them also to obtain a loose
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family of size c, as we did in the proof of Lemma 2.18. In fact, the L-space of Proposition 5.5 shows that one cannot
weaken “ℵ0-tight” to “ℵ1-tight” in this lemma. To see this, note that μ is a separable measure on X by Theorem 5.8,
so one can get an f :X � Y such that Y is compact metric, ν = μf−1 atomless, and f ∗(ma(ν))= ma(μ). Since X is
ℵ1-dissipated, one can refine f and assume also that f is ℵ1-tight. Now, if H is skinny, let K be a closed subset of H

such that f (K) = f (H) and f �K :K � f (H) is irreducible. Then K is separable and hence null (by the properties
of X), and μ(H)= μ(K) (since H is skinny), so μ(H)= 0. Thus, there cannot be a family H as in Lemma 5.12.

However, the analogous result with “slim” (Theorem 5.14) just uses c-tightness.

Definition 5.13. Suppose that X,Y are compact, f :X → Y , and μ is a Radon measure on X. Then X is simple with
respect to f,μ iff there is a countable disjoint family H of slim subsets of X such that

∑{μ(H): H ∈H} = μ(X).

We shall prove:

Theorem 5.14. Suppose that X,Y are compact, f :X → Y , and μ is a Radon measure on X, with ν = μf−1, and
suppose that X is not simple with respect to f,μ. Then there is a ϕ : dom(ϕ) → 2ω, where dom(ϕ) is closed in X,
such that for some closed Q⊆ Y , ν(Q) > 0 and ϕ(f−1{y})= 2ω for all y ∈Q. In particular, if ν is atomless, then f

is not weakly c-tight.

In proving this, the notion of conditional expectation (see [9], §48) will be useful in comparing the induced measure
(μ�S)f−1 to ν for various S ⊆X:

Definition 5.15. Suppose that f :X → Y , with X,Y compact, μ is a measure on X and ν = μf−1. If S is a measurable
subset of X, then the conditional expectation, E(S|f ) = Eμ(S|f ), is the measurable ϕ :Y → [0,1] defined so that∫
A

ϕ(y)dν(y)= μ(f−1(A)∩ S) for all measurable A⊆ Y .

Of course, ϕ is only defined up to equivalence in L∞(ν). Conditional expectations are usually defined for proba-
bility measures, but they make sense in general for finite measures; actually, Eμ(S|f )= Ecμ(S|f ) for any non-zero c.
Note that

∫
A

ϕ(y)dν(y)= ∫
f−1(A)

ϕ(f (x))dμ(x). We may also characterize ϕ = Eμ(S|f ) by the equation:∫
S

g
(
f (x)

)
dμ(x)=

∫
X

ϕ
(
f (x)

)
g
(
f (x)

)
dμ(x)=

∫
Y

ϕ(y)g(y)dν(y).

for g ∈ L1(Y, ν). ϕ is obtained either by the Radon–Nikodym Theorem, or, equivalently, by identifying (L1(Y, ν))∗
with L∞(Y, ν), since Γ (g) := ∫

S
g(f (x))dx defines Γ ∈ (L1(Y, ν))∗, with ‖Γ ‖� 1.

Now, given μ on X and f :X → Y , we shall consider various closed subsets H ⊆X while studying the tightness
properties of f . When S ⊆ H ⊆ X, one must be careful to distinguish Eμ(S|f ) (computed using μ and f :X → Y )
from Eμ�H (S|f �H) (computed using μ�H and f �H :H → Y ). These are related by:

Lemma 5.16. Suppose that f :X → Y , with X,Y compact, H is a closed subset of X, and μ is a Radon measure
on X. Let S be a measurable subset of H . Then Eμ(S|f )= Eμ(H |f ) ·Eμ�H (S|f �H).

Proof. Let ϕ = Eμ(S|f ), ψ = Eμ(H |f ), and γ = Eμ�H (S|f �H). We may take these to be bounded Borel-
measurable functions from Y to R. For any bounded Borel-measurable g :Y →R, we have∫

S

g
(
f (x)

)
dμ(x)=

∫
X

ϕ
(
f (x)

)
g
(
f (x)

)
dμ(x),

∫
H

g
(
f (x)

)
dμ(x)=

∫
X

ψ
(
f (x)

)
g
(
f (x)

)
dμ(x),

∫
S

g
(
f (x)

)
dμ(x)=

∫
H

γ
(
f (x)

)
g
(
f (x)

)
dμ(x)=

∫
X

ψ
(
f (x)

)
γ
(
f (x)

)
g
(
f (x)

)
dμ(x),

which yields ϕ =ψγ . �
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We now relate conditional expectations to slimness:

Lemma 5.17. Suppose that X,Y are compact, f :X → Y , and μ is a measure on X, with ν = μf−1. Let S ⊆ X be
measurable. Then [S] ∈ ran(f ∗) iff [E(S|f )] = [χT ] for some measurable T ⊆ Y , in which case [S] = f ∗([T ]).

Proof. For →: If [S] = f ∗([T ]) then μ(S�f−1(T ))= 0, which implies E(S|f )= E(f−1(T )|f )= χT .
For ←: If [E(S|f )] = [χT ] then μ(f−1(A) ∩ S) = ν(A ∩ T ) for all measurable A ⊆ Y . Setting A = Y\T , we

get μ(S\f−1(T )) = 0, so [S] � [f−1(T )]. Setting A = T , we get μ(S ∩ f−1(T )) = ν(T ) = μ(f−1(T )), so [S] �
[f−1(T )]. �

In particular, X is slim with respect to f,μ iff every E(S|f ) is the characteristic function of a set; this remark will
be useful when applied also to μ�H for various H ⊆X.

Lemma 5.18. Suppose that X,Y are compact, f :X → Y , and μ is a measure on X, with ν = μf−1, and suppose
that X is not slim with respect to f,μ. Then there are disjoint closed H0,H1 ⊆ X with f (H0) = f (H1) = K , such
that ν(K) > 0 and, for i = 0,1, 0 < E(Hi |f )(y) < 1 for a.e. y ∈K .

Proof. First, let H̃0 ⊆X be closed with [H0] /∈ ran(f ∗). We can then, by Lemma 5.17, get a closed K̃ ⊆ f (H̃0) with
ν(K̃) > 0 and E(H̃0|f )(y) ∈ (0,1) for a.e. y ∈ K̃ . Then, choose a closed H̃1 ⊆ f−1(K̃)\H̃0 with μ(H̃1) > 0. Then,
choose a closed K ⊆ f̃ (H̃1) with ν(K) > 0 and E(H̃1|f )(y) > 0 for a.e. y ∈K , and let Hi = H̃i ∩ f−1(K). �

We now consider the opposite of slim:

Definition 5.19. X is nowhere slim with respect to f,μ iff there is no closed H ⊆ X with μ(H) > 0 such that H is
slim with respect to f,μ.

Lemma 5.20. Suppose that X,Y are compact, f :X → Y , and μ is a measure on X, with ν = μf−1, and suppose that
X is nowhere slim with respect to f,μ. Fix ε > 0. Then there are disjoint closed H0,H1 ⊆X with f (H0)= f (H1)=
K , such that ν(Y\K) < ε and, for i = 0,1, 0 < E(Hi |f )(y) < 1 for a.e. y ∈K .

Proof. Fix K such that

(1) K is a disjoint family of non-null closed subsets of Y .
(2) For K ∈ K, there are disjoint closed HK

0 ,HK
1 ⊆ X with f (HK

0 ) = f (HK
1 ) = K , and, for i = 0,1, 0 <

E(HK
i |f )(y) < 1 for a.e. y ∈K .

(3) K is maximal with respect to (1), (2).

Then K is countable. If ν(Y\⋃
K) = 0, choose a finite K′ ⊆ K such that ν(Y\⋃

K′) < ε, set K = ⋃
K′, and set

Hi = ⋃{HK
i : K ∈ K′}. If ν(Y\⋃

K) �= 0, choose a closed E ⊆ Y\⋃
K with ν(E) > 0, and use Lemma 5.18 to

derive a contradiction from maximality of K and the fact that f−1(E) is not slim. �
We can now use a tree argument to prove Theorem 5.14:

Proof of Theorem 5.14. Since f is not simple, there must be a closed H ⊆ X such that H is nowhere slim with
respect to μ�H,f �H . Restricting everything to H , we may assume that X itself is nowhere slim. Also, without loss
of generality μ(X)= ν(Y )= 1 and f (X)= Y . Now, get Ps ⊆X for s ∈ 2<ω and Qn ⊆ Y for n ∈ ω so that:

(1) P() =X and Q0 = Y .
(2) Ps is closed in X and Qn is closed in Y .
(3) Qn =⋂{f (Ps): lh(s)= n}.
(4) Ps�0 and Ps�1 are disjoint subsets of Ps .
(5) ν(f (Ps) \ f (Ps�i)) � 6−n−1 when lh(s)= n and i = 0,1.
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(6) Qn+1 ⊆Qn and ν(Qn\Qn+1) � 2n+1 · 6−n−1 = 3−n−1.
(7) Eμ(Ps |f )(y) > 0 for ν-a.e. y ∈ f (Ps).

Assuming that this can be done, let Q=⋂
n Qn. Q⊆ f (Ps) for all s ∈ 2<ω, so for t ∈ 2ω, let Pt = f−1(Q)∩⋂

n Pt�n.
Then the Pt are disjoint and f (Pt ) = Q for all t . Also, μ(Q) � 1 − 1/3 − 1/9 − 1/27 − · · · = 1/2. Let dom(ϕ) =⋃

t Pt , with ϕ(x)= t for x ∈ Pt .
Now, to do the construction, note first that (6) follows from (3)–(5). We proceed by induction on lh(s), using (7)

to accomplish the splitting. For lh(s)= 0, (1)–(3), (7) are trivial, since E(X|f )(y)= 1 for a.e. y ∈ Y . Now fix s with
lh(s) = n. We obtain Ps�0 and Ps�1 by applying Lemma 5.20, with the X,Y there replaced by Ps,f (Ps); but then
we must replace ν by λ := (μ�Ps)(f �Ps)

−1 on f (Ps). Let ϕ = Eμ(Ps |f ); then, by (7) for Ps , ϕ(y) > 0 for ν–a.e.
y ∈ f (Ps); also ϕ(y) = 0 for a.e. y /∈ f (Ps), and

∫
A

ϕ(y)dν(y) = μ(f−1(A) ∩ Ps) = λ(A) for all measurable A ⊆
f (Ps). Fix δ > 0 such that ν({y ∈ f (Ps): ϕ(y) < δ}) � 6−n−1/2. Now apply Lemma 5.20 to get closed Ps�0,Ps�1
satisfying (4) with Ks := f (Ps�0) = f (Ps�1) so that, for i = 0,1, Eμ�Ps

(Ps�i |f �Ps)(y) > 0 for λ-a.e. y ∈ Ks , and
λ(f (Ps)\Ks) < δ · 6−n−1/2. Now, by Lemma 5.16, Eμ(Ps�i |f )= ϕ ·Eμ�Ps

(Ps�i |f �Ps), which yields (7) for Ps�i .
To obtain (5), let A= f (Ps)\Ks . we need ν(A) � 6−n−1, and we have

∫
A

ϕ(y)dν(y)= λ(A) < δ ·6−n−1/2. Let A=
A′ ∪A′′, where ϕ < δ on A′ and ϕ � δ on A′′. Then ν(A′) � 6−n−1/2 and ν(A′′) � (1/δ)

∫
A′′ ϕ(y)dν(y) � 6−n−1/2,

so ν(A) � 6−n−1. �
Corollary 5.21. Suppose that X,Y are compact, f :X � Y is weakly c-tight, and μ is a Radon measure on X, with
ν = μf−1 atomless and separable. Then μ is separable.

Proof. X is simple with respect to f,μ, by Theorem 5.14, which implies that ma(μ) is a countable disjoint sum of
separable measure algebras. �
Proof of Theorem 5.8. Assume that μ is a non-separable Radon measure on X; we shall derive a contradiction. By
subtracting the point masses, we may assume that μ is atomless.

First, fix a compact metric Z and a g :X � Z such that μg−1 is atomless. This is easily done by an elementary
submodel argument. More concretely, one can assume that X ⊆ [0,1]κ ; then g = πκ

d for a suitably chosen countable
d ⊆ κ . We construct d as

⋃
i di , where the di are finite and nonempty and d0 ⊆ d1 ⊆ · · ·. Given di , we have the space

Zi = πκ
di

(X), with measure νi = μ(πκ
di

)−1. Let {F�
i : � ∈ ω} be a family of closed non-null subsets of Zi which is

dense in the measure algebra, and make sure that for each �, there is some j > i such that Zj contains a closed set

K ⊆ (π
dj

di
)−1(F �

i ) with νj (K)/μi(F
�
i ) ∈ (1/3,2/3).

Let f :X � Y be weakly c-tight, where Y is metric and f is finer than g. We then have Γ ∈ C(Y,Z) such that
g = Γ ◦ f , so μg−1 = (μf−1)Γ −1, so μf−1 is atomless. Also, μf−1 is separable because Y is metric, contradicting
Corollary 5.21. �
6. Inverse limits

Some compacta built as inverse limits in ω1 steps are dissipated. We avoid explicit use of the inverse limit by
viewing X as a subspace of some Mω1 , so the bonding maps in the inverse limit will be the projection maps.

Definition 6.1. For any space M and ordinals α � β: π
β
α :Mβ � Mα denotes the natural projection.

Theorem 6.2. Let M be compact metric, and suppose that X is a closed subset of Mω1 . Let Xα = π
ω1
α (X). Assume

that for each α < ω1, the map πα+1
α �Xα+1 :Xα+1 � Xα is tight. Then

(1) For each α < β � ω1, the map π
β
α �Xβ :Xβ � Xα is tight.

(2) X is dissipated.

Proof. For (1), fix α and induct on β . For successor stages, use Lemma 2.13. For limit β > α, use the fact that if
P0,P1 are disjoint closed subsets of Xβ , then there is a δ with α < δ < β and π

β
(P0)∩ π

β
(P1)= ∅.
δ δ
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For (2), observe that given g :X � Z, with Z metric, there is an α < ω1 with π
ω1
α �X finer than g. Now, use the

fact that all π
ω1
β �X are tight. �

The proof of (2) did not actually require all π
ω1
β �X to be tight; we only needed unboundedly many. More generally,

the definition of “dissipated” requires the family of tight maps to be unbounded, but it does not necessarily contain
a club, although it does contain a club in the “natural” examples of dissipated spaces. We first point out an example
where the tight maps do not contain a club. Then we shall formulate precisely what “contains a club” means.

Example 6.3. There is a closed X ⊆ 2ω1 such that, setting Xα = π
ω1
α (X):

(a) X is dissipated
(b) For all α < ω1, π

ω1
α �X :X � Xα is tight iff α is not a limit ordinal.

Proof. First note that (b) → (a) because whenever g :X → Z, with Z metric, there is always an α < ω1 with
π

ω1
α �X � g. Then π

ω1
α+1�X � π

ω1
α �X � g and π

ω1
α+1�X is tight.

To prove (b), we use a standard inverse limit construction, building Xα by induction on α. We shall have:

(1) Xα is a closed subset of 2α for all α � ω1, and X =Xω1 .

(2) Xα = π
β
α (Xβ) whenever α � β � ω1.

(3) Xα = 2α for α � ω.
(4) For α < ω1: Xα+1 =Xα × {0} ∪ Fα × {1}, where Fα is a closed subset of Xα .
(5) Fγ is a perfect set for all limit γ < ω1.
(6) πα

δ (Fα) is finite whenever δ < α < ω1.
(7) Whenever δ < α < ω1 and δ is a successor ordinal, there is an n with 0 < n < ω such that πα+n

δ+1 (Fα+n) =
Fδ × {0,1}.

Conditions (1), (2) imply that Xγ , for limit γ , is determined by the Xα for α < γ ; then, by (4), the whole construction
is determined by the choice of the Fα ⊆ Xα ; as usual, in stating (4), we are identifying 2α+1 with 2α × {0,1}. By
(3), Fα = Xα when α < ω. By (6), Fα is finite for successor α. Conditions (1)–(6) are sufficient to verify (b) of the
theorem, but (7) was added to ensure that the construction can be carried out. Using (7), it is easy to construct Fγ

for limit γ to satisfy (5)–(7) itself is easy to ensure by a standard enumeration argument, since there are no further
restrictions on the finite sets Fα+n ⊆Xα+n when n > 0.

To verify (b): If α < ω1 is a limit ordinal, then (4), (5) guarantee that π
ω1
α �X :X � Xα is not tight. Now, fix

a successor α < ω. We prove by induction that π
β
α �Xβ :Xβ � Xα is tight whenever α � β � ω1. This is trivial

when β = α. If β > α is a limit ordinal and π
β
α �Xβ fails to be tight, then we have disjoint closed P0,P1 ⊂ Xβ with

Q= π
β
α (P0)= π

β
α (P1) and Q not scattered; but then there is a δ with β > δ > α such that π

β
δ (P0)∩π

β
δ (P1)= ∅, and

then the π
β
δ (Pi) refute the tightness of πδ

α .

Finally, assume that α � β < ω1 and that π
β
α �Xβ is tight. We shall prove that π

β+1
α �Xβ+1 is tight. If β is a

successor, we note that π
β+1
β �Xβ+1 is tight because Fβ is finite, so that π

β+1
α �Xβ+1 = π

β
α �Xβ ◦ π

β+1
β �Xβ+1 is tight

by Lemma 2.13. Now, assume that β is a limit (so α < β) and that π
β+1
α �Xβ+1 is not tight. Fix disjoint closed

P0,P1 ⊂ Xβ+1 with Q= π
β+1
α (P0) = π

β+1
α (P1) and Q not scattered. Since π

β
α (Fβ) is finite, we may shrink Q and

the Pi and assume that Q ∩ π
β
α (Fβ) = ∅. Then π

β+1
β (Pi) ∩ Fβ = ∅, so that π

β+1
β (P0) ∩ π

β+1
β (P1) = ∅, and the

π
β+1
β (Pi) contradict the tightness of π

β
α �Xβ . �

There are various equivalent ways to formulate “contains a club”; the following is probably the quickest to state:

Definition 6.4. The compact X is wasted iff whenever θ is a suitably large regular cardinal and M ≺H(θ) is countable
and contains X and its topology, the natural evaluation map πM :X →[0,1]C(X,[0,1])∩M is tight.
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For the X of Example 6.3, no πM is tight, since πM is equivalent to π
ω1
γ , where γ = ω1 ∩ M . The X of Theo-

rem 6.2 is wasted, as is every compact LOTS. A notion intermediate between “dissipated” and “wasted” is obtained
by requiring πM to be tight for a stationary set of M ≺H(θ).

In Theorem 6.2: since Xα+1 and Xα are compact metric, the assumption that πα+1
α is tight is equivalent to saying

that {y ∈Xα: |(πα+1
α )−1{y} ∩Xα+1|> 1} is countable (see Theorem 2.7). In the constructions of [7,11,12], this set is

actually a singleton. In some cases, the spaces are also minimally generated in the sense Koppelberg [15] and Dow [4]:

Definition 6.5. Let X,Y be compact. Then f :X � Y is minimal iff |f−1{y}| = 1 for all y ∈ Y except for one y0, for
which |f−1{y0}| = 2.

We remark that this is the same as minimality in the sense that if f = g ◦ h, where h :X � Z and g :Z � Y , then
either g or h is a bijection. Clearly, every minimal map is tight.

Definition 6.6. X is minimally generated iff X is a closed subspace of some 2ρ , where, setting Xα = π
ρ
α (X), all the

maps πα+1
α �Xα+1 :Xα+1 � Xα , for α < ρ, are minimal.

Examples of such spaces are the Fedorčuk S-space [7], obtained under ♦ (here, ρ = ω1), and the Efimov spaces
obtained by Fedorčuk [8] and Dow [4], where ρ > ω1.

Clearly, if ρ = ω1, then X must be dissipated by Theorem 6.2, but this need not be true for ρ > ω1. For example, if
A(ℵ1) is the 1-point compactification of a discrete space of size ℵ1, and X =A(ℵ1)× 2ω, then X is not ℵ1-dissipated
by Lemma 3.6, but X is minimally generated, with ρ = ω1 +ω.

Note that if we weaken “tight” to “3-tight” in Theorem 6.2, we get nothing of any interest in general. In fact, if
M = 2 = {0,1} and each Xα =Mα , then all πα+1

α �Xα+1 are 3-tight, but X is not weakly c-dissipated by Theorem 3.8.
However, one can in some cases use an inverse limit construction build a space which is ℵ0-dissipated:

Proof of Proposition 5.5. We modify the standard construction of a compact L-space under CH, following specifi-
cally the details in [16]; similar constructions are in Haydon [13] and Talagrand [19]. So, X will be a closed subset
of 2ω1 .

We inductively define Xα ⊆ 2α , for ω � α � ω1, along with an atomless Radon probability measure μα on Xα such
that the support of μα is all of Xα . Let Xω = 2ω with μω the usual product measure. The measures will all cohere,
in the sense that μα = μβ(π

β
α )−1 whenever α < β . Along with the measures, we choose a countable family Fα of

closed μα-null subsets of Xα and a specific closed nowhere dense non-null Kα ⊆ Xα . When α < β < ω1, Fβ will

contain (π
β
α )−1(F ) for all F ∈ Fβ , along with some additional sets. Since Fα is countable, we can choose a perfect

Cα ⊆ Kα such that μα(Cα) > 0, Cα is the support of μα�Cα , and Cα ∩ F = ∅ for all F ∈ Fα . Then we let Xα+1 =
Xα × {0} ∪ Cα × {1}. In the construction of [16], μα+1 can be chosen arbitrarily to satisfy μα = μα+1(π

α+1
α )−1, as

long as all nonempty open subsets of Cα × {1} have positive measure; there is some flexibility here in distributing
the measure on Cα among its copies Cα × {0} and Cα × {1}. In particular, depending on the choices made, the final
measure μ = μω1 on X = Xω1 may be separable or non-separable. In any case, [16] shows that, assuming CH, one
may choose the Fα and Kα appropriately to guarantee X is an L-space and that the ideals of null subsets, meager
subsets, and separable subsets all coincide.

Now, always choose μα+1 such that μα+1(Cα × {0}) = 0. This will guarantee that μ on X is separable, with
ma(μ) isomorphic to ma(μω) via (π

ω1
ω )∗. Also, put the set Cα × {0} into Fα+1. Then, for all x ∈Xω, (π

ω1
ω )−1{x} is

scattered (as is easy to verify), and hence countable (since X is HL). But then π
ω1
ω �X :X � Xω is ℵ1-tight, so that X

is ℵ1-dissipated by Lemma 3.5. �
We remark that by Theorem 5.8, we know that the μ of Proposition 5.5 must be separable, so it was natural to

make ma(μ) isomorphic to ma(μω) in the construction.

7. Absoluteness

We shall prove here that tightness is absolute. This can then be applied in forcing arguments, but the absoluteness
itself has nothing at all to do with forcing; it is just a fact about transitive models of ZFC, and is related to the
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absoluteness of Π1
1 statements. Since we never need absoluteness of Π1

2 (Shoenfield’s Theorem), we do not need the
models to contain all the ordinals. So, we consider arbitrary transitive models M,N of ZFC with M ⊆N . If in M , we
have compacta X,Y and f :X → Y , we want to show that f is tight in M iff f is tight in N .

To make this discussion precise, we must, in N , replace X,Y by the corresponding compact spaces X̃, Ỹ . This
concept was described by Bandlow [1] (and later in [5,6,12]), and is defined as follows:

Definition 7.1. Let M ⊆ N be transitive models of ZFC. In M , assume that X is compact. Then X̃ denotes the
compactum in N characterized by:

(1) X is dense in X̃.
(2) Every ϕ ∈ C(X, [0,1])∩M extends to a ϕ̃ ∈ C(X̃, [0,1]) in N .
(3) The functions ϕ̃ (for ϕ ∈M) separate the points of X̃.

If, in M , X,Y are compact and f ∈ C(X,Y ), then in N , f̃ ∈ C(X̃, Ỹ ) denotes the (unique) continuous extension of f .

In forcing,
 
X denotes the X̃ of V [G], while X̌ denotes the X of V [G].

Theorem 7.2. Let M ⊆ N be transitive models of ZFC. In M , assume that X,Y are compact, K is compact metric,
and f :X → Y . Then the following are equivalent:

(1) In M : There is a K-loose function for f .
(2) In N : There is a K̃-loose function for f̃ .

Proof. For (1)→ (2), just observe that if in M , we have ϕ,Q satisfying Definition 2.4 (of K-loose), then ϕ̃, Q̃ satisfy
Definition 2.4 in N .

For ¬(1)→¬(2), we shall define a partial order T in M . We shall then prove that ¬(1) implies the well-founded
of T in M , while the well-founded of T in N implies ¬(2). The result then follows by the absoluteness of well-
foundedness.

As in the proof of Theorem 2.10, let H = [0,1]ω , and assume that K ⊆H . Then the existence of a K-loose function
is equivalent to the existence of a ϕ ∈ C(X,H) such that for some non-scattered Q⊆ Y we have ψ(f−1{y})⊇K for
all y ∈Q.

T is a tree of finite sequences, ordered by extension. T contains the empty sequence and all nonempty sequences〈
(E0,ψ0), (E1,ψ1), . . . , (En−1,ψn−1)

〉
satisfying:

(a) Each ψi ∈ C(X,H).
(b) Each Ei is a disjoint family of 2i nonempty closed subsets of Y .
(c) Whenever y ∈E ∈ Ei and z ∈K : d(z,ψi(f

−1{y})) � 2−i .
(d) When i + 1 < n: d(ψi,ψi+1) � 2i−1, and each E ∈ Ei has exactly two subsets in Ei+1.

In M , if T is not well-founded and 〈(E0,ψ0), (E1,ψ1), . . .〉 is an infinite path through T, then we get ϕ = limi ψi ∈
C(X,H) using (a), (d) and Q=⋂

i

⋃
Ei , which is a non-scattered subset of Y using (b), (d), and (c), (d) implies that

ϕ(f−1{y})⊇K for all y ∈Q, so (1) holds.
Now, suppose, in N , that we have Q,ϕ for which (2) holds; then we construct a path through T. To obtain the ψi

(all of which must be in M), use the fact that {ψ̃ : ψ ∈ C(X,H)M } is dense in C(X̃, H̃ ). Likewise each E ∈ Ei will
be a closed set in M such that Ẽ ∩Q is not scattered. �

Note that Theorem 7.2 says that the existence of the ϕ and Q described in the proof Theorem 2.10 is absolute. The
corresponding “absoluteness version” of Theorem 2.9 is false. For example, suppose that in V , we have X = Y ×K ,
where X,Y,K are compact and non-scattered, and in addition, K has no non-trivial convergent ω-sequences. Then
clearly in V , there can be no perfect Q ⊆ Y and 1–1 map i :Q × (ω + 1) → X such that f (i(q,u)) = q for all
(q, y) ∈Q× (ω+ 1), whereas if V [G] collapses enough cardinals, it will contain such a Q, i.
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An application of the absoluteness result in Theorem 7.2 is:

Proof of Theorem 2.5. Assume that in the universe, V : X and Y are compact, f :X → Y , and we have an infinite
loose family {Pi : i ∈ ω}. Let V [G] be any forcing extension of V which makes the weights of X and Y countable, so
that in V [G], we still have f : X̃ → Ỹ and a loose family {P̃i : i ∈ ω}, but X̃ and Ỹ are now compact metric, so that
Theorem 2.10 gives us an (ω+ 1)-loose function in V [G]. Hence, by absoluteness, there is one in V . �

A direct proof of this can be given without forcing, but it seems quite a bit more complicated, since one must
embed into the proof the method of Suslin used in proving Lemma 2.8; one cannot just quote Suslin’s theorem, since
the spaces are not Polish. Theorem 2.5 is needed for the κ = ω part of:

Corollary 7.3. Fix κ � ω. Let M,N be transitive models of ZFC, with M ⊆ N . Assume that in M we have X,Y,f

with X,Y compact and f :X → Y . Then M |= “f :X → Y is κ-tight” iff N |= “f̃ : X̃ → Ỹ is κ-tight”.

Of course, the ← direction is trivial, and holds for all κ if we rephrase Definition 2.1 appropriately so that κ is
not required to be a cardinal (since “cardinal” is not absolute). That is, if in M , we have a loose family {Pα: α < κ},
then {P̃α: α < κ} is loose in N . For a version of Corollary 7.3 for κ = c, we use the notion of “weakly c-tight” from
Definition 2.6.

Corollary 7.4. Fix κ � ω. Let M,N be transitive models of ZFC, with M ⊆ N . Assume that in M we have X,Y,f

with X,Y compact and f :X → Y . Then M |= “f :X → Y is weakly c-tight” iff N |= “f̃ : X̃ → Ỹ is weakly c-tight”.
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