A new construction of the d-dimensional Buratti-Del Fra dual hyperoval

Hiroaki Taniguchi ${ }^{\text {a }}$, Satoshi Yoshiara ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of General Education, Kagawa National College of Technology, 551 takuma, kagawa, 769-1192, Japan
${ }^{\text {b }}$ Department of Mathematics, Tokyo Women's Christian University, 2-6-1 Zempukuji, Suginami-ku, Tokyo, 167-8585, Japan

ARTICLE INFO

Article history:

Received 17 May 2011
Received in revised form
4 January 2012
Accepted 5 January 2012
Available online 15 February 2012

Abstract

The Buratti-Del Fra dual hyperoval $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ is one of the four known infinite families of simply connected d-dimensional dual hyperovals over \mathbf{F}_{2} with ambient space of vector dimension $(d+1)(d+$ 2) $/ 2$ (Buratti and Del Fra (2003) [1]). A criterion (Proposition 1) is given for a d-dimensional dual hyperoval over \mathbf{F}_{2} to be covered by $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ in terms of the addition formula. Using it, we provide a simpler model of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ (Proposition 3). We also give conditions (Lemma 4) for a collection $\delta[B]$ of $(d+1)$-dimensional subspaces of $K \oplus K$ constructed from a symmetric bilinear form B on $K \cong \mathbf{F}_{2^{d+1}}$ to be a quotient of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$. For when d is even, an explicit form B satisfying these conditions is given. We also provide a proof for the fact that the affine expansion of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ is covered by the halved hypercube (Proposition 10).

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

For a natural number d, a d-dimensional dual hyperoval (d-dual hyperoval, for short) over a finite field \mathbf{F}_{q} is a collection $\&$ of subspaces of a vector space U over \mathbf{F}_{q} which satisfies the following conditions (h0)-(h3):
(h0) Each member X of s has vector dimension $n=d+1$.
(h1) $\operatorname{dim}(X \cap Y)=1$ for any two distinct members X and Y of δ.
(h2) $X \cap Y \cap Z=\{0\}$ for any three mutually distinct members X, Y, Z of s.
(h3) \& consists of $\left(\left(q^{n}-1\right) /(q-1)\right)+1$ members.
The subspace of U spanned by all members of s is called the ambient space of s and denoted as $\mathbf{A}(\delta)$. If $\mathbf{A}(\delta)$ has vector dimension $k+1$, we say that s is a d-dual hyperoval in $\operatorname{PG}(k, q)$.

[^0]For two d-dual hyperovals s_{i} over $\mathbf{F}_{q}(i=1,2)$, we say that s_{1} covers s_{2} (or s_{2} is a quotient of δ_{1}) if there is a surjective semilinear map ρ from $\mathbf{A}\left(\delta_{1}\right)$ to $\mathbf{A}\left(\delta_{2}\right)$ (thus if $q=2, \rho$ is just an \mathbf{F}_{2}-linear surjection) which sends each member of ℓ_{1} bijectively to a member of δ_{2}. If $\delta=\ell_{1}=\wp_{2}$, then a surjective map ρ on $\mathbf{A}(\delta)$ with the above property is called an automorphism of δ. The set of all automorphisms of δ forms a group with respect to the composition of maps, denoted as Aut (δ).

A d-dual hyperoval $\&$ over \mathbf{F}_{q} is said to be simply connected if any cover \tilde{f} of s coincides with s. For any d-dual hyperoval $\&$ over \mathbf{F}_{q}, it is known that $\operatorname{dim} \mathbf{A}(\delta) \leq(d+1)(d+2) / 2$ if $q>2$. When $q=2$, it is conjectured that the same result holds. (See [12, Subsection 2.4].) Currently, four infinite families of simply connected d-dual hyperovals in $P G(d(d+3) / 2, q)$ are known: the Huybrechts dual hyperoval $\mathscr{H}_{d}\left(\mathbf{F}_{2}\right)$ over \mathbf{F}_{2} [4], the Buratti-Del Fra dual hyperoval $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ over \mathbf{F}_{2} (this is regarded as a certain deformation of $\mathscr{H}_{d}\left(\mathbf{F}_{2}\right)$); the Veronesean dual hyperoval $\mathcal{V}_{d}\left(\mathbf{F}_{q}\right)$ over \mathbf{F}_{q} for any $q=2^{e}$ [11], and its deformation $\mathcal{T}_{d}\left(\mathbf{F}_{2}\right)$ given by the first author [8] for when $q=2$.

In a series of papers by the second author $[14,16,15]$, it was shown that quadratic APN functions on $K \cong \mathbf{F}_{2^{d+1}}$, a remarkable class of functions with extremal nonlinearity, correspond (up to extended affine equivalence) to the dimensional dual hyperovals in $\operatorname{PG}(2 d+1,2)$ which are obtained as some quotients of $\mathscr{H}_{d}\left(\mathbf{F}_{2}\right)$ (up to isomorphism of dual hyperovals). In particular, the classification of quadratic APN functions is reduced to the classification of some subspaces of $\mathbf{A}\left(\mathcal{H}_{q}\left(\mathbf{F}_{2}\right)\right)$ satisfying strong restrictions.

This motivates the following project. Find explicit examples of quotients in $P G(2 d+1, q)$ of known simply connected dual hyperovals in $\operatorname{PG}(d(d+3) / 2, q)$, and investigate relations between them and some classes of functions on a field $\mathbf{F}_{q^{d+1}}$ (or $\mathbf{F}_{q^{d+1}} \times \mathbf{F}_{q^{d+1}}$) which can be regarded as analogues of quadratic APN functions (or the associated alternating form). The authors made some contributions to this project for $\mathcal{V}_{d}\left(\mathbf{F}_{q}\right)[7,13,10]$. However, the most interesting target that one should investigate next to $\mathscr{H}_{d}\left(\mathbf{F}_{2}\right)$ seems to be $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$, because the latter is obtained from the former by a certain deformation.

This paper is the first attempt to find an explicit example of quotients in $P G(2 d+1,2)$ of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$. In Section 2, we give a general criterion for a d-dual hyperoval over \mathbf{F}_{2} to be covered by $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ in terms of the addition formula (see Proposition 1). Using this criterion, we provide a simple and explicit model of $\mathcal{D}_{d}\left(\mathbf{F}_{2}\right)$ in which the members are described in a similar manner to those of $\mathscr{H}_{d}\left(\mathbf{F}_{2}\right)$ (see Proposition 3). In Section 3, we give conditions (see Lemma 4) for a certain collection $\delta[B]$ of ($d+1$)-dimensional subspaces in $K \oplus K$ constructed from a symmetric bilinear map B on $K \cong \mathbf{F}_{2^{d+1}}$ (which corresponds to an alternating bilinear map in the case of a quadratic APN function) to be covered by $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$. For d even, we found a single example of B satisfying these conditions: $B(x, y)=x^{4} y+x y^{4}+x y+x^{2} y^{2}$. Notice that B is symmetric but not alternating. Hence $\delta[B]$ for this map B is a quotient in $P G(2 d+1,2)$ of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ (see Proposition 6). In Section 4, a proof is given for the fact that the affine expansion of the Buratti-Del Fra dual hyperoval is covered by the halved hypercube (see Proposition 10). We conclude the paper by proposing several questions in Section 5.

2. A simpler description of the Buratti-Del Fra dual hyperoval

In this section, we give a criterion for a d-dual hyperoval over \mathbf{F}_{2} to be covered by the d-dimensional Buratti-Del Fra dual hyperoval $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ in terms of the addition formula. Using it, we give a much simpler model of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$.

We first summarize the notation used in this section. We use letters n and d to denote natural numbers satisfying $n=d+1 \geq 3$. The letter I is used to denote the set of integers i with $0 \leq i \leq d$, and we set $I_{0}:=I \backslash\{0\}$. The letter V denotes an n-dimensional vector space over \mathbf{F}_{2} with a basis $e_{i}(i \in I)$ containing a specified nonzero vector e_{0}. We shall use the symbol ξ to denote the characteristic function of $V^{\prime}:=V \backslash\left\{0, e_{0}\right\}$, namely ξ is a function from V to \mathbf{F}_{2} defined by $\xi(x)=1$ or 0 according as $x \in V^{\prime}$ or not.

We give an elementary but important remark on the value of the characteristic function ξ, which will be frequently used below. Observe that the subset $V^{\prime}=V \backslash\left\{0, e_{0}\right\}$ is invariant under the addition by e_{0}; namely, for $y \in V$, we have $y \in V^{\prime}$ if and only if $y+e_{0} \in V^{\prime}$. This implies that

$$
\begin{equation*}
\xi(y)=\xi\left(y+\varepsilon e_{0}\right) \quad \text { for any } \varepsilon \in \mathbf{F}_{2} . \tag{1}
\end{equation*}
$$

Before stating a characterization of d-dual hyperovals over \mathbf{F}_{2} covered by the Buratti-Del Fra dual hyperoval, we give a brief overview of its construction. In [1], Buratti and Del Fra investigated an arbitrary d-dual hyperoval $S=\{X(t) \mid t \in K\}$ over \mathbf{F}_{2} which satisfies the following equation:

$$
\begin{equation*}
a\left(s, t_{1}\right)+a\left(s, t_{2}\right)=a\left(s, s+t_{1}+t_{2}+\alpha\left(s, t_{1}, t_{2}\right) e_{0}\right) \tag{2}
\end{equation*}
$$

where we denote by $a(s, t)=a(t, s)$ the unique nonzero element of $X(s) \cap X(t)$ for distinct $s, t \in V$ with the convention that $a(s, s)=0$ for all $s \in V$ and $\alpha(x, y, z):=\xi(x+y)+\xi(y+z)+\xi(z+x)$ for the characteristic function ξ of $V^{\prime}=V \backslash\left\{0, e_{0}\right\}$. We refer to Eq. (2) as the addition formula in S.

We set $\mathbf{B}:=\left\{0, e_{i} \mid i \in I\right\}$. Buratti and Del Fra derived from the addition formula (2) an explicit expression for each $a(s, t)(s, t \in K)$ as an \mathbf{F}_{2}-linear combination of $a\left(w, w^{\prime}\right)$, where (w, w^{\prime}) ranges over the pairs of distinct elements in B [1, Section 2, Formula (16)] (repeated as [3, Proposition 1]). Notice that this expression may not be uniquely determined in general, since the $a\left(w, w^{\prime}\right)$'s may be linearly dependent.

We embed V as a hyperplane of a vector space U of dimension $n+1$ over \mathbf{F}_{2}, and pick a vector e_{∞} of U outside V. In [3, Section 2], a d-dual hyperoval S satisfying the above addition formula (2) is constructed inside the exterior square $\wedge^{2}(U)$, in which the $a\left(w, w^{\prime}\right)^{\prime}$'s are linearly independent. (In fact, $a\left(w, w^{\prime}\right)=\left(e_{\infty}+w\right) \wedge\left(e_{\infty}+w^{\prime}\right)$.) This is the Buratti-Del Fra dual hyperoval.

To specify this specific d-dual hyperoval, we use the letter $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ in this paper. Its members are denoted by $\tilde{X}(t)(t \in V)$ and the unique nonzero vector of $\tilde{X}(s) \cap \tilde{X}(t)$ for distinct s, t of V is denoted as $\tilde{b}(s, t)$. We set $\tilde{b}(s, s)=0$ for $s \in V$. Then $\tilde{b}(s, t)(s, t \in V)$ satisfy the addition formula (Eq. (2)) with $\tilde{b}(s, t)$ instead of $a(s, t)$. By construction, $n(n+1) / 2$ vectors $\tilde{b}\left(w, w^{\prime}\right)$ form a basis for the ambient space $\wedge^{2}(U)$ of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$. We have $\tilde{X}(t)=\{\tilde{b}(x, t) \mid x \in V\}$ for each $t \in V$.

Proposition 1. Let $\delta=\{X(s) \mid s \in V\}$ be a d-dual hyperoval over \mathbf{F}_{2} consisting of subspaces $X(s)$ of the ambient space $\mathbf{A}(\delta)$ indexed by the elements of V. For $s, t \in V$, we denote by $b(s, t)$ the unique nonzero vector of $X(s) \cap X(t)$ or 0 according as $s \neq t$ or $s=t$.

Then s is covered by the Buratti-Del Fra dual hyperoval $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ via an \mathbf{F}_{2}-linear surjection from $\wedge^{2}(U)$ onto $\mathbf{A}(\delta)$ sending a member $\tilde{X}(t)$ of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ to a member $X(t)$ of $\&$ for each $t \in V$ if and only if the following formula is satisfied for any $s, t_{1}, t_{2} \in V$:

$$
b\left(s, t_{1}\right)+b\left(s, t_{2}\right)=b\left(s, s+t_{1}+t_{2}+\alpha\left(s, t_{1}, t_{2}\right) e_{0}\right)
$$

where $\alpha\left(s, t_{1}, t_{2}\right):=\xi\left(s+t_{1}\right)+\xi\left(s+t_{2}\right)+\xi\left(t_{1}+t_{2}\right)$ with the characteristic function ξ of $V^{\prime}=V \backslash\left\{0, e_{0}\right\}$.
Proof. This result is implicit in [1,3], but we give an expository account.
Consider any quotient s of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$, and let ρ be a linear surjection from $\wedge^{2}(U)$ to the ambient space A (δ) of δ which bijectively maps each member $\tilde{X}(t)$ of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ to a member $X(t)$ of δ for every $t \in V$. From the linearity of ρ, the vectors $b(s, t):=\rho(\tilde{b}(s, t))$ of $\mathbf{A}(\delta)$ for any $s, t \in V$ satisfy the same addition formula as (2) with $b(s, t)$ instead of $a(s, t)$.

Conversely, assume that $\delta=\{X(s) \mid s \in V\}$ satisfies the conditions in the proposition: namely, denoting by $b(s, t)$ the unique nonzero vector $b(s, t)$ in $X(s) \cap X(t)$ for any distinct elements s and t of V with the convention $b(s, s)=0$ for $s \in V$, the vectors $b(s, t)$ satisfy the addition formula (Eq. (2)) with $b(s, t)$ instead of $a(s, t)$. Then we define an \mathbf{F}_{2}-linear map ρ from $\wedge^{2}(U)$ to $\mathbf{A}(\delta)$ by first setting $\rho\left(\tilde{b}\left(w, w^{\prime}\right)\right):=b\left(w, w^{\prime}\right)\left(w \neq w^{\prime} \in \mathbf{B}\right)$ on the basis of $\wedge^{2}(U)$, and then by extending it linearly to all vectors of $\wedge^{2}(U)$. As $\{\tilde{b}(s, t) \mid s, t \in V\}$ and $\{b(s, t) \mid s, t \in V\}$ satisfy the same addition formula (2), it follows from [1, Section 2, Formula (16)] that for each $s, t \in V$ both $b(s, t)$ and $\tilde{b}(s, t)$ can be expressed as linear combinations of $b\left(w, w^{\prime}\right)^{\prime}$'s and $\tilde{b}\left(w, w^{\prime}\right)$'s and that if $\tilde{b}(s, t)=\sum \alpha\left(w, w^{\prime}\right) \tilde{b}\left(w, w^{\prime}\right)$ then $b(s, t)=\sum \alpha\left(w, w^{\prime}\right) b\left(w, w^{\prime}\right)$. (There may be another expression for $b(s, t)$ as a linear combination of $b\left(w, w^{\prime}\right)$, but this is not a problem. The point is that we have an expression for $b(s, t)$ in which the coefficients are the same as those that appeared in the defining expression for $\tilde{b}(s, t)$.) Thus the linear map ρ sends $\tilde{b}(s, t)$ to $b(s, t)$. Hence ρ bijectively maps each member $\tilde{X}(t)=\{\tilde{b}(x, t) \mid x \in V\}$ of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ to a member $X(t)=\{b(x, t) \mid x \in V\}$ of δ. This verifies that ρ gives a cover of s by $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ with the property stated in the proposition.

Applying the above criterion (Proposition 1), we now provide a new model of the Buratti-Del Fra dual hyperoval for which the ambient space has the form $V \oplus((V \otimes V) / W)$ for some subspace W of the tensor product $V \otimes V$. Notice that the $e_{i} \otimes e_{j}(i, j \in I)$ form a basis for $V \otimes V$.

Define W to be a subspace of $V \otimes V$ spanned by the following vectors:

$$
(x \otimes y)+(y \otimes x) \text { and }(x \otimes x)+\xi(x)\left(e_{0} \otimes x\right) \text { for all } x, y \in V
$$

Adopting the expressions $x=\sum_{i \in I} x_{i} e_{i}$ and $y=\sum_{j \in I} y_{j} e_{j}$ with $x_{i}, y_{j} \in \mathbf{F}_{2}(i, j \in I)$, we have $(x \otimes y)+(y \otimes x)=\sum_{i, j \in I, i<j} x_{i} y_{j}\left(e_{i} \otimes e_{j}+e_{j} \otimes e_{i}\right)$. If $x \in\left\{0, e_{0}\right\}$, we have $(x \otimes x)+\xi(x)\left(e_{0} \otimes x\right)=e_{0} \otimes e_{0}$ or 0. For any $x \in V \backslash\left\{0, e_{0}\right\}$, we have $(x \otimes x)+\xi(x)\left(e_{0} \otimes x\right)=(x \otimes x)+\left(e_{0} \otimes x\right)=\sum_{i \in I_{0}} x_{i}\left(e_{i} \otimes e_{i}+\right.$ $\left.e_{0} \otimes e_{i}\right)+\sum_{i, j \in I, i<j} x_{i} x_{j}\left(e_{i} \otimes e_{j}+e_{j} \otimes e_{i}\right)$. This implies that W has the following vectors as a basis, and hence has dimension $\binom{d+1}{2}+(d+1)=(d+1)(d+2) / 2$ over \mathbf{F}_{2} :

$$
\begin{align*}
& \left(e_{i} \otimes e_{j}\right)+\left(e_{j} \otimes e_{i}\right) \text { for all } i, j \in I \text { with } i<j, \\
& e_{0} \otimes e_{0} \quad \text { and } \quad\left(e_{i} \otimes e_{i}\right)+\left(e_{0} \otimes e_{i}\right) \text { for all } i \in I_{0} . \tag{3}
\end{align*}
$$

We denote by \bar{v} the image $v+W$ of a vector $v \in V \otimes V$ under the canonical projection of $V \otimes V$ onto $(V \otimes V) / W$. Then $\overline{x \otimes y}=\overline{y \otimes x}$ and $\overline{\left(x_{1}+x_{2}\right) \otimes y}=\overline{x_{1} \otimes y}+\overline{x_{2} \otimes y}$ for any $x, x_{1}, x_{2}, y \in V$. Furthermore, the following vectors form a basis for $(V \otimes V) / W$ (of dimension $\left.(d+1)^{2}-(d+1)(d+2) / 2=d(d+1) / 2\right):$

$$
\begin{equation*}
\overline{e_{i} \otimes e_{j}} \text { for all } i, j \in I_{0} \text { with } i<j, \quad \text { and } \overline{e_{0} \otimes e_{i}} \text { for all } i \in I_{0} . \tag{4}
\end{equation*}
$$

Lemma 2. For nonzero vectors u and x of V, we have $\overline{x \otimes u}=\overline{0}$ in $(V \otimes V) / W$ if and only if $x=$ $u+\xi(u) e_{0}$.
Proof. Expressing u and x as $u=\sum_{i \in I} u_{i} e_{i}$ and $x=\sum_{i \in I} x_{i} e_{i}$ with $u_{i}, x_{i} \in \mathbf{F}_{2}$, we obtain the expression for $\overline{x \otimes u}$ as an \mathbf{F}_{2}-linear combination of the basis for $(V \otimes V) / W$ in Eq. (4):

$$
\begin{aligned}
\overline{x \otimes u} & =\sum_{i, j \in I} x_{i} u_{j} \overline{e_{i} \otimes e_{j}} \\
& =\sum_{j \in I_{0}}\left(u_{0} x_{j}+x_{0} u_{j}+u_{j} x_{j}\right) \overline{e_{0} \otimes e_{j}}+\sum_{i, j \in I_{0}, i<j}\left(x_{i} u_{j}+u_{i} x_{j}\right) \overline{e_{i} \otimes e_{j}} .
\end{aligned}
$$

(Observe that $\overline{e_{i} \otimes e_{j}}=\overline{e_{j} \otimes e_{i}}$ and $\overline{e_{i} \otimes e_{i}}=\overline{e_{0} \otimes e_{j}}$ for any $i \in I$, from Eqs. (3).) Thus the condition $\overline{x \otimes u}=\overline{0}$ is equivalent to the following simultaneous equations in \mathbf{F}_{2} :

$$
\begin{equation*}
x_{0} u_{j}=\left(u_{0}+u_{j}\right) x_{j} \quad \text { and } \quad x_{i} u_{j}=u_{i} x_{j} \quad \text { for all } i, j \in I_{0} \tag{5}
\end{equation*}
$$

Assume that $u \neq e_{0}$. As $u \neq 0$, there exists some $j_{0} \in I_{0}$ with $u_{j_{0}}=1$. Then it follows from Eq. (5) that $x_{0}=\left(u_{0}+1\right) x_{j_{0}}$ and $x_{i}=x_{j_{0}} u_{i}$ for all $i \in I_{0}$. Thus $x=\sum_{i \in I} x_{i} e_{i}=x_{j_{0}}\left(e_{0}+\sum_{i \in I} u_{i} e_{i}\right)=x_{j_{0}}\left(e_{0}+u\right)$. As $x \neq 0$, we have $x_{j_{0}}=1$ and $x=e_{0}+u$ in this case. Conversely, $x=u+e_{0}$ satisfies $x_{0}=1+u_{0}$ and $x_{j}=u_{j}$ for all $j \in I_{0}$, and so Eq. (5) holds.

In the remaining case when $u=e_{0}$, we have $u_{0}=1$ but $u_{j}=0$ for all $j \in I_{0}$. Thus it follows from Eq. (5) that $x_{j}=0$ for all $j \in I_{0}$. Then $x=e_{0}$, as $x \neq 0$. Conversely, $x=e_{0}=u$ satisfies $x_{0}=u_{0}=1$ and $x_{j}=u_{j}=0$ for all $j \in I_{0}$, and so Eq. (5) holds.

Using the characteristic function ξ, the resulting nonzero vector x in the above two cases can be uniformly written as $x=\xi(u) e_{0}+u$.

We consider the direct sum $A:=V \oplus((V \otimes V) / W):=\{(x, \bar{v}) \mid x \in V, v \in V \otimes V\}$. The dimension of A is $(d+1)+(d(d+1) / 2)=(d+1)(d+2) / 2$. For each $t \in V$, we define a subset $X(t)$ of A by

$$
\begin{equation*}
X(t):=\{(x, \overline{x \otimes t}) \mid x \in V\} . \tag{6}
\end{equation*}
$$

Then $X(t)$ is a subspace of A of dimension $d+1$.
Proposition 3. Under the above notation, $\mathcal{D}:=\{X(t) \mid t \in V\}$ is a d-dual hyperoval over \mathbf{F}_{2} with ambient space A, which is isomorphic to the Buratti-Del Fra dual hyperoval $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$.

Proof. Take any two distinct vectors s and t of V. Then a nonzero vector (x, \bar{y}) lies in $X(s) \cap X(t)$ if and only if $\bar{y}=\overline{x \otimes s}=\overline{x \otimes t}$ with $x \neq 0$. Then x is a nonzero vector of V with $\overline{x \otimes(s+t)}=\overline{0}$. From Lemma 2, we have $x=s+t+\xi(s+t) e_{0}$. Thus the intersection $X(s) \cap X(t)$ contains a unique nonzero vector

$$
\begin{equation*}
b(s, t):=\left(s+t+\xi(s+t) e_{0}, \overline{\left(s+t+\xi(s+t) e_{0}\right) \otimes s}\right) \tag{7}
\end{equation*}
$$

(In order to see that $b(s, t) \in X(t)$, notice that the second component of $b(s, t)$ can also be written as $\left(s+t+\xi(s+t) e_{0}\right) \otimes t$, because $(s+t) \otimes(s+t)+\xi(s+t)\left((s+t) \otimes e_{0}\right)$ lies in W.) From Eq. (7), it is clear that $X(s) \cap X(t) \cap X(u)=\{(0, \overline{0})\}$ for any mutually distinct vectors s, t, u of V. Hence the collection \mathscr{D} of 2^{d+1} subspaces $X(t)(t \in V)$ is a d-dual hyperoval over \mathbf{F}_{2}. The ambient space of \mathscr{D} coincides with $A=V \oplus((V \oplus V) / W)$, because $X(0)=\{(x, \overline{0}) \mid x \in V\}$ and $(V \oplus V) / W$ is spanned by $\overline{x \otimes t}$ for all $x, t \in V$. Summarizing, we have verified that \mathscr{D} is a d-dual hyperoval over \mathbf{F}_{2} with ambient space A.

For distinct vectors s, t of V, the nonzero vector $b(s, t)$ is given by Eq. (7). We extend it by assuming that $b(s, s)=(0, \overline{0})$ for $s \in V$. We shall verify the addition formula; namely, for any $s, t_{1}, t_{2} \in V$ we have

$$
\begin{equation*}
b\left(s, t_{1}\right)+b\left(s, t_{2}\right)=b\left(s, s+t_{1}+t_{2}+\alpha\left(s, t_{1}, t_{2}\right) e_{0}\right) \tag{8}
\end{equation*}
$$

By Eq. (7), the first components of the left and the right hand sides of Eq. (8) are respectively calculated to be $t_{1}+t_{2}+\left(\xi\left(s+t_{1}\right)+\xi\left(s+t_{2}\right)\right) e_{0}$ and $t_{1}+t_{2}+\left(\alpha\left(s, t_{1}, t_{2}\right)+\xi\left(t_{1}+t_{2}+\alpha\left(s, t_{1}, t_{2}\right) e_{0}\right)\right) e_{0}$. Thus to verify Eq. (8) it suffices to show that $\alpha\left(s, t_{1}, t_{2}\right)=\xi\left(s+t_{1}\right)+\xi\left(s+t_{2}\right)+\xi\left(t_{1}+t_{2}+\alpha\left(s, t_{1}, t_{2}\right) e_{0}\right)$, or equivalently $\xi\left(t_{1}+t_{2}\right)=\xi\left(t_{1}+t_{2}+\alpha\left(s, t_{1}, t_{2}\right) e_{0}\right)$. This follows from Eq. (1). Thus we have verified Eq. (8).

Then it follows from Proposition 1 that \mathscr{D} is covered by the Buratti-Del Fra dual hyperoval $\mathcal{D}_{d}\left(\mathbf{F}_{2}\right)$. Notice here that the ambient space A of \mathscr{D} has the dimension $(d+1)(d+2) / 2$, which is equal to the dimension of the ambient space of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$. Thus the covering map of \mathscr{D} by $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ gives an isomorphism of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ with \mathscr{D}.

The original construction of the Buratti-Del Fra dual hyperoval $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ [3] is very complicated, because the members are described there as subspaces of the wedge product $\wedge^{2}(U)$ for a $(d+2)$ dimensional space U containing V as a hyperplane. Notice that $\wedge^{2}(U)$ is isomorphic to $A=V \oplus((V \otimes$ $V) / W)$ as vector spaces, in view of their dimensions. The above description \mathcal{D} of the Buratti-Del Fra hyperoval $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ is much simpler-in it, the members are described as subspaces of A instead. This new description immediately shows that $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ splits in the sense of [15]; namely $Y:=\{(0, \bar{v}) \mid v \in$ $V \otimes V\}$ is a subspace of A of codimension $n=d+1$ which intersects every member of \mathscr{D} at the zero subspace.

The above construction also provides another account of why the Buratti-Del Fra dual hyperoval is regarded as a "deformation" of the Huybrechts dual hyperoval. Recall that the Huybrechts dual hyperoval $\mathscr{H}_{d}\left(\mathbf{F}_{2}\right)$ has the ambient space $V \oplus\left((V \otimes V) / W^{\prime}\right)$ where W^{\prime} is the subspace of $V \otimes V$ spanned by $(x \otimes y)+(y \otimes x)$ and $x \otimes x$ for all $x, y \in V$. In this case $(V \otimes V) / W^{\prime}$ is regarded as the alternating square tensor product $\wedge^{2}(V)$ by identifying $(x \otimes t)+W^{\prime}$ with $x \wedge t(x, t \in V)$, and hence $V \oplus\left((V \otimes V) / W^{\prime}\right)$ is isomorphic to $\wedge^{2}(U)$ via the map sending $(x, x \wedge t)$ to $\left(e_{\infty}+t\right) \wedge x$. In fact, each member $X(t)$ of $\mathscr{H}_{d}\left(\mathbf{F}_{2}\right)$ is defined as a subspace $X(t):=\{(x, x \wedge t) \mid x \in V\}$ of $V \oplus\left((V \otimes V) / W^{\prime}\right)$.

We conclude this section by providing some automorphisms of the Buratti-Del Fra dual hyperoval $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$, in terms of the above model \mathfrak{D}. For each $a \in V$, define a map $\tau(a)$ on $A=V \oplus((V \otimes V) / W)$ by

$$
\begin{equation*}
(x, \bar{y})^{\tau(a)}:=(x, \bar{y}+\overline{x \otimes a}), \quad x \in V, y \in V \otimes V \tag{9}
\end{equation*}
$$

It is easy to see that $\tau(a)$ is an \mathbf{F}_{2}-linear bijection on A. As $(x, \overline{x \otimes t})^{\tau(a)}=(x, \overline{x \otimes(t+a)})$ for each $t \in V, \tau(a)$ sends a member $X(t)$ of \mathscr{D} to $X(t+a)$ for every $t \in V$. Thus $\tau(a)$ is an automorphism of \mathscr{D}. Furthermore, $\{\tau(a) \mid a \in V\}$ is a subgroup of $\operatorname{Aut}(\mathscr{D})$ which acts regularly on the members of \mathscr{D}.

For each \mathbf{F}_{2}-linear bijection α of V which fixes the specified element e_{0} of V, define a map $\bar{\alpha}$ on $V \otimes V$ by $\left(e_{i} \otimes e_{j}\right)^{\bar{\alpha}}=e_{i}^{\alpha} \otimes e_{j}^{\alpha}$ on a basis $e_{i} \otimes e_{j}(i, j \in I)$ for $V \otimes V$, and then extend it linearly. Then $\bar{\alpha}$ is an \mathbf{F}_{2}-linear bijection on $V \otimes V$ satisfying $(x \otimes y)^{\bar{\alpha}}=x^{\alpha} \otimes y^{\alpha}$ for $x, y \in V$. As 0 and e_{0} are elements
of V fixed by α, we have $\xi\left(x^{\alpha}\right)=\xi(x)$ and $\left(e_{0} \otimes x\right)^{\bar{\alpha}}=e_{0} \otimes x^{\alpha}$ for $x \in V$. In particular, $\bar{\alpha}$ maps generators $x \otimes y+y \otimes x$ and $x \otimes x+\xi(x) e_{0} \otimes x(x \in V)$ of the subspace W to $x^{\alpha} \otimes y^{\alpha}+y^{\alpha} \otimes x^{\alpha}$ and $x^{\alpha} \otimes x^{\alpha}+\xi\left(x^{\alpha}\right) e_{0} \otimes x^{\alpha}(x \in V)$, which lie in W as well. Thus W is stabilized by $\bar{\alpha}$, and hence $\bar{\alpha}$ induces an \mathbf{F}_{2}-linear bijection on the quotient space $(V \otimes V) / W$, which we also denote by the same letter $\bar{\alpha}$. Then $\overline{x \otimes y} \bar{\alpha}^{\bar{\alpha}}=\overline{x^{\alpha} \otimes y^{\alpha}}$ for all $x, y \in V$. Now define an \mathbf{F}_{2}-linear bijection $l(\alpha)$ on $A=V \oplus((V \otimes V) / W)$ by

$$
\begin{equation*}
(x, \bar{y})^{l(\alpha)}:=\left(x^{\alpha}, \bar{y}^{\bar{\alpha}}\right) \quad x \in V, y \in V \otimes V . \tag{10}
\end{equation*}
$$

As $(x, \overline{x \otimes t})^{l(\alpha)}=\left(x^{\alpha}, \overline{x^{\alpha} \otimes t^{\alpha}}\right)$ for $x, t \in V, l(\alpha)$ sends a member $X(t)$ of \mathscr{D} to a member $X\left(t^{\alpha}\right)$ of $\mathscr{D}(t \in V)$. Hence $l(\alpha)$ is an automorphism of \mathscr{D}. Moreover, $\left\{l(\alpha) \mid \alpha \in G L(V), e_{0}^{\alpha}=e_{0}\right\}$ is a subgroup of $\operatorname{Aut}(\mathcal{D})$ which fixes $X(0)$ and $X\left(e_{0}\right)$ and acts transitively on the remaining members of \mathscr{D}, because the stabilizer of e_{0} in $G L(V) \cong G L_{d+1}(2)$ acts transitively on $V \backslash\left\{0, e_{0}\right\}$.

From [3, Proposition 10], $\operatorname{Aut}(\mathcal{D})$ coincides with a semi-direct product of the normal subgroup $\{\tau(a) \mid a \in V\} \cong 2^{d+1}$ with a complement $\left\{l(\alpha) \mid \alpha \in G L(V), e_{0}^{\alpha}=e_{0}\right\} \cong 2^{d}: G L_{d}(2)$.

3. Quotients in $\operatorname{PG}(\mathbf{2 d}+\mathbf{1}, \mathbf{2})$ of the Buratti-Del Fra d-dual hyperoval

In this section, we retain the notation of the previous section, but we take as V the vector space over \mathbf{F}_{2} underlying the finite field $K \cong \mathbf{F}_{2^{n}}, n=d+1 \geq 3$. We regard $K \oplus K$ as a vector space over \mathbf{F}_{2} of dimension $2 n$.

Lemma 4. Let B be an \mathbf{F}_{2}-bilinear map from $K \times K$ to K. For each $t \in K$, define a subset $X(t)$ of $K \oplus K$ by

$$
X(t):=\{(x, B(x, t)) \mid x \in K\} .
$$

Then a collection $s[B]$ of $X(t)(t \in K)$ is a d-dual hyperoval over \mathbf{F}_{2} if and only if the following conditions are satisfied:
(1) For each nonzero $t \in K$, there exists a unique nonzero element $\kappa(t)$ of K such that $B(\kappa(t), t)=0$.
(2) The map κ sending t to $\kappa(t)$ is a bijection on K^{\times}.

Furthermore, $S[B]$ is covered by the Buratti-Del Fra dual hyperoval $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ via a linear surjection from $\mathbf{A}\left(\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)\right)$ to $\mathbf{A}(\delta[B])$ which sends $\tilde{X}(t) \in \mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ to $X(t) \in \delta[B]$ for each $t \in K$ if and only if the conditions (1), (2) above and the following condition (3) hold:
(3) there exists a nonzero element e_{0} of K together with an \mathbf{F}_{2}-linear map λ on K such that $\kappa(x)=$ $\lambda\left(x+\xi(x) e_{0}\right)$ for every $x \in K$, where ξ denotes the characteristic function of $K \backslash\left\{0, e_{0}\right\}$.
Proof. The bilinearity of B implies that each $X(t)$ is a subspace of $K \oplus K$ of dimension $d+1$. For distinct elements s and t of K, a nonzero vector (x, y) of $K \oplus K$ lies in both $X(s)$ and $X(t)$ if and only if x is a nonzero element with $y=B(x, s)=B(x, t)$. As the latter equation is equivalent to the condition $B(x, s+t)=0$, there is a unique such $x \in K^{\times}$if and only if the condition (1) in lemma holds. Under the condition (1), X(s) $\cap X(t)$ has a unique nonzero vector $b(s, t):=(\kappa(s+t), B(\kappa(s+t), s))$. Thus the condition (2) in the lemma is satisfied if and only if $X(s) \cap X(t) \cap X(u)=\{(0,0)\}$ for any mutually distinct s, t, u of K. Thus we verified that $s[B]$ is a d-dual hyperoval if and only if (1) and (2) hold.

We shall show the latter claim. As we saw above, $b(s, t)=(\kappa(s+t), B(\kappa(s+t), s))$ for any distinct $s, t \in K$. We extend the definition of $b(s, t)$ for all $s, t \in K$ by setting $b(s, s)=0$. Accordingly, we define $\kappa(0)=0$. It follows from Proposition 1 that the d-dual hyperoval $s[B]$ is covered by $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ via a linear surjection from $\mathbf{A}\left(\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)\right)$ to $\mathbf{A}(s[B])$ sending $\tilde{X}(t) \in \mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ to $X(t) \in s[B]$ for every $t \in K$ if and only if the addition formula (Eq. (2)) holds for some $e_{0} \in K^{\times}$. In view of the above shape of $b(s, t)$ in $s[B]$, the addition formula in $s[B]$ is equivalent to the following equation for any $s, t_{1}, t_{2} \in K$: $\kappa\left(s+t_{1}\right)+\kappa\left(s+t_{2}\right)=\kappa\left(t_{1}+t_{2}+\alpha e_{0}\right)$, where $\alpha:=\xi\left(s+t_{1}\right)+\xi\left(s+t_{2}\right)+\xi\left(t_{1}+t_{2}\right)$. Setting $x=s+t_{1}, y=s+t_{2}$, this is equivalent to requiring that the following equation holds for every $x, y \in K$, where $\alpha(x, y)=\xi(x)+\xi(y)+\xi(x+y)$:

$$
\begin{equation*}
\kappa(x)+\kappa(y)=\kappa\left(x+y+\alpha(x, y) e_{0}\right) . \tag{11}
\end{equation*}
$$

Now let $e_{i}(i \in I)$ be a basis for K including e_{0}, and denote by H the hyperplane of K spanned by $e_{i}\left(i \in I_{0}=I \backslash\{0\}\right)$. By the definition of ξ and its property (1), we have $\alpha\left(e_{0}, y\right)=\xi\left(e_{0}\right)+\xi(y)+$ $\xi\left(y+e_{0}\right)=0$. Then it follows from Eq. (11) with $x=e_{0}$ that

$$
\begin{equation*}
\kappa\left(e_{0}\right)+\kappa(y)=\kappa\left(e_{0}+y\right) \tag{12}
\end{equation*}
$$

for every $y \in H$. For an element v of H, we express v as $v=\sum_{i=1}^{d} a_{i} e_{i}$ with $a_{i} \in \mathbf{F}_{2}\left(i \in I_{0}\right)$. We set $\operatorname{Supp}(v):=\left\{i \in I_{0} \mid a_{i}=1\right\}$. Assume that $|\operatorname{Supp}(v)| \geq 2$. Pick any $j \in \operatorname{Supp}(v)$. Then none of $x=v, y=v+e_{j}$ and $x+y=e_{j}$ are contained in $\left\{0, e_{0}\right\}$, and hence $\alpha(x, y)=1$. It follows from Eqs. (11) and (12) that $\kappa(v)=\kappa\left(v+e_{j}\right)+\kappa\left(e_{j}+e_{0}\right)=\kappa\left(v+e_{j}\right)+\kappa\left(e_{j}\right)+\kappa\left(e_{0}\right)$. Notice that $\left|\operatorname{Supp}\left(v+e_{j}\right)\right|=$ $|\operatorname{Supp}(v)|-1$. Continuing in this way, we conclude that $\kappa(v)=\sum_{j \in \operatorname{Supp}(v)} \kappa\left(e_{j}\right)+(|\operatorname{Supp}(v)|-1) \kappa\left(e_{0}\right)$. This equation holds when $|\operatorname{Supp}(v)|=1$ as well. This conclusion can also be stated as follows, because $|\operatorname{Supp}(v)|=\sum_{i=1}^{d} a_{i}$ modulo 2: if $\sum_{i=1}^{d} a_{i} e_{i} \neq 0$, then

$$
\kappa\left(\sum_{i=1}^{d} a_{i} e_{i}\right)=\sum_{i=1}^{d} a_{i} \kappa\left(e_{i}\right)+\left(\sum_{i=1}^{d} a_{i}+1\right) \kappa\left(e_{0}\right)=\sum_{i=1}^{d} a_{i}\left(\kappa\left(e_{i}\right)+\kappa\left(e_{0}\right)\right)+\kappa\left(e_{0}\right) .
$$

This equation does not hold for $\sum_{i=1}^{d} a_{i} e_{i}=0$. However, since $\xi(v)$ for $v \in H$ is 0 or 1 according as $v=0$ or $v \neq 0$, the following equation holds for any $v=\sum_{i=1}^{d} a_{i} e_{i}$ of V, including $v=0$:

$$
\begin{equation*}
\kappa\left(\sum_{i=1}^{d} a_{i} e_{i}\right)=\sum_{i=1}^{d} a_{i}\left(\kappa\left(e_{i}\right)+\kappa\left(e_{0}\right)\right)+\xi\left(\sum_{i=1}^{d} a_{i} e_{i}\right) \kappa\left(e_{0}\right) . \tag{13}
\end{equation*}
$$

For $w=e_{0}+v$ with $v \in H$, we then have $\kappa\left(e_{0}+\sum_{i=1}^{d} a_{i} e_{i}\right)=\kappa\left(e_{0}\right)+\sum_{i=1}^{d} a_{i}\left(\kappa\left(e_{i}\right)+\kappa\left(e_{0}\right)\right)+$ $\xi\left(\sum_{i=1}^{d} a_{i} e_{i}\right) \kappa\left(e_{0}\right)=\kappa\left(e_{0}\right)+\sum_{i=1}^{d} a_{i}\left(\kappa\left(e_{i}\right)+\kappa\left(e_{0}\right)\right)+\xi\left(e_{0}+\sum_{i=1}^{d} a_{i} e_{i}\right) \kappa\left(e_{0}\right)$ from Eq. (12) and Property (1) of ξ. Hence, we conclude that for every element $\sum_{i=0}^{d} a_{i} e_{i}\left(a_{i} \in \mathbf{F}_{2}, i=0, \ldots, d\right)$ of K the following equation holds:

$$
\begin{equation*}
\kappa\left(\sum_{i=0}^{d} a_{i} e_{i}\right)=a_{0} \kappa\left(e_{0}\right)+\sum_{i=1}^{d} a_{i}\left(\kappa\left(e_{i}\right)+\kappa\left(e_{0}\right)\right)+\xi\left(\sum_{i=0}^{d} a_{i} e_{i}\right) \kappa\left(e_{0}\right) . \tag{14}
\end{equation*}
$$

We now define an \mathbf{F}_{2}-linear map λ on K on the basis $e_{i}(i=0, \ldots, d)$ by $\lambda\left(e_{0}\right):=\kappa\left(e_{0}\right), \lambda\left(e_{i}\right):=$ $\kappa\left(e_{i}\right)+\kappa\left(e_{0}\right)$ for $i=1, \ldots, d$, and then extend it linearly on K. Thus for every element $x=\sum_{i=0}^{d} a_{i} e_{i}$ of K we have

$$
\begin{equation*}
\kappa\left(\sum_{i=0}^{d} a_{i} e_{i}\right)=\lambda\left(\sum_{i=0}^{d} a_{i} e_{i}+\xi\left(\sum_{i=0}^{d} a_{i} e_{i}\right) e_{0}\right) . \tag{15}
\end{equation*}
$$

Conversely, if κ is given as $\kappa(x)=\lambda\left(x+\xi(x) e_{0}\right)$ for some \mathbf{F}_{2}-linear map λ, then we can check Eq. (11) as follows: for every x and y of K we have $\kappa(x)+\kappa(y)=\lambda\left(x+y+(\xi(x)+\xi(y)) e_{0}\right)=$ $\lambda\left(x+y+(\alpha(x, y)+\xi(x+y)) e_{0}\right)=\lambda\left(x+y+\alpha(x, y) e_{0}+\xi\left(x+y+\alpha(x, y) e_{0}\right) e_{0}\right)=\kappa\left(x+y+\alpha(x, y) e_{0}\right)$, using the linearity of λ, the definition of $\alpha(x, y)$ and Property (1) of ξ.

We now give an explicit example of a bilinear map B on $K \cong \mathbf{F}_{2^{n}}$ which satisfies the conditions (1)-(3) in Lemma 4 with $e_{0}=1$. Accordingly, ξ denotes the characteristic function of $K \backslash\{0,1\}$. Consider the bilinear map B from $K \times K$ to K defined by

$$
\begin{equation*}
B(x, t)=x^{4} t+x t^{4}+(x t)+(x t)^{2} \quad(x, t \in K) . \tag{16}
\end{equation*}
$$

Observe that B is symmetric (that is, $B(x, y)=B(y, x)$ for any $x, y \in K$) but not alternating (namely, $B(x, x) \neq 0$ for some $x \in K)$. For each $t \in K$, define a subspace $X(t)$ of $K \oplus K$ by

$$
X(t):=\{(x, B(x, t)) \mid x \in K\} .
$$

It is easy to see that $X(t)$ is a subspace of $K \oplus K$ of dimension n for every $t \in K$. We shall investigate whether $f[B]=\{X(t) \mid t \in K\}$ is a d-dimensional dual hyperoval $(d=n-1)$ over \mathbf{F}_{2}.

Lemma 5. (1) Assume that n is odd. Then, for each nonzero element t of K, there is a unique nonzero $\kappa(t) \in K$ satisfying $B(\kappa(t), t)=0$. Explicitly,

$$
\begin{equation*}
\kappa(t)=t+\xi(t) \tag{17}
\end{equation*}
$$

(2) Assume that n is even. Then, for each nonzero element t of K not contained in the four-element subfield K_{0} of K, there are exactly three nonzero elements x of K satisfying $B(x, t)=0$.
Proof. Fix a nonzero element t of K. Observe the following factorization of $B(x, t)$:

$$
\begin{aligned}
B(x, t) & =x^{4} t+x t^{4}+x t+x^{2} t^{2}=x t\left\{x^{3}+t x+\left(t^{3}+1\right)\right\} \\
& =x t(x+t+1)\left\{x^{2}+(t+1) x+\left(t^{2}+t+1\right)\right\} .
\end{aligned}
$$

Thus the set of solutions x in K for the equation $B(x, t)=0$ consists of $0, t+1$ and the solutions in K for the quadratic equation $x^{2}+(t+1) x+\left(t^{2}+t+1\right)=0$. In particular, if $t=1$, we have $\{x \in K \mid B(x, t)=0\}=\{0,1\}$.

Notice that if $t+1 \neq 0$, the quadratic equation $x^{2}+(t+1) x+\left(t^{2}+t+1\right)=0$ has a root x in K if and only if $\operatorname{Tr}\left(\left(t^{2}+t+1\right) /(t+1)^{2}\right)=0$, where Tr denotes the trace function for the extension K / \mathbf{F}_{2}. Since $\left(t^{2}+t+1\right) /(t+1)^{2}=1+\left(t /(t+1)^{2}\right)=1+(1 /(1+t))+(1 /(t+1))^{2}$, we have $\operatorname{Tr}\left(\frac{\left(t^{2}+t+1\right)}{(t+1)^{2}}\right)=\operatorname{Tr}(1)=n$.

Thus if n is odd, there is no $x \in K$ satisfying $x^{2}+(t+1) x+\left(t^{2}+t+1\right)=0$ for every $t \in K \backslash\{0,1\}$. Hence for every $t \in K \backslash\{0,1\}$, the equation $B(x, t)=0$ has exactly one nonzero solution $x=t+1$. Using the characteristic function ξ for the subset $K^{\prime}:=K \backslash\{0,1\}$, this can be written as $x=t+\xi(t)$. This formula holds if $t=1$ as well, because $x=1=1+\xi(1)$ is the unique nonzero solution for $B(x, 1)=0$. We have verified Claim (1).

On the other hand, if n is even, there are exactly two solutions x in K for the equation $x^{2}+(t+$ 1) $x+\left(t^{2}+t+1\right)=0$ for every $t \in K^{\prime}$. If t is not contained in K_{0}, we have $t^{2}+t+1 \neq 0$, whence none of these solutions is equal to $t+1$. Thus if $t \notin K_{0}$, then there are exactly three solutions in K for the equation $B(x, t)=0$. This verifies Claim (2).

Proposition 6. If $n=d+1$ is odd, then $s[B]=\{X(t) \mid t \in K\}$ is a d-dimensional dual hyperoval over \mathbf{F}_{2} with ambient space $K \oplus K$, which is covered by the Buratti-Del Fra dual hyperoval $\mathcal{D}_{d}\left(\mathbf{F}_{2}\right)$, while if n is even, $s[B]$ is not a dimensional dual hyperoval.

Proof. Choose two distinct elements s and t of K. A nonzero vector (x, y) of $K \oplus K$ lies in both $X(s)$ and $X(t)$ if and only if x is a nonzero element of K satisfying $B(x, t)=B(x, s)$. From the bilinearity of B, then x is a nonzero solution in K for the equation $B(x, s+t)=0$.

Assume that n is even. As $n \geq 3$, there is an element u of K not contained in the four-element subfield K_{0}. It follows from Lemma 5 that there are three distinct elements x in K with $B(x, u)=0$. Thus if n is even and $s+t \notin K_{0}, X(s) \cap X(t)$ is not a projective point. In particular, $\delta[B]$ is not a dimensional dual hyperoval in this case.

Now assume that n is odd (so $d=n-1$ is even). It follows from Lemma 5 that we have $x=(s+t)+\xi(s+t)$. With the notation of Lemma 4, this implies that $\kappa(a)=a+\xi(a)$ for $a \in K^{\times}$. We extend κ on K by setting $\kappa(0)=0$. We shall verify that the function κ is bijective on K. Assume that $t_{1}+\xi\left(t_{1}\right)=t_{2}+\xi\left(t_{2}\right)$ for distinct $t_{1}, t_{2} \in K$. Then we have $0 \neq t_{1}+t_{2}=\xi\left(t_{1}\right)+\xi\left(t_{2}\right) \in\{0,1\}$. Thus $t_{1}+t_{2}=1=\xi\left(t_{1}\right)+\xi\left(t_{2}\right)$. Now it follows from Eq. (1) that we have $\xi\left(t_{1}\right)=\xi\left(t_{2}\right)$, as $t_{1}+t_{2}=1$. However, this contradicts that $\xi\left(t_{1}\right)+\xi\left(t_{2}\right)=1$. Hence the map κ is injective, and hence bijective. Now we have verified the conditions (1) and (2) in Lemma 4. Thus $\delta[B]$ is a d-dual hyperoval if d is even. Moreover, as $\kappa(x)=x+\xi(x)(x \in K)$, the condition (3) in Lemma 4 is satisfied for taking the identity map and the element 1 respectively as λ and e_{0}. Hence it follows from Lemma 4 that $s[B]$ with d even is covered by the Buratti-Del Fra dual hyperoval $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$.

It remains to verify that the ambient space of $8[B]$ coincides with $K \oplus K$. As $X(0)=\{(x, 0) \mid x \in K\}$, the ambient space of $\delta[B]$ has the shape $K \oplus H$, where H is a subspace of K spanned by $B(x, t)$ for all $x, t \in K$. If H is a proper subspace of K, it is contained in a hyperplane of K, so there is a nonzero element α of K such that $\operatorname{Tr}(\alpha B(x, t))=0$ for all $x, t \in K$. As

$$
0=\operatorname{Tr}(\alpha B(x, t))=\operatorname{Tr}\left(\left\{\alpha t+\left(\alpha t^{4}\right)^{4}+(\alpha t)^{4}+\left(\alpha t^{2}\right)^{2}\right\} x^{4}\right)
$$

for all $x \in K$, we have $0=\alpha t+\left(\alpha t^{4}\right)^{4}+(\alpha t)^{4}+\left(\alpha t^{2}\right)^{2}=\alpha^{4} t^{16}+\left(\alpha^{4}+\alpha^{2}\right) t^{4}+\alpha t$ for all $t \in K$. Thus the polynomial $a(X):=\alpha^{4} X^{16}+\left(\alpha^{4}+\alpha^{2}\right) X^{4}+\alpha X \in K[X]$ of degree at most 16 has at least $|K|=2^{n}$ solutions. If $n \geq 5$, then $a(X)$ should be the zero polynomial, and hence $\alpha=0$, which is a contradiction. If $n=3$, we have $t^{8}=t$, and then $\alpha^{4} t^{2}+\left(\alpha^{4}+\alpha^{2}\right) t^{4}+\alpha t=0$ for all $t \in K$. Thus $b(X):=\left(\alpha^{4}+\alpha^{2}\right) X^{4}+\alpha^{4} X^{2}+\alpha X \in K[X]$ of degree at most 4 has at least $|K|=8$ solutions, whence $b(X)$ is the zero polynomial. Then we have $\alpha=0$, which is again a contradiction. Hence in any case we should have $H=K$ and the ambient space of $s[B]$ is $K \oplus K$.

As we saw in the proof of Lemma 4, the unique nonzero vector $b(s, t)$ in $X(s) \cap X(t)$ is $b(s, t)=$ $(s+t+\xi(s+t), B(s+t+\xi(s+t), s))$. With some calculations, we can verify that the second component of $b(s, t)$ is equal to $B(s, t)+\left(s^{4}+s^{2}\right)(\xi(s+t)+1)$.

4. The affine expansion of the Buratti-Del Fra dual hyperoval

In this section, we provide a proof for the fact that the affine expansion of the Buratti-Del Fra dual hyperoval is covered by the halved hypercube, one of the most important simply connected semibiplanes. This shows another similarity of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ to the d-dimensional Huybrechts dual hyperoval $\mathscr{H}_{d}\left(\mathbf{F}_{2}\right)$, because the affine expansion of the latter is also covered by the halved hypercube (of index 2^{d+1}). Thus, while $\mathscr{H}_{d}\left(\mathbf{F}_{2}\right)$ and $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ are non-isomorphic simply connected d-dual hyperovals over \mathbf{F}_{2}, the incidence geometries constructed from them are controlled by the same simply connected incidence geometry. This fact was already known before: in fact, in 2006 when a survey article [12] by the second author was published, Pasini had already observed Lemma 8 and Del Fra and the second author noticed Lemma 9 (see a comment in the last paragraph of [12, Subsection 5.4]). However, no literature is available, as far as the authors know. Also our simpler model \mathscr{D} for $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ in Section 2 provides an easy proof of Lemma 9. For these reasons, we shall give below expository proofs for these lemmas.

We first give a brief review of some basic facts about semibiplanes. For the details, see [6, Subsections 1.1]. A semibiplane is a connected finite incidence structure $\Pi=(\mathcal{P}, \mathcal{B} ; *)$ consisting of a set \mathcal{P} of points and a set \mathfrak{B} of blocks, in which every two distinct points (resp. blocks) are incident to exactly zero or two blocks (resp. points) in common. We say that Π has index q if every point (resp. block) is incident to exactly q blocks (resp. points). A line of Π is a quadruple $L=\left\{v_{i}, X_{j} \mid i, j \in\{0,1\}\right\}$ of points v_{i} and blocks X_{j} such that $v_{i} * X_{j}$ for any $i, j \in\{0,1\}$. We denote by \mathcal{L} the set of lines of Π and extend the incidence $*$ between \mathcal{L} and $\mathcal{P} \cup \mathscr{B}$ by inclusion. We identify Π with the resulting incidence geometry $(\mathcal{P}, \mathcal{L}, \mathscr{B} ; *)$ of rank 3 . For a semibiplane $\Pi^{\prime}=\left(\mathcal{P}^{\prime}, \mathcal{B}^{\prime} ; *^{\prime}\right)$, we say that Π^{\prime} covers Π (or Π is a quotient of $\left.\Pi^{\prime}\right)$ if the geometry $\left(\mathcal{P}^{\prime}, \mathscr{L}^{\prime}, \mathscr{B}^{\prime} ; *^{\prime}\right)$ is a (2-)cover of $(\mathscr{P}, \mathscr{L}, \mathscr{B} ; *)$ in the sense of incidence geometry.

We shall give two examples of semibiplanes of index $q=2^{n}$ for a fixed positive integer n. To define the first one, consider the row vector space \mathbf{F}_{2}^{q}. Define a point (resp. block) to be a vector $x=\left(x_{i}\right)_{i=1}^{q}$ of \mathbf{F}_{2}^{q} with even (resp. odd) weight; namely $\sum_{i=1}^{q} x_{i}=0$ (resp. 1) in \mathbf{F}_{2}. For vectors $x=\left(x_{i}\right)$ and $y=\left(y_{i}\right)$ of \mathbf{F}_{2}^{q}, we define $x * y$ whenever the Hamming distance between them is 1 : ${ }^{\#}\left\{i \in\{1, \ldots, q\} \mid x_{i} \neq y_{i}\right\}=1$. Denote by \mathcal{P} (resp. \mathscr{B}) the set of points (resp. blocks). The resulting incidence structure $\mathbf{H}(q):=(\mathcal{P}, \mathcal{B} ; *)$ is a semibiplane of index q, called the halved hypercube. It is simply connected in the sense of incidence geometry. In $\mathbf{H}(q)$, a line L incident to a point $v_{0}=0$ is of the form $\left\{0, e_{a}+e_{b} ; e_{a}, e_{b}\right\}$ for some $a \neq b$ in $\{1, \ldots, q\}$, where e_{k} denotes a vector of \mathbf{F}_{2}^{q} with all entries 0 except 1 at the k th component.

The second example is constructed from an arbitrary d-dual hyperoval $\&$ over \mathbf{F}_{2}, where $d=$ $n-1$ [12, Subsection 2.7]. We embed the ambient space $A:=\mathbf{A}(\delta)$ of δ as a hyperplane of a vector space U over \mathbf{F}_{2}. In the sequel, we use the following convention in the vector space of U over \mathbf{F}_{2}. A projective point (a one-dimensional subspace of U) is identified with the unique nonzero vector contained in it. Accordingly, in a projective line (a two-dimensional subspace of U) $\left\langle p_{0}, p_{1}\right\rangle$ generated by two distinct projective points $p_{i}(i=0,1)$, the unique projective point on $\left\langle p_{0}, p_{1}\right\rangle$ distinct from p_{0} and p_{1} is written as $p_{0}+p_{1}$. Now we call each projective point in $U \backslash A$ a point. A block is defined to be a ($d+2$)-dimensional subspace X of U such that $X \cap A$ is a member of s. The incidence structure $(\mathscr{P}, \mathscr{B} ; *)$ consisting of a set \mathscr{P} (resp. \mathscr{B}) of points (resp. blocks) together with the incidence $*$ given by inclusion is called the affine expansion of s and denoted $\operatorname{Af}(\delta)$. It is a semibiplane of index
$q=2^{n}=2^{d+1}$. In $\operatorname{Af}(\delta)$, each block X is generated by a member $X \cap A$ of δ and a point $p \in \mathcal{P}$ contained in it. We refer to $B=X \cap A$ as the base of a block X. A line $L=\left\{v_{i}, X_{j} \mid i, j \in\{0,1\}\right\}$ of $\operatorname{Af}(\xi)$ corresponds to the projective line $\left\langle v_{0}, v_{1}\right\rangle=X_{0} \cap X_{1}$. Thus L is determined by either the points $v_{i}(i=0,1)$ or the blocks $X_{i}(j=0,1)$. Notice that each member in L is uniquely determined by the other three members: $v_{1}=v_{0}+\left(B_{0} \cap B_{1}\right)$ for bases B_{j} of $X_{j}(j=0,1)$, and $X_{1}=\left\langle v_{0}, B_{1}\right\rangle=\left\langle v_{1}, B_{1}\right\rangle$, where B_{1} is the unique member of s distinct from $B_{0}=X_{0} \cap A$ which contains $\left\langle v_{0}, v_{1}\right\rangle \cap A$. This remark about a line of $\operatorname{Af}(\delta)$ is repeatedly used in the proof of Lemma 8 .

Now we recall a geometric condition concerning a d-dual hyperoval $\&$ in general [12, Subsection 2.6]. We say that $\&$ satisfies Property $\left(T_{1}\right)$ if $X \cap\langle Y, Z\rangle$ has vector dimension 2 for all mutually distinct members X, Y, Z of ℓ, where $\langle Y, Z\rangle$ denotes the subspace of $\mathbf{A}(\delta)$ generated by Y and Z. Notice that this implies that $X \cap\langle Y, Z\rangle$ is the projective line spanned by two projective points $X \cap Y$ and $X \cap Z$.

For the convenience of the reader, we record the following observation with a proof, which is a special case of [12, Lemma 2.13].

Lemma 7. Assume that \& is a d-dual hyperoval over \mathbf{F}_{2} satisfying Condition (T_{1}). Take any mutually distinct members $B_{i}(i=0,1,2)$ of 8 . For any permutation (i, j, k) of $(0,1,2)$, let $c_{i}:=\left(B_{i} \cap B_{j}\right)+\left(B_{i} \cap B_{k}\right)$. Then c_{0}, c_{1}, c_{2} lie on a projective line contained in a member C of s.

Proof. Without loss of generality, we may assume that $(i, j, k)=(0,1,2)$. Let C be the unique member of $s \backslash B_{0}$ containing c_{0}. Then C is distinct from B_{i} for any $i \in\{0,1,2\}$. By Property (T_{1}), we have $C \cap\left\langle B_{0}, B_{1}\right\rangle=\left\langle c_{0}, C \cap B_{1}\right\rangle$, which is a subspace of $\left\langle c_{0}, B_{1}\right\rangle$. As $c_{0}=C \cap B_{0}$ lies in the projective line $\left\langle B_{0} \cap B_{1}, B_{0} \cap B_{2}\right\rangle \subseteq\left\langle B_{1}, B_{2}\right\rangle$, the intersection $C \cap\left\langle B_{0}, B_{1}\right\rangle$ lies in $\left\langle B_{1}, B_{2}\right\rangle$. Thus $C \cap\left\langle B_{0}, B_{1}\right\rangle \subseteq C \cap\left\langle B_{1}, B_{2}\right\rangle$. As both subspaces of this inclusion relation have dimension 2 by Property (T_{1}), we conclude that $l:=C \cap\left\langle B_{0}, B_{1}\right\rangle=C \cap\left\langle B_{1}, B_{2}\right\rangle$. Then $l \cap B_{2} \subset\left\langle B_{0}, B_{1}\right\rangle \cap B_{2}=\left\langle B_{0} \cap B_{2}, B_{1} \cap B_{2}\right\rangle$, which implies that $l \cap B_{2}=c_{2}$. Then the above argument starting with c_{2} shows that $l=C \cap\left\langle B_{2}, B_{0}\right\rangle$ and $l \cap B_{1}=c_{1}$. Hence the projective points $c_{i}=C \cap B_{i}(i=0,1,2)$ lie on the line l contained in the member C of δ.

Now we prove the following result, originally due to Pasini.
Lemma 8. Assume that $\&$ is a d-dual hyperoval over \mathbf{F}_{2} which satisfies Condition $\left(T_{1}\right)$. Then $\operatorname{Af}(\delta)$ is covered by the halved hypercube.
Proof. We invoke the theory of a wrapping number developed by Pasini and Pica [5]. By [5, Corollary 4.2], in order to establish the claim it suffices to show the wrapping number $w(\Pi)$ of the semibiplane $\Pi:=\operatorname{Af}(\delta)$ is 1 .

The calculation of $w(\Pi)$ is carried out as follows (see [6, Subsection 1.1]). In Π, take a point v_{0} and a line $L=\left\{v_{i}, X_{j} \mid i, j \in\{0,1\}\right\}$ incident to v_{0}. For each block X incident to v_{0} but not to v_{1}, let (u_{0}, Y, u_{1}, Z) be a sequence of points and blocks obtained by the following procedure:
(1) Consider the line $\left\{v_{0}, u_{0} ; X, X_{0}\right\}$ determined by X and X_{0}.
(2) Consider the line $\left\{u_{0}, v_{1} ; X_{0}, Y\right\}$ determined by u_{0} and v_{1}.
(3) Consider the line $\left\{v_{1}, u_{1} ; Y, X_{1}\right\}$ determined by Y and X_{1}.
(4) Consider the line $\left\{u_{1}, v_{0} ; X_{1}, Z\right\}$ determined by u_{1} and v_{0}.

Then the map sending X to Z is a permutation $\gamma_{v_{0}, L}$ on the set $\mathscr{B}\left(v_{0}\right) \backslash \mathscr{B}\left(v_{1}\right)$ of blocks incident to v_{0} but not to v_{1}. The wrapping number $w(\Pi)$ is given as the maximum number of the order of the permutation $\gamma_{v_{0}, L}$ when (v_{0}, L) ranges over all pairs of incident points and lines of Π.

We shall show that $Z=X$ by tracing the above procedure. Let B and B_{i} be the bases of blocks X and X_{i} respectively ($i=0,1$). The initial line L corresponds to the projective line $\left\langle v_{0}, v_{1}\right\rangle=X_{0} \cap X_{1}$ with three projective points v_{0}, v_{1} and $B_{0} \cap B_{1}$. In Step (1), it follows from the remarks given in the last part of the definition of $\operatorname{Af}(\xi)$ above that $u_{0}=v_{0}+\left(B_{0} \cap B\right)$. In Step (2), similarly we have $Y=\left\langle u_{0}, C\right\rangle=\left\langle v_{1}, C\right\rangle$, where C is the unique member of $s \backslash\left\{X_{0}\right\}$ containing $\left\langle u_{0}, v_{1}\right\rangle \cap A$. This point is determined by observing the plane (the three-dimensional subspace over \mathbf{F}_{2}) $\left\langle v_{0}, v_{1}, u_{0}\right\rangle$ generated by v_{0}, v_{1} and u_{0}. As $\left\langle v_{0}, v_{1}\right\rangle$ and $\left\langle v_{0}, u_{0}\right\rangle$ intersect A at $B_{0} \cap B_{1}$ and $B_{0} \cap B$ respectively, the plane $\left\langle v_{0}, v_{1}, u_{0}\right\rangle$ (contained in X_{0}) intersects A in the projective line $\left\langle B_{0} \cap B_{1}, B_{0} \cap B\right\rangle$. Thus we conclude that $\left\langle u_{0}, v_{1}\right\rangle \cap A=\left(B_{0} \cap B_{1}\right)+\left(B_{0} \cap B\right)$.

Now we use the assumption that $\&$ satisfies Property $\left(T_{1}\right)$. We set $c_{0}:=\left(B_{0} \cap B_{1}\right)+\left(B_{0} \cap B\right)=$ $\left\langle u_{0}, v_{1}\right\rangle \cap A, c_{1}:=\left(B_{1} \cap B_{0}\right)+\left(B_{1} \cap B\right)$ and $c:=\left(B \cap B_{0}\right)+\left(B \cap B_{1}\right)$. It follows from Lemma 7 that the above C is a member of $\&$ containing c_{0}, c_{1} and c.

In Step (3) in the procedure, we have $u_{1}=v_{1}+\left(B_{1} \cap C\right)$. Notice that $B_{1} \cap C=c_{1}$. In Step (4), $Z=\left\langle u_{1}, D\right\rangle=\left\langle v_{0}, D\right\rangle$, where D is the unique member of $s \backslash\left\{B_{1}\right\}$ containing $\left\langle u_{1}, v_{0}\right\rangle \cap A$. The last point is determined inside the plane $\left\langle v_{0}, v_{1}, u_{1}\right\rangle$ as follows. As $\left\langle v_{0}, v_{1}\right\rangle$ and $\left\langle v_{1}, u_{1}\right\rangle$ intersect A at $B_{0} \cap B_{1}$ and $B_{1} \cap C=c_{1}$ respectively, the plane $\left\langle v_{0}, v_{1}, u_{1}\right\rangle$ (contained in X_{1}) intersects A in the projective line $\left\langle B_{0} \cap B_{1}, B_{1} \cap C\right\rangle$. Then we conclude that $\left\langle u_{1}, v_{0}\right\rangle \cap A=B_{0} \cap B_{1}+B_{1} \cap C$. As $B_{1} \cap C=c_{1}=\left(B_{1} \cap B_{0}\right)+\left(B_{1} \cap B\right)$, we have $\left\langle u_{1}, v_{0}\right\rangle \cap A=B_{1} \cap B$. Thus the unique member D of $s \backslash\left\{B_{1}\right\}$ containing this point should be B. Hence we have $Z=\left\langle v_{0}, B\right\rangle=X$, as desired.

As X is any block in $\mathcal{B}\left(v_{0}\right) \backslash \mathcal{B}\left(v_{1}\right)$, we have verified that the permutation $\gamma_{v_{0}, L}$ is the identity. This holds for any pair (v_{0}, L) of an incident point and a line of Π, whence the wrapping number of Π is 1 .

We now show the following result, using the model \mathscr{D} for $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ and the automorphisms of \mathscr{D} described in Section 2.

Lemma 9. The Buratti-Del Fra dimensional dual hyperoval satisfies Condition $\left(T_{1}\right)$.
Proof. We will work in the model \mathscr{D} of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ in Section 2. Take any three mutually distinct members X, Y and Z of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$. Notice that $(X \cap\langle Y, Z\rangle)^{g}=X^{g} \cap\left\langle Y^{g}, Z^{g}\right\rangle$, whence $X \cap\langle Y, Z\rangle$ and $X^{g} \cap\left\langle Y^{g}, Z^{g}\right\rangle$ have the same dimension for any $g \in \operatorname{Aut}(\mathcal{D})$. Thus we may assume that $X=X(0)=\{(x, \overline{0}) \mid x \in V\}$ by applying the automorphism $\tau(a)$ defined in Eq. (9) for some $a \in V$. As the subgroup of Aut(D) consisting of $l(\alpha)$ (see Eq. (10)) for $\alpha \in G L(V)$ fixing e_{0} has three orbits $\{X(0)\},\left\{X\left(e_{0}\right)\right\}$ and $\{X(t) \mid$ $\left.t \in V \backslash\left\{0, e_{0}\right\}\right\}$ on \mathfrak{D}, we may assume that $(Y, Z)=(X(a), X(b))$ for $(a, b)=\left(e_{0}, e_{1}\right),\left(e_{0}, e_{0}+e_{1}\right)$ or (e_{1}, e_{2}) with some fixed elements $e_{1} \neq e_{2} \in V \backslash\left\{0, e_{0}\right\}$ with $e_{2} \neq e_{0}+e_{1}$.

Observe that there is a basis $e_{i}(i=0, \ldots, d)$ for V containing e_{0}, e_{1}, e_{2}. Fix such a basis. As $\langle X(a), X(b)\rangle=\{(x+y, \overline{x \otimes a}+\overline{y \otimes b)} \mid x, y \in V\}$ for $a \neq b \in V$, the intersection $X(0) \cap\langle X(a), X(b)\rangle$ consists of $(x+y, \overline{0})$ for $x, y \in V$ satisfying

$$
\begin{equation*}
\overline{x \otimes a}=\overline{y \otimes b} . \tag{18}
\end{equation*}
$$

Assume first that $(X, Y, Z)=(X(0), X(a), X(b))$ with $a=e_{1}$ and $b=e_{2}$. Expressing $x=\sum_{i=0}^{d} x_{i} e_{i}$ and $y=\sum_{i=0}^{d} y_{i} e_{i}$ with $x_{i}, y_{i} \in \mathbf{F}_{2}(i \in\{0, \ldots, d\})$, the condition (18) is written as follows, where we define $\overline{e_{i} \otimes e_{j}}=\bar{e}_{i, j}$, for short $(i, j \in I=\{0, \ldots, d\})$:

$$
x_{0} \bar{e}_{0,1}+x_{1} \bar{e}_{1,1}+x_{2} \bar{e}_{1,2}+\sum_{i \geq 3} x_{i} \bar{e}_{1, i}=y_{0} \bar{e}_{0,2}+y_{1} \bar{e}_{1,2}+y_{2} \bar{e}_{2,2}+\sum_{i \geq 3} y_{i} \bar{e}_{2, i} .
$$

Recall that $\bar{e}_{0,0}=\overline{0}, \bar{e}_{i, i}=\bar{e}_{0, i}$ for $i \in I$. Thus we have

$$
\left(x_{0}+x_{1}\right) \bar{e}_{0,1}+\left(y_{0}+y_{2}\right) \bar{e}_{0,2}+\left(x_{2}+y_{1}\right) \bar{e}_{1,2}+\sum_{i \geq 3} x_{i} \bar{e}_{1, i}+\sum_{i \geq 3} y_{i} \bar{e}_{2, i}=\overline{0} .
$$

As $\bar{e}_{0, i}\left(i \in I_{0}=\{1, \ldots, d\}\right), \bar{e}_{i, j}\left(i, j \in I_{0}, i<j\right)$ form a basis for $(V \otimes V) / W$, then we have $x_{0}+x_{1}=0, y_{0}+y_{2}=0, x_{2}+y_{1}=0$ and $x_{i}=y_{i}=0$ for all $i \in\{3, \ldots, d\}$. Thus $x=x_{0}\left(e_{0}+e_{1}\right)+x_{2} e_{2}$ and $y=y_{0}\left(e_{0}+e_{2}\right)+x_{2} e_{1}$, and then $x+y=\left(x_{0}+x_{2}\right)\left(e_{0}+e_{1}\right)+\left(x_{2}+y_{0}\right)\left(e_{0}+e_{2}\right)$. This implies that ($x+y, \overline{0}$) lies in the two-dimensional subspace spanned by $\left(e_{1}+e_{0}, \overline{0}\right)$ and $\left(e_{2}+e_{0}, \overline{0}\right)$ for any $x, y \in V$ satisfying Eq. (18). Hence $X(0) \cap\left\langle X\left(e_{1}\right), X\left(e_{2}\right)\right\rangle$ coincides with the two-dimensional subspace spanned by $\left(e_{1}+e_{0}, \overline{0}\right)$ and $\left(e_{2}+e_{0}, \overline{0}\right)$. (Notice that the last vectors are $b\left(0, e_{1}\right)$ and $b\left(0, e_{2}\right)$ in view of Eq. (7).)

Next consider the case where $(X, Y, Z)=(X(0), X(a), X(b))$ with $a=e_{1}$ and $b=e_{0}+e_{1}$. In this case, the condition (18) for $x=\sum_{i=0}^{d} x_{i} e_{i}$ and $y=\sum_{i=0}^{d} y_{i} e_{i}\left(x_{i}, y_{i} \in \mathbf{F}_{2}, i \in I\right)$ is equivalent to the following equation:

$$
x_{0} \bar{e}_{0,1}+x_{1} \bar{e}_{1,1}+\sum_{i \geq 2} x_{i} \bar{e}_{i}=y_{0}\left(\bar{e}_{0,0}+\bar{e}_{0,1}\right)+y_{1}\left(\bar{e}_{0,1}+\bar{e}_{1,1}\right)+\sum_{i \geq 2} y_{i} \bar{e}_{0, i}+\sum_{i \geq 2} y_{i} \bar{e}_{1, i} .
$$

As $\bar{e}_{0,0}=\overline{0}$ and $\bar{e}_{i, i}=\bar{e}_{0, i}$ for $i \in I$, we have

$$
\left(x_{0}+y_{0}+x_{1}+y_{1}\right) \bar{e}_{0,1}+\sum_{i \geq 2} y_{i} \bar{e}_{0, i}+\sum_{i \geq 2}\left(x_{i}+y_{i}\right) \bar{e}_{1, i}=\overline{0},
$$

which implies $x_{0}+y_{0}=x_{1}$ and $y_{i}=0=x_{i}$ for all $i \in\{2, \ldots, d\}$. Thus $(x+y, \overline{0})=\left(x_{1}\left(e_{0}+e_{1}\right)+y_{1} e_{1}, \overline{0}\right)$ lies in the two-dimensional subspace spanned by $\left(e_{0}+e_{1}, \overline{0}\right)$ and ($e_{1}, \overline{0}$) for any $x, y \in V$. Hence $X(0) \cap\left\langle X\left(e_{1}\right), X\left(e_{0}+e_{1}\right)\right\rangle$ is the two-dimensional subspace spanned by $\left(e_{0}+e_{1}, \overline{0}\right)$ and $\left(e_{1}, \overline{0}\right)$. (Notice that the last two vectors are $b\left(0, e_{1}\right)$ and $b\left(0, e_{0}+e_{1}\right)$ in view of Eq. (7).)

In the remaining case where $(X, Y, Z)=(X(0), X(a), X(b))$ for $a=e_{0}$ and $b=e_{1}$, the condition (18) for $x=\sum_{i=0}^{d} x_{i} e_{i}$ and $y=\sum_{i=0}^{d} y_{i} e_{i}\left(x_{i}, y_{i} \in \mathbf{F}_{2}, i \in I\right)$ is

$$
x_{0} \bar{e}_{0,0}+x_{1} \bar{e}_{0,1}+\sum_{i \geq 2} x_{i} \bar{e}_{0, i}=y_{0} \bar{e}_{0,1}+y_{1} \bar{e}_{1,1}+\sum_{i \geq 2} y_{i} \bar{e}_{1, i},
$$

from which we have $x_{1}+y_{0}+y_{1-}=0$ and $x_{i}=y_{i}=0$ for all $i \in\{2, \ldots, d\}$. Then $x \pm y=$ $\left(x_{0}+y_{0}\right) e_{0}+y_{0} e_{1}$, and so $(x+y, \overline{0})$ lies in the two-dimensional subspace spanned by $\left(e_{0}, \overline{0}\right)$ and ($e_{0}+e_{1}, \overline{0}$) for any $x, y \in V$ satisfying Eq. (18). Hence $X(0) \cap\left\langle X\left(e_{0}\right), X\left(e_{1}\right)\right\rangle$ coincides with the twodimensional subspace spanned by $\left(e_{0}, \overline{0}\right)$ and $\left(e_{1}+e_{0}, \overline{0}\right)$. (Notice that the last vectors coincide with $b\left(0, e_{0}\right)$ and $b\left(0, e_{1}\right)$ in view of Eq. (7).)

Thus in either case, $X \cap\langle Y, Z\rangle$ is of dimension 2. This establishes that \mathscr{D} satisfies Property (T_{1}).
From Lemmas 8 and 9, we obtain the following result.
Proposition 10. The affine expansion $\operatorname{Af}\left(\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)\right)$ of the Buratti-Del Fra dimensional dual hyperoval $\mathcal{D}_{d}\left(\mathbf{F}_{2}\right)$ is covered by the halved hypercube $\mathbf{H}\left(2^{d+1}\right)$.

5. Additional remarks and questions

We conclude the paper with some remarks and questions.
The first two questions are easy to state.
Question 1. Find a quotient in $P G(2 d+1,2)$ of the Buratti-Del Fra d-dual hyperoval with d odd.
Question 2. Find relations between the universal cover of the affine expansion $\operatorname{Af}\left(\mathcal{V}_{d}\left(\mathbf{F}_{2}\right)\right)$ of the Veronesean dual hyperoval $\mathcal{V}_{d}\left(\mathbf{F}_{2}\right)$ over \mathbf{F}_{2} and the universal cover of $\operatorname{Af}\left(\mathcal{T}_{d}\left(\mathbf{F}_{2}\right)\right)$ for $\mathcal{T}_{d}\left(\mathbf{F}_{2}\right)$, the deformation of $\mathcal{V}_{d}\left(\mathbf{F}_{2}\right)$ given by the first author [8].
Before stating the next question, we need to review some facts. Recall that for a quadratic APN function f on $K \cong \mathbf{F}_{2^{n}}, n=d+1$, we construct a d-dual hyperoval $\delta[f]$ with ambient space $K \oplus K$, which is a quotient of the Huybrechts dual hyperoval $\mathscr{H}_{d}\left(\mathbf{F}_{2}\right)$ [14]. There are two equivalence relations among (not necessarily quadratic) APN functions, called the extended affine equivalence and CCZ equivalence. Two APN functions are CCZ-equivalent if they are extended affine equivalent, but the converse is not true in general. The following are known [16, Propositions 2 and 6; Proposition 5]: two quadratic APN functions f and g on $K \cong \mathbf{F}_{2^{n}}$ are extended affine equivalent if and only if the associated d-dual hyperovals $\delta[f]$ and $\delta[g]$ are isomorphic, while they are CCZ-equivalent if and only if the associated semibiplanes $\operatorname{Af}(\mathscr{f} f])$ and $\operatorname{Af}(f[g])$ are isomorphic as incidence structures. In fact, the second author recently proved that for quadratic APN functions on K they are extended affine equivalent if and only if they are CCZ-equivalent [17]. In view of the above strong similarity of the Buratti-Del Fra dual hyperoval to the Huybrechts dual hyperoval, it is natural to ask whether a similar phenomenon holds for quotients in $K \oplus K$ of the Buratti-Del Fra dual hyperoval.

Question 3. Let B and B^{\prime} be \mathbf{F}_{2}-bilinear maps on $K \cong \mathbf{F}_{2^{d+1}}$ which satisfy the conditions (1)-(3) in Lemma 4, so that $s[B]$ and $s\left[B^{\prime}\right]$ are both d-dual hyperovals with ambient spaces $K \oplus K$ covered by $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$. Prove or give a counterexample for the following statement. The associated semibiplanes $\operatorname{Af}(\delta[B])$ and $\operatorname{Af}\left(\&\left[B^{\prime}\right]\right)$ are isomorphic as incidence structures if and only if $s[B]$ and $s\left[B^{\prime}\right]$ are isomorphic as dimensional dual hyperovals.
We do not attempt to state the last two questions with rigorous mathematical formulations.

The shape of the bilinear map $B(x, y)=x^{4} y+x y^{4}+x y+(x y)^{2}$ on $K \cong \mathbf{F}_{2^{d+1}}, d$ even, in Section 3 looks quite similar to the product $x \cdot y=x^{9} y+x y^{9}-x y+(x y)^{3}$ on $\mathbf{F}_{32 e+1}, e>1$, which gives the structure of a semifield on $\mathbf{F}_{32 e+1}$, known as the Coulter-Matthews semifield [2].

Question 4. Are there any reasons for this similarity?
The recent construction by the first author [9] of some quotients of $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$ in $\operatorname{PG}(3 d, 2)$ using quadratic APN functions on $\mathbf{F}_{2^{d}}$ may be regarded as another example of the similarity between $\mathscr{H}_{d}\left(\mathbf{F}_{2}\right)$ and $\mathscr{D}_{d}\left(\mathbf{F}_{2}\right)$. It is carried out by 'pasting' some quotients of $\mathscr{H}_{d-1}\left(\mathbf{F}_{2}\right)$ together. This suggests the following:

Question 5 . Find general methods for constructing a d-dual hyperoval by pasting together e-dual hyperovals (which are quotients of the Huybrechts or the Veronesean dual hyperoval) with e smaller than d. Determine the universal cover of the resulting d-dual hyperoval.

References

[1] M. Buratti, A. Del Fra, Semi-Boolean Steiner quadruple systems and dimensional dual hyperovals, Advances in Geometry 3 (2003) S245-S253 (Special Volume).
[2] R.S. Coulter, R.W. Matthews, Planar functions and planes of Lenz-Barlotti class II, Designs, Codes and Cryptography 10 (1997) 167-184.
[3] A. Del Fra, S. Yoshiara, Dimensional dual hyperovals associated with Steiner systems, European Journal of Combinatorics 26 (2005) 173-194.
[4] C. Huybrechts, A. Pasini, Flag transitive extensions of dual affine spaces, Contributions to Algebra and Geometry 40 (1999) 503-532.
[5] A. Pasini, G. Pica, Wrapping polygons in polygons, Annals of Combinatorics 2 (1998) 325-349.
[6] A. Pasini, S. Yoshiara, On a new family of flag-transitive semibiplanes, European Journal of Combinatorics 22 (2001) 529-545.
[7] H. Taniguchi, On a family of dual hyperovals over $G F(q)$ with q even, European Journal of Combinatorics 26 (2005) 195-199.
[8] H. Taniguchi, A new family of dual hyperovals in $\operatorname{PG}(d(d+3) / 2,2)$ with $d \geq 3$, Discrete Mathematics 309 (2009) 418-429.
[9] H. Taniguchi, On d-dimensional Buratti-Del Fra type dual hyperovals in $\operatorname{PG}(3 d, 2)$, Discrete Mathematics 310 (2010) 3633-3645.
[10] H. Taniguchi, S. Yoshiara, New quotients of d-dimensional Veronesean dual hyperoval in $P G(2 d+1,2)$, Preprint (2010).
[11] J. Thas, H. van Maldeghem, Characterizations of the finite quadric Veroneseans $\mathcal{V}_{n}^{2^{n}}$, The Quarterly Journal of Mathematics 55 (2004) 99-113. Oxford.
[12] S. Yoshiara, Dimensional dual arcs-a survey, in: A. Hulpke, B. Liebler, T. Penttila, A. Seress (Eds.), Finite Geometries, Groups, and Computation, Walter de Gruyter, Berlin, New York, 2006, pp. 247-266.
[13] S. Yoshiara, Notes on Taniguchi's dimensional dual hyperovals, European Journal of Combinatorics 28 (2007) 674-684.
[14] S. Yoshiara, Dimensional dual hyperovals associated with quadratic APN functions, Innovations in Incidence Geometry 8 (2008) 147-169.
[15] S. Yoshiara, Notes on split dimensional dual hyperovals, Incomplete Manuscript, 2009.
[16] S. Yoshiara, Notes on APN functions, semibiplanes and dimensional dual hyperovals, Designs, Codes and Cryptography 56 (2010) 197-218.
[17] S. Yoshiara, Equivalences of quadratic APN functions, Journal of Algebraic Combinatorics (in press). http://dx.doi.org/10.1007/s10801-011-0309-1.

[^0]: E-mail addresses: taniguchi@dg.kagawa-nct.ac.jp (H. Taniguchi), yoshiara@lab.twcu.ac.jp (S. Yoshiara).
 0195-6698/\$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
 doi:10.1016/j.ejc.2012.01.002

