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a b s t r a c t

The Buratti–Del Fra dual hyperovalDd(F2) is one of the four known
infinite families of simply connected d-dimensional dual hyper-
ovals over F2 with ambient space of vector dimension (d + 1)(d +

2)/2 (Buratti and Del Fra (2003) [1]). A criterion (Proposition 1)
is given for a d-dimensional dual hyperoval over F2 to be covered
by Dd(F2) in terms of the addition formula. Using it, we provide
a simpler model of Dd(F2) (Proposition 3). We also give condi-
tions (Lemma 4) for a collection S[B] of (d + 1)-dimensional sub-
spaces of K ⊕ K constructed from a symmetric bilinear form B on
K ∼= F2d+1 to be a quotient ofDd(F2). Forwhen d is even, an explicit
form B satisfying these conditions is given. We also provide a proof
for the fact that the affine expansion of Dd(F2) is covered by the
halved hypercube (Proposition 10).

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

For a natural number d, a d-dimensional dual hyperoval (d-dual hyperoval, for short) over a finite field
Fq is a collection S of subspaces of a vector space U over Fq which satisfies the following conditions
(h0)–(h3):

(h0) Each member X of S has vector dimension n = d + 1.
(h1) dim(X ∩ Y ) = 1 for any two distinct members X and Y of S.
(h2) X ∩ Y ∩ Z = {0} for any three mutually distinct members X, Y , Z of S.
(h3) S consists of ((qn − 1)/(q − 1)) + 1 members.

The subspace of U spanned by all members of S is called the ambient space of S and denoted as A(S).
If A(S) has vector dimension k + 1, we say that S is a d-dual hyperoval in PG(k, q).
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For two d-dual hyperovals Si over Fq (i = 1, 2), we say that S1 covers S2 (or S2 is a quotient of
S1) if there is a surjective semilinear map ρ from A(S1) to A(S2) (thus if q = 2, ρ is just an F2-linear
surjection) which sends each member of S1 bijectively to a member of S2. If S = S1 = S2, then
a surjective map ρ on A(S) with the above property is called an automorphism of S. The set of all
automorphisms of S forms a group with respect to the composition of maps, denoted as Aut(S).

A d-dual hyperoval S over Fq is said to be simply connected if any cover S̃ of S coincides with S.
For any d-dual hyperoval S over Fq, it is known that dimA(S) ≤ (d + 1)(d + 2)/2 if q > 2. When
q = 2, it is conjectured that the same result holds. (See [12, Subsection 2.4].) Currently, four infinite
families of simply connected d-dual hyperovals in PG(d(d+ 3)/2, q) are known: the Huybrechts dual
hyperoval Hd(F2) over F2 [4], the Buratti–Del Fra dual hyperoval Dd(F2) over F2 (this is regarded as
a certain deformation of Hd(F2)); the Veronesean dual hyperoval Vd(Fq) over Fq for any q = 2e [11],
and its deformation Td(F2) given by the first author [8] for when q = 2.

In a series of papers by the second author [14,16,15], it was shown that quadratic APN functions
on K ∼= F2d+1 , a remarkable class of functions with extremal nonlinearity, correspond (up to extended
affine equivalence) to the dimensional dual hyperovals in PG(2d + 1, 2) which are obtained as
some quotients of Hd(F2) (up to isomorphism of dual hyperovals). In particular, the classification
of quadratic APN functions is reduced to the classification of some subspaces of A(Hq(F2)) satisfying
strong restrictions.

This motivates the following project. Find explicit examples of quotients in PG(2d+1, q) of known
simply connected dual hyperovals in PG(d(d + 3)/2, q), and investigate relations between them and
some classes of functions on a field Fqd+1 (or Fqd+1 × Fqd+1 ) which can be regarded as analogues of
quadratic APN functions (or the associated alternating form). The authors made some contributions
to this project for Vd(Fq) [7,13,10]. However, the most interesting target that one should investigate
next to Hd(F2) seems to be Dd(F2), because the latter is obtained from the former by a certain
deformation.

This paper is the first attempt to find an explicit example of quotients in PG(2d+1, 2) ofDd(F2). In
Section 2,we give a general criterion for a d-dual hyperoval over F2 to be covered byDd(F2) in terms of
the addition formula (see Proposition 1). Using this criterion,weprovide a simple and explicitmodel of
Dd(F2) inwhich themembers are described in a similarmanner to those ofHd(F2) (see Proposition 3).
In Section 3, we give conditions (see Lemma 4) for a certain collection S[B] of (d + 1)-dimensional
subspaces in K ⊕ K constructed from a symmetric bilinear map B on K ∼= F2d+1 (which corresponds
to an alternating bilinear map in the case of a quadratic APN function) to be covered by Dd(F2). For
d even, we found a single example of B satisfying these conditions: B(x, y) = x4y + xy4 + xy + x2y2.
Notice that B is symmetric but not alternating. Hence S[B] for this map B is a quotient in PG(2d+1, 2)
of Dd(F2) (see Proposition 6). In Section 4, a proof is given for the fact that the affine expansion of the
Buratti–Del Fra dual hyperoval is covered by the halved hypercube (see Proposition 10). We conclude
the paper by proposing several questions in Section 5.

2. A simpler description of the Buratti–Del Fra dual hyperoval

In this section,we give a criterion for a d-dual hyperoval over F2 to be covered by the d-dimensional
Buratti–Del Fra dual hyperoval Dd(F2) in terms of the addition formula. Using it, we give a much
simpler model of Dd(F2).

We first summarize the notation used in this section. We use letters n and d to denote natural
numbers satisfying n = d + 1 ≥ 3. The letter I is used to denote the set of integers i with 0 ≤ i ≤ d,
andwe set I0 := I\{0}. The letterV denotes ann-dimensional vector space over F2 with a basis ei (i ∈ I)
containing a specified nonzero vector e0. We shall use the symbol ξ to denote the characteristic
function of V ′

:= V \ {0, e0}, namely ξ is a function from V to F2 defined by ξ(x) = 1 or 0 according
as x ∈ V ′ or not.

We give an elementary but important remark on the value of the characteristic function ξ , which
will be frequently used below. Observe that the subset V ′

= V \ {0, e0} is invariant under the addition
by e0; namely, for y ∈ V , we have y ∈ V ′ if and only if y + e0 ∈ V ′. This implies that

ξ(y) = ξ(y + εe0) for any ε ∈ F2. (1)



1032 H. Taniguchi, S. Yoshiara / European Journal of Combinatorics 33 (2012) 1030–1042

Before stating a characterization of d-dual hyperovals over F2 covered by the Buratti–Del Fra dual
hyperoval, we give a brief overview of its construction. In [1], Buratti and Del Fra investigated an
arbitrary d-dual hyperoval S = {X(t) | t ∈ K} over F2 which satisfies the following equation:

a(s, t1) + a(s, t2) = a(s, s + t1 + t2 + α(s, t1, t2)e0), (2)

where we denote by a(s, t) = a(t, s) the unique nonzero element of X(s) ∩ X(t) for distinct s, t ∈ V
with the convention that a(s, s) = 0 for all s ∈ V and α(x, y, z) := ξ(x+ y) + ξ(y+ z) + ξ(z + x) for
the characteristic function ξ of V ′

= V \ {0, e0}. We refer to Eq. (2) as the addition formula in S.
We set B := {0, ei | i ∈ I}. Buratti and Del Fra derived from the addition formula (2) an explicit

expression for each a(s, t) (s, t ∈ K) as an F2-linear combination of a(w, w′), where (w, w′) ranges
over the pairs of distinct elements in B [1, Section 2, Formula (16)] (repeated as [3, Proposition 1]).
Notice that this expression may not be uniquely determined in general, since the a(w, w′)’s may be
linearly dependent.

We embed V as a hyperplane of a vector space U of dimension n + 1 over F2, and pick a vector
e∞ of U outside V . In [3, Section 2], a d-dual hyperoval S satisfying the above addition formula (2)
is constructed inside the exterior square ∧

2(U), in which the a(w, w′)’s are linearly independent.
(In fact, a(w, w′) = (e∞ + w) ∧ (e∞ + w′).) This is the Buratti–Del Fra dual hyperoval.

To specify this specific d-dual hyperoval, we use the letter Dd(F2) in this paper. Its members are
denoted by X̃(t) (t ∈ V ) and the unique nonzero vector of X̃(s)∩X̃(t) for distinct s, t of V is denoted as
b̃(s, t). We set b̃(s, s) = 0 for s ∈ V . Then b̃(s, t) (s, t ∈ V ) satisfy the addition formula (Eq. (2)) with
b̃(s, t) instead of a(s, t). By construction, n(n + 1)/2 vectors b̃(w, w′) form a basis for the ambient
space ∧

2(U) of Dd(F2). We have X̃(t) = {b̃(x, t) | x ∈ V } for each t ∈ V .

Proposition 1. Let S = {X(s) | s ∈ V } be a d-dual hyperoval over F2 consisting of subspaces X(s) of the
ambient space A(S) indexed by the elements of V . For s, t ∈ V , we denote by b(s, t) the unique nonzero
vector of X(s) ∩ X(t) or 0 according as s ≠ t or s = t.

Then S is covered by the Buratti–Del Fra dual hyperovalDd(F2) via an F2-linear surjection from∧
2(U)

onto A(S) sending a member X̃(t) of Dd(F2) to a member X(t) of S for each t ∈ V if and only if the
following formula is satisfied for any s, t1, t2 ∈ V :

b(s, t1) + b(s, t2) = b(s, s + t1 + t2 + α(s, t1, t2)e0),

whereα(s, t1, t2) := ξ(s+t1)+ξ(s+t2)+ξ(t1+t2)with the characteristic function ξ of V ′
= V \{0, e0}.

Proof. This result is implicit in [1,3], but we give an expository account.
Consider any quotient S ofDd(F2), and let ρ be a linear surjection from∧

2(U) to the ambient space
A(S) of S which bijectively maps each member X̃(t) of Dd(F2) to a member X(t) of S for every t ∈ V .
From the linearity of ρ, the vectors b(s, t) := ρ(b̃(s, t)) of A(S) for any s, t ∈ V satisfy the same
addition formula as (2) with b(s, t) instead of a(s, t).

Conversely, assume that S = {X(s) | s ∈ V } satisfies the conditions in the proposition: namely,
denoting by b(s, t) the unique nonzero vector b(s, t) in X(s) ∩ X(t) for any distinct elements s and t
of V with the convention b(s, s) = 0 for s ∈ V , the vectors b(s, t) satisfy the addition formula (Eq. (2))
with b(s, t) instead of a(s, t). Then we define an F2-linear map ρ from ∧

2(U) to A(S) by first setting
ρ(b̃(w, w′)) := b(w, w′) (w ≠ w′

∈ B) on the basis of ∧2(U), and then by extending it linearly to all
vectors of ∧2(U). As {b̃(s, t) | s, t ∈ V } and {b(s, t) | s, t ∈ V } satisfy the same addition formula (2), it
follows from [1, Section 2, Formula (16)] that for each s, t ∈ V both b(s, t) and b̃(s, t) can be expressed
as linear combinations of b(w, w′)’s and b̃(w, w′)’s and that if b̃(s, t) =


α(w, w′)b̃(w, w′) then

b(s, t) =


α(w, w′)b(w, w′). (There may be another expression for b(s, t) as a linear combination
of b(w, w′), but this is not a problem. The point is that we have an expression for b(s, t) in which the
coefficients are the same as those that appeared in the defining expression for b̃(s, t).) Thus the linear
map ρ sends b̃(s, t) to b(s, t). Hence ρ bijectively maps each member X̃(t) = {b̃(x, t) | x ∈ V } of
Dd(F2) to a member X(t) = {b(x, t) | x ∈ V } of S. This verifies that ρ gives a cover of S by Dd(F2)
with the property stated in the proposition. �
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Applying the above criterion (Proposition 1), we now provide a new model of the Buratti–Del Fra
dual hyperoval for which the ambient space has the form V ⊕ ((V ⊗ V )/W ) for some subspaceW of
the tensor product V ⊗ V . Notice that the ei ⊗ ej (i, j ∈ I) form a basis for V ⊗ V .

DefineW to be a subspace of V ⊗ V spanned by the following vectors:

(x ⊗ y) + (y ⊗ x) and (x ⊗ x) + ξ(x)(e0 ⊗ x) for all x, y ∈ V .

Adopting the expressions x =


i∈I xiei and y =


j∈I yjej with xi, yj ∈ F2 (i, j ∈ I), we have
(x⊗y)+(y⊗x) =


i,j∈I,i<j xiyj(ei⊗ej+ej⊗ei). If x ∈ {0, e0}, we have (x⊗x)+ξ(x)(e0⊗x) = e0⊗e0

or 0. For any x ∈ V \ {0, e0}, we have (x⊗ x) + ξ(x)(e0 ⊗ x) = (x⊗ x) + (e0 ⊗ x) =


i∈I0
xi(ei ⊗ ei +

e0 ⊗ ei) +


i,j∈I,i<j xixj(ei ⊗ ej + ej ⊗ ei). This implies thatW has the following vectors as a basis, and

hence has dimension


d+1
2


+ (d + 1) = (d + 1)(d + 2)/2 over F2:

(ei ⊗ ej) + (ej ⊗ ei) for all i, j ∈ I with i < j,

e0 ⊗ e0 and (ei ⊗ ei) + (e0 ⊗ ei) for all i ∈ I0. (3)

We denote by v the image v + W of a vector v ∈ V ⊗ V under the canonical projection
of V ⊗ V onto (V ⊗ V )/W . Then x ⊗ y = y ⊗ x and (x1 + x2) ⊗ y = x1 ⊗ y + x2 ⊗ y for any
x, x1, x2, y ∈ V . Furthermore, the following vectors form a basis for (V ⊗ V )/W (of dimension
(d + 1)2 − (d + 1)(d + 2)/2 = d(d + 1)/2):

ei ⊗ ej for all i, j ∈ I0 with i < j, and e0 ⊗ ei for all i ∈ I0. (4)

Lemma 2. For nonzero vectors u and x of V , we have x ⊗ u = 0 in (V ⊗ V )/W if and only if x =

u + ξ(u)e0.

Proof. Expressing u and x as u =


i∈I uiei and x =


i∈I xiei with ui, xi ∈ F2, we obtain the expression
for x ⊗ u as an F2-linear combination of the basis for (V ⊗ V )/W in Eq. (4):

x ⊗ u =


i,j∈I

xiujei ⊗ ej

=


j∈I0

(u0xj + x0uj + ujxj)e0 ⊗ ej +


i,j∈I0,i<j

(xiuj + uixj)ei ⊗ ej.

(Observe that ei ⊗ ej = ej ⊗ ei and ei ⊗ ei = e0 ⊗ ej for any i ∈ I , from Eqs. (3).) Thus the condition
x ⊗ u = 0 is equivalent to the following simultaneous equations in F2:

x0uj = (u0 + uj)xj and xiuj = uixj for all i, j ∈ I0. (5)

Assume that u ≠ e0. As u ≠ 0, there exists some j0 ∈ I0 with uj0 = 1. Then it follows from Eq. (5)
that x0 = (u0+1)xj0 and xi = xj0ui for all i ∈ I0. Thus x =


i∈I xiei = xj0(e0+


i∈I uiei) = xj0(e0+u).

As x ≠ 0, we have xj0 = 1 and x = e0 + u in this case. Conversely, x = u + e0 satisfies x0 = 1 + u0
and xj = uj for all j ∈ I0, and so Eq. (5) holds.

In the remaining case when u = e0, we have u0 = 1 but uj = 0 for all j ∈ I0. Thus it follows from
Eq. (5) that xj = 0 for all j ∈ I0. Then x = e0, as x ≠ 0. Conversely, x = e0 = u satisfies x0 = u0 = 1
and xj = uj = 0 for all j ∈ I0, and so Eq. (5) holds.

Using the characteristic function ξ , the resulting nonzero vector x in the above two cases can be
uniformly written as x = ξ(u)e0 + u. �

We consider the direct sum A := V ⊕ ((V ⊗V )/W ) := {(x, v) | x ∈ V , v ∈ V ⊗V }. The dimension
of A is (d + 1) + (d(d + 1)/2) = (d + 1)(d + 2)/2. For each t ∈ V , we define a subset X(t) of A by

X(t) := {(x, x ⊗ t) | x ∈ V }. (6)

Then X(t) is a subspace of A of dimension d + 1.

Proposition 3. Under the above notation, D := {X(t) | t ∈ V } is a d-dual hyperoval over F2 with
ambient space A, which is isomorphic to the Buratti–Del Fra dual hyperoval Dd(F2).
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Proof. Take any two distinct vectors s and t of V . Then a nonzero vector (x, y) lies in X(s) ∩ X(t) if
and only if y = x ⊗ s = x ⊗ t with x ≠ 0. Then x is a nonzero vector of V with x ⊗ (s + t) = 0. From
Lemma 2, we have x = s+ t + ξ(s+ t)e0. Thus the intersection X(s)∩X(t) contains a unique nonzero
vector

b(s, t) := (s + t + ξ(s + t)e0, (s + t + ξ(s + t)e0) ⊗ s). (7)

(In order to see that b(s, t) ∈ X(t), notice that the second component of b(s, t) can also be written as
(s + t + ξ(s + t)e0) ⊗ t , because (s + t) ⊗ (s + t) + ξ(s + t)((s + t) ⊗ e0) lies in W .) From Eq. (7),
it is clear that X(s) ∩ X(t) ∩ X(u) = {(0, 0)} for any mutually distinct vectors s, t, u of V . Hence the
collection D of 2d+1 subspaces X(t) (t ∈ V ) is a d-dual hyperoval over F2. The ambient space of D
coincides with A = V ⊕ ((V ⊕ V )/W ), because X(0) = {(x, 0) | x ∈ V } and (V ⊕ V )/W is spanned
by x ⊗ t for all x, t ∈ V . Summarizing, we have verified that D is a d-dual hyperoval over F2 with
ambient space A.

For distinct vectors s, t of V , the nonzero vector b(s, t) is given by Eq. (7).We extend it by assuming
that b(s, s) = (0, 0) for s ∈ V . We shall verify the addition formula; namely, for any s, t1, t2 ∈ V we
have

b(s, t1) + b(s, t2) = b(s, s + t1 + t2 + α(s, t1, t2)e0). (8)

By Eq. (7), the first components of the left and the right hand sides of Eq. (8) are respectively calculated
to be t1 + t2 + (ξ(s+ t1)+ ξ(s+ t2))e0 and t1 + t2 + (α(s, t1, t2) + ξ(t1 + t2 + α(s, t1, t2)e0)) e0. Thus
to verify Eq. (8) it suffices to show that α(s, t1, t2) = ξ(s+ t1)+ ξ(s+ t2)+ ξ(t1 + t2 +α(s, t1, t2)e0),
or equivalently ξ(t1 + t2) = ξ(t1 + t2 + α(s, t1, t2)e0). This follows from Eq. (1). Thus we have
verified Eq. (8).

Then it follows from Proposition 1 that D is covered by the Buratti–Del Fra dual hyperoval Dd(F2).
Notice here that the ambient space A of D has the dimension (d + 1)(d + 2)/2, which is equal
to the dimension of the ambient space of Dd(F2). Thus the covering map of D by Dd(F2) gives an
isomorphism of Dd(F2) with D . �

The original construction of the Buratti–Del Fra dual hyperoval Dd(F2) [3] is very complicated,
because the members are described there as subspaces of the wedge product ∧

2(U) for a (d + 2)-
dimensional space U containing V as a hyperplane. Notice that∧2(U) is isomorphic to A = V ⊕ ((V ⊗

V )/W ) as vector spaces, in view of their dimensions. The above description D of the Buratti–Del Fra
hyperoval Dd(F2) is much simpler—in it, the members are described as subspaces of A instead. This
new description immediately shows that Dd(F2) splits in the sense of [15]; namely Y := {(0, v) | v ∈

V ⊗ V } is a subspace of A of codimension n = d + 1 which intersects every member of D at the zero
subspace.

The above construction also provides another account of why the Buratti–Del Fra dual hyperoval
is regarded as a ‘‘deformation’’ of the Huybrechts dual hyperoval. Recall that the Huybrechts dual
hyperoval Hd(F2) has the ambient space V ⊕ ((V ⊗ V )/W ′) where W ′ is the subspace of V ⊗ V
spanned by (x ⊗ y) + (y ⊗ x) and x ⊗ x for all x, y ∈ V . In this case (V ⊗ V )/W ′ is regarded as the
alternating square tensor product ∧

2(V ) by identifying (x ⊗ t) + W ′ with x ∧ t (x, t ∈ V ), and hence
V ⊕ ((V ⊗ V )/W ′) is isomorphic to ∧

2(U) via the map sending (x, x∧ t) to (e∞ + t) ∧ x. In fact, each
member X(t) of Hd(F2) is defined as a subspace X(t) := {(x, x ∧ t) | x ∈ V } of V ⊕ ((V ⊗ V )/W ′).

We conclude this section by providing some automorphisms of the Buratti–Del Fra dual hyperoval
Dd(F2), in terms of the abovemodelD . For each a ∈ V , define amap τ(a) on A = V ⊕((V ⊗V )/W ) by

(x, y)τ(a)
:= (x, y + x ⊗ a), x ∈ V , y ∈ V ⊗ V . (9)

It is easy to see that τ(a) is an F2-linear bijection on A. As (x, x ⊗ t)τ(a)
= (x, x ⊗ (t + a)) for each

t ∈ V , τ(a) sends a member X(t) of D to X(t + a) for every t ∈ V . Thus τ(a) is an automorphism of
D . Furthermore, {τ(a) | a ∈ V } is a subgroup of Aut(D) which acts regularly on the members of D .

For each F2-linear bijection α of V which fixes the specified element e0 of V , define a map α on
V ⊗ V by (ei ⊗ ej)α = eα

i ⊗ eα
j on a basis ei ⊗ ej (i, j ∈ I) for V ⊗ V , and then extend it linearly. Then α

is an F2-linear bijection on V ⊗ V satisfying (x ⊗ y)α = xα
⊗ yα for x, y ∈ V . As 0 and e0 are elements
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of V fixed by α, we have ξ(xα) = ξ(x) and (e0 ⊗ x)α = e0 ⊗ xα for x ∈ V . In particular, α maps
generators x ⊗ y + y ⊗ x and x ⊗ x + ξ(x)e0 ⊗ x (x ∈ V ) of the subspaceW to xα

⊗ yα
+ yα

⊗ xα and
xα

⊗ xα
+ ξ(xα)e0 ⊗ xα (x ∈ V ), which lie inW as well. ThusW is stabilized by α, and hence α induces

an F2-linear bijection on the quotient space (V ⊗ V )/W , which we also denote by the same letter α.
Then x ⊗ yα

= xα ⊗ yα for all x, y ∈ V . Nowdefine an F2-linear bijection l(α) on A = V⊕((V⊗V )/W )
by

(x, y)l(α)
:= (xα, yα) x ∈ V , y ∈ V ⊗ V . (10)

As (x, x ⊗ t)l(α)
= (xα, xα ⊗ tα) for x, t ∈ V , l(α) sends a member X(t) of D to a member X(tα) of

D (t ∈ V ). Hence l(α) is an automorphism of D . Moreover, {l(α) | α ∈ GL(V ), eα
0 = e0} is a subgroup

of Aut(D) which fixes X(0) and X(e0) and acts transitively on the remaining members of D , because
the stabilizer of e0 in GL(V ) ∼= GLd+1(2) acts transitively on V \ {0, e0}.

From [3, Proposition 10], Aut(D) coincides with a semi-direct product of the normal subgroup
{τ(a) | a ∈ V } ∼= 2d+1 with a complement {l(α) | α ∈ GL(V ), eα

0 = e0} ∼= 2d
: GLd(2).

3. Quotients in PG(2d + 1, 2) of the Buratti–Del Fra d-dual hyperoval

In this section, we retain the notation of the previous section, but we take as V the vector space
over F2 underlying the finite field K ∼= F2n , n = d+ 1 ≥ 3. We regard K ⊕ K as a vector space over F2
of dimension 2n.

Lemma 4. Let B be an F2-bilinear map from K ×K to K . For each t ∈ K, define a subset X(t) of K ⊕K by

X(t) := {(x, B(x, t)) | x ∈ K}.

Then a collection S[B] of X(t) (t ∈ K) is a d-dual hyperoval over F2 if and only if the following conditions
are satisfied:
(1) For each nonzero t ∈ K , there exists a unique nonzero element κ(t) of K such that B(κ(t), t) = 0.
(2) The map κ sending t to κ(t) is a bijection on K×.

Furthermore, S[B] is covered by the Buratti–Del Fra dual hyperoval Dd(F2) via a linear surjection from
A(Dd(F2)) to A(S[B]) which sends X̃(t) ∈ Dd(F2) to X(t) ∈ S[B] for each t ∈ K if and only if the
conditions (1), (2) above and the following condition (3) hold:
(3) there exists a nonzero element e0 of K together with an F2-linear map λ on K such that κ(x) =

λ(x + ξ(x)e0) for every x ∈ K, where ξ denotes the characteristic function of K \ {0, e0}.

Proof. The bilinearity of B implies that each X(t) is a subspace of K⊕K of dimension d+1. For distinct
elements s and t of K , a nonzero vector (x, y) of K ⊕ K lies in both X(s) and X(t) if and only if x is a
nonzero element with y = B(x, s) = B(x, t). As the latter equation is equivalent to the condition
B(x, s + t) = 0, there is a unique such x ∈ K× if and only if the condition (1) in lemma holds.
Under the condition (1), X(s) ∩ X(t) has a unique nonzero vector b(s, t) := (κ(s + t), B(κ(s + t), s)).
Thus the condition (2) in the lemma is satisfied if and only if X(s) ∩ X(t) ∩ X(u) = {(0, 0)} for any
mutually distinct s, t, u of K . Thus we verified that S[B] is a d-dual hyperoval if and only if (1) and (2)
hold.

We shall show the latter claim. As we saw above, b(s, t) = (κ(s+ t), B(κ(s+ t), s)) for any distinct
s, t ∈ K . We extend the definition of b(s, t) for all s, t ∈ K by setting b(s, s) = 0. Accordingly, we
define κ(0) = 0. It follows from Proposition 1 that the d-dual hyperoval S[B] is covered by Dd(F2) via
a linear surjection from A(Dd(F2)) to A(S[B]) sending X̃(t) ∈ Dd(F2) to X(t) ∈ S[B] for every t ∈ K if
and only if the addition formula (Eq. (2)) holds for some e0 ∈ K×. In view of the above shape of b(s, t)
in S[B], the addition formula in S[B] is equivalent to the following equation for any s, t1, t2 ∈ K :
κ(s + t1) + κ(s + t2) = κ(t1 + t2 + αe0), where α := ξ(s + t1) + ξ(s + t2) + ξ(t1 + t2). Setting
x = s + t1, y = s + t2, this is equivalent to requiring that the following equation holds for every
x, y ∈ K , where α(x, y) = ξ(x) + ξ(y) + ξ(x + y):

κ(x) + κ(y) = κ(x + y + α(x, y)e0). (11)
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Now let ei (i ∈ I) be a basis for K including e0, and denote by H the hyperplane of K spanned by
ei (i ∈ I0 = I \ {0}). By the definition of ξ and its property (1), we have α(e0, y) = ξ(e0) + ξ(y) +

ξ(y + e0) = 0. Then it follows from Eq. (11) with x = e0 that

κ(e0) + κ(y) = κ(e0 + y) (12)

for every y ∈ H . For an element v of H , we express v as v =
d

i=1 aiei with ai ∈ F2 (i ∈ I0). We
set Supp(v) := {i ∈ I0 | ai = 1}. Assume that |Supp(v)| ≥ 2. Pick any j ∈ Supp(v). Then none of
x = v, y = v + ej and x + y = ej are contained in {0, e0}, and hence α(x, y) = 1. It follows from Eqs.
(11) and (12) that κ(v) = κ(v+ej)+κ(ej+e0) = κ(v+ej)+κ(ej)+κ(e0). Notice that |Supp(v+ej)| =

|Supp(v)|−1. Continuing in thisway,we conclude that κ(v) =


j∈Supp(v) κ(ej)+(|Supp(v)|−1)κ(e0).
This equation holdswhen |Supp(v)| = 1 aswell. This conclusion can also be stated as follows, because
|Supp(v)| =

d
i=1 ai modulo 2: if

d
i=1 aiei ≠ 0, then

κ


d

i=1

aiei


=

d
i=1

aiκ(ei) +


d

i=1

ai + 1


κ(e0) =

d
i=1

ai(κ(ei) + κ(e0)) + κ(e0).

This equation does not hold for
d

i=1 aiei = 0. However, since ξ(v) for v ∈ H is 0 or 1 according as
v = 0 or v ≠ 0, the following equation holds for any v =

d
i=1 aiei of V , including v = 0:

κ


d

i=1

aiei


=

d
i=1

ai(κ(ei) + κ(e0)) + ξ


d

i=1

aiei


κ(e0). (13)

For w = e0 + v with v ∈ H , we then have κ(e0 +
d

i=1 aiei) = κ(e0) +
d

i=1 ai(κ(ei) + κ(e0)) +

ξ(
d

i=1 aiei)κ(e0) = κ(e0) +
d

i=1 ai(κ(ei) + κ(e0)) + ξ(e0 +
d

i=1 aiei)κ(e0) from Eq. (12) and
Property (1) of ξ . Hence, we conclude that for every element

d
i=0 aiei (ai ∈ F2, i = 0, . . . , d) of K the

following equation holds:

κ


d

i=0

aiei


= a0κ(e0) +

d
i=1

ai(κ(ei) + κ(e0)) + ξ


d

i=0

aiei


κ(e0). (14)

We now define an F2-linear map λ on K on the basis ei (i = 0, . . . , d) by λ(e0) := κ(e0), λ(ei) :=

κ(ei) + κ(e0) for i = 1, . . . , d, and then extend it linearly on K . Thus for every element x =
d

i=0 aiei
of K we have

κ


d

i=0

aiei


= λ


d

i=0

aiei + ξ


d

i=0

aiei


e0


. (15)

Conversely, if κ is given as κ(x) = λ(x + ξ(x)e0) for some F2-linear map λ, then we can check
Eq. (11) as follows: for every x and y of K we have κ(x) + κ(y) = λ(x + y + (ξ(x) + ξ(y))e0) =

λ(x+y+(α(x, y)+ξ(x+y))e0) = λ(x+y+α(x, y)e0+ξ(x+y+α(x, y)e0)e0) = κ(x+y+α(x, y)e0),
using the linearity of λ, the definition of α(x, y) and Property (1) of ξ . �

We now give an explicit example of a bilinear map B on K ∼= F2n which satisfies the conditions
(1)–(3) in Lemma 4 with e0 = 1. Accordingly, ξ denotes the characteristic function of K \ {0, 1}.
Consider the bilinear map B from K × K to K defined by

B(x, t) = x4t + xt4 + (xt) + (xt)2 (x, t ∈ K). (16)

Observe that B is symmetric (that is, B(x, y) = B(y, x) for any x, y ∈ K ) but not alternating (namely,
B(x, x) ≠ 0 for some x ∈ K ). For each t ∈ K , define a subspace X(t) of K ⊕ K by

X(t) := {(x, B(x, t)) | x ∈ K}.

It is easy to see that X(t) is a subspace of K ⊕ K of dimension n for every t ∈ K . We shall investigate
whether S[B] = {X(t) | t ∈ K} is a d-dimensional dual hyperoval (d = n − 1) over F2.
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Lemma 5. (1) Assume that n is odd. Then, for each nonzero element t of K , there is a unique nonzero
κ(t) ∈ K satisfying B(κ(t), t) = 0. Explicitly,

κ(t) = t + ξ(t). (17)

(2) Assume that n is even. Then, for each nonzero element t of K not contained in the four-element subfield
K0 of K , there are exactly three nonzero elements x of K satisfying B(x, t) = 0.

Proof. Fix a nonzero element t of K . Observe the following factorization of B(x, t):

B(x, t) = x4t + xt4 + xt + x2t2 = xt{x3 + tx + (t3 + 1)}
= xt(x + t + 1){x2 + (t + 1)x + (t2 + t + 1)}.

Thus the set of solutions x in K for the equation B(x, t) = 0 consists of 0, t + 1 and the solutions
in K for the quadratic equation x2 + (t + 1)x + (t2 + t + 1) = 0. In particular, if t = 1, we have
{x ∈ K | B(x, t) = 0} = {0, 1}.

Notice that if t + 1 ≠ 0, the quadratic equation x2 + (t + 1)x + (t2 + t + 1) = 0 has a root x in
K if and only if Tr((t2 + t + 1)/(t + 1)2) = 0, where Tr denotes the trace function for the extension
K/F2. Since (t2 + t + 1)/(t + 1)2 = 1 + (t/(t + 1)2) = 1 + (1/(1 + t)) + (1/(t + 1))2, we have
Tr( (t2+t+1)

(t+1)2
) = Tr(1) = n.

Thus if n is odd, there is no x ∈ K satisfying x2 + (t +1)x+ (t2 + t +1) = 0 for every t ∈ K \ {0, 1}.
Hence for every t ∈ K \ {0, 1}, the equation B(x, t) = 0 has exactly one nonzero solution x = t + 1.
Using the characteristic function ξ for the subset K ′

:= K \ {0, 1}, this can be written as x = t + ξ(t).
This formula holds if t = 1 as well, because x = 1 = 1 + ξ(1) is the unique nonzero solution for
B(x, 1) = 0. We have verified Claim (1).

On the other hand, if n is even, there are exactly two solutions x in K for the equation x2 + (t +

1)x + (t2 + t + 1) = 0 for every t ∈ K ′. If t is not contained in K0, we have t2 + t + 1 ≠ 0, whence
none of these solutions is equal to t + 1. Thus if t ∉ K0, then there are exactly three solutions in K for
the equation B(x, t) = 0. This verifies Claim (2). �

Proposition 6. If n = d + 1 is odd, then S[B] = {X(t) | t ∈ K} is a d-dimensional dual hyperoval over
F2 with ambient space K ⊕ K, which is covered by the Buratti–Del Fra dual hyperoval Dd(F2), while if n
is even, S[B] is not a dimensional dual hyperoval.

Proof. Choose two distinct elements s and t of K . A nonzero vector (x, y) of K ⊕ K lies in both X(s)
and X(t) if and only if x is a nonzero element of K satisfying B(x, t) = B(x, s). From the bilinearity of
B, then x is a nonzero solution in K for the equation B(x, s + t) = 0.

Assume that n is even. As n ≥ 3, there is an element u of K not contained in the four-element
subfield K0. It follows from Lemma 5 that there are three distinct elements x in K with B(x, u) = 0.
Thus if n is even and s + t ∉ K0, X(s) ∩ X(t) is not a projective point. In particular, S[B] is not a
dimensional dual hyperoval in this case.

Now assume that n is odd (so d = n − 1 is even). It follows from Lemma 5 that we have
x = (s+ t)+ξ(s+ t). With the notation of Lemma 4, this implies that κ(a) = a+ξ(a) for a ∈ K×. We
extend κ on K by setting κ(0) = 0. We shall verify that the function κ is bijective on K . Assume that
t1 + ξ(t1) = t2 + ξ(t2) for distinct t1, t2 ∈ K . Then we have 0 ≠ t1 + t2 = ξ(t1)+ ξ(t2) ∈ {0, 1}. Thus
t1 + t2 = 1 = ξ(t1) + ξ(t2). Now it follows from Eq. (1) that we have ξ(t1) = ξ(t2), as t1 + t2 = 1.
However, this contradicts that ξ(t1) + ξ(t2) = 1. Hence the map κ is injective, and hence bijective.
Now we have verified the conditions (1) and (2) in Lemma 4. Thus S[B] is a d-dual hyperoval if d is
even. Moreover, as κ(x) = x + ξ(x) (x ∈ K), the condition (3) in Lemma 4 is satisfied for taking the
identity map and the element 1 respectively as λ and e0. Hence it follows from Lemma 4 that S[B]
with d even is covered by the Buratti–Del Fra dual hyperoval Dd(F2).

It remains to verify that the ambient space of S[B] coincideswith K ⊕K . As X(0) = {(x, 0) | x ∈ K},
the ambient space of S[B] has the shape K ⊕ H , where H is a subspace of K spanned by B(x, t) for all
x, t ∈ K . If H is a proper subspace of K , it is contained in a hyperplane of K , so there is a nonzero
element α of K such that Tr(αB(x, t)) = 0 for all x, t ∈ K . As

0 = Tr(αB(x, t)) = Tr({αt + (αt4)4 + (αt)4 + (αt2)2}x4)
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for all x ∈ K , we have 0 = αt + (αt4)4 + (αt)4 + (αt2)2 = α4t16 + (α4
+ α2)t4 + αt for all t ∈ K .

Thus the polynomial a(X) := α4X16
+ (α4

+ α2)X4
+ αX ∈ K [X] of degree at most 16 has at least

|K | = 2n solutions. If n ≥ 5, then a(X) should be the zero polynomial, and hence α = 0, which is a
contradiction. If n = 3, we have t8 = t , and then α4t2 + (α4

+ α2)t4 + αt = 0 for all t ∈ K . Thus
b(X) := (α4

+ α2)X4
+ α4X2

+ αX ∈ K [X] of degree at most 4 has at least |K | = 8 solutions, whence
b(X) is the zero polynomial. Then we have α = 0, which is again a contradiction. Hence in any case
we should have H = K and the ambient space of S[B] is K ⊕ K . �

As we saw in the proof of Lemma 4, the unique nonzero vector b(s, t) in X(s) ∩ X(t) is b(s, t) =

(s+t+ξ(s+t), B(s+t+ξ(s+t), s)).With some calculations,we can verify that the second component
of b(s, t) is equal to B(s, t) + (s4 + s2)(ξ(s + t) + 1).

4. The affine expansion of the Buratti–Del Fra dual hyperoval

In this section, we provide a proof for the fact that the affine expansion of the Buratti–Del Fra
dual hyperoval is covered by the halved hypercube, one of the most important simply connected
semibiplanes. This shows another similarity of Dd(F2) to the d-dimensional Huybrechts dual
hyperoval Hd(F2), because the affine expansion of the latter is also covered by the halved hypercube
(of index 2d+1). Thus, while Hd(F2) and Dd(F2) are non-isomorphic simply connected d-dual
hyperovals over F2, the incidence geometries constructed from them are controlled by the same
simply connected incidence geometry. This fact was already known before: in fact, in 2006 when
a survey article [12] by the second author was published, Pasini had already observed Lemma 8
and Del Fra and the second author noticed Lemma 9 (see a comment in the last paragraph of [12,
Subsection 5.4]). However, no literature is available, as far as the authors know. Also our simplermodel
D for Dd(F2) in Section 2 provides an easy proof of Lemma 9. For these reasons, we shall give below
expository proofs for these lemmas.

We first give a brief review of some basic facts about semibiplanes. For the details, see [6,
Subsections 1.1]. A semibiplane is a connected finite incidence structure Π = (P , B; ∗) consisting
of a set P of points and a set B of blocks, in which every two distinct points (resp. blocks) are incident
to exactly zero or two blocks (resp. points) in common. We say that Π has index q if every point (resp.
block) is incident to exactly q blocks (resp. points). A line of Π is a quadruple L = {vi, Xj | i, j ∈ {0, 1}}
of points vi and blocks Xj such that vi ∗Xj for any i, j ∈ {0, 1}. We denote by L the set of lines ofΠ and
extend the incidence ∗ betweenL andP ∪B by inclusion.We identifyΠ with the resulting incidence
geometry (P , L, B; ∗) of rank 3. For a semibiplane Π ′

= (P ′, B ′
; ∗

′), we say that Π ′ covers Π (or
Π is a quotient of Π ′) if the geometry (P ′, L′, B ′

; ∗
′) is a (2-)cover of (P , L, B; ∗) in the sense of

incidence geometry.
We shall give two examples of semibiplanes of index q = 2n for a fixed positive integer n. To

define the first one, consider the row vector space Fq2. Define a point (resp. block) to be a vector
x = (xi)

q
i=1 of Fq2 with even (resp. odd) weight; namely

q
i=1 xi = 0 (resp. 1) in F2. For vectors

x = (xi) and y = (yi) of Fq2, we define x ∗ y whenever the Hamming distance between them is 1:
#
{i ∈ {1, . . . , q} | xi ≠ yi} = 1. Denote by P (resp. B) the set of points (resp. blocks). The resulting

incidence structure H(q) := (P , B; ∗) is a semibiplane of index q, called the halved hypercube. It is
simply connected in the sense of incidence geometry. In H(q), a line L incident to a point v0 = 0 is
of the form {0, ea + eb; ea, eb} for some a ≠ b in {1, . . . , q}, where ek denotes a vector of Fq2 with all
entries 0 except 1 at the kth component.

The second example is constructed from an arbitrary d-dual hyperoval S over F2, where d =

n − 1 [12, Subsection 2.7]. We embed the ambient space A := A(S) of S as a hyperplane of a vector
space U over F2. In the sequel, we use the following convention in the vector space of U over F2.
A projective point (a one-dimensional subspace of U) is identified with the unique nonzero vector
contained in it. Accordingly, in a projective line (a two-dimensional subspace of U) ⟨p0, p1⟩ generated
by two distinct projective points pi (i = 0, 1), the unique projective point on ⟨p0, p1⟩ distinct from p0
and p1 is written as p0 + p1. Now we call each projective point in U \ A a point. A block is defined
to be a (d + 2)-dimensional subspace X of U such that X ∩ A is a member of S. The incidence
structure (P , B; ∗) consisting of a setP (resp.B) of points (resp. blocks) together with the incidence
∗ given by inclusion is called the affine expansion of S and denoted Af(S). It is a semibiplane of index
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q = 2n
= 2d+1. In Af(S), each block X is generated by a member X ∩ A of S and a point p ∈ P

contained in it. We refer to B = X ∩ A as the base of a block X . A line L = {vi, Xj | i, j ∈ {0, 1}} of
Af(S) corresponds to the projective line ⟨v0, v1⟩ = X0 ∩ X1. Thus L is determined by either the points
vi (i = 0, 1) or the blocks Xi (j = 0, 1). Notice that each member in L is uniquely determined by the
other three members: v1 = v0 + (B0 ∩ B1) for bases Bj of Xj (j = 0, 1), and X1 = ⟨v0, B1⟩ = ⟨v1, B1⟩,
where B1 is the uniquemember of S distinct from B0 = X0∩Awhich contains ⟨v0, v1⟩∩A. This remark
about a line of Af(S) is repeatedly used in the proof of Lemma 8.

Now we recall a geometric condition concerning a d-dual hyperoval S in general [12, Subsection
2.6]. We say that S satisfies Property (T1) if X ∩ ⟨Y , Z⟩ has vector dimension 2 for all mutually distinct
members X, Y , Z of S, where ⟨Y , Z⟩ denotes the subspace of A(S) generated by Y and Z . Notice that
this implies that X ∩ ⟨Y , Z⟩ is the projective line spanned by two projective points X ∩ Y and X ∩ Z .

For the convenience of the reader, we record the following observation with a proof, which is a
special case of [12, Lemma 2.13].

Lemma 7. Assume that S is a d-dual hyperoval over F2 satisfying Condition (T1). Take any mutually
distinctmembers Bi (i = 0, 1, 2) of S. For any permutation (i, j, k) of (0, 1, 2), let ci := (Bi∩Bj)+(Bi∩Bk).
Then c0, c1, c2 lie on a projective line contained in a member C of S.

Proof. Without loss of generality, we may assume that (i, j, k) = (0, 1, 2). Let C be the unique
member of S \ B0 containing c0. Then C is distinct from Bi for any i ∈ {0, 1, 2}. By Property (T1),
we have C ∩ ⟨B0, B1⟩ = ⟨c0, C ∩ B1⟩, which is a subspace of ⟨c0, B1⟩. As c0 = C ∩ B0 lies in
the projective line ⟨B0 ∩ B1, B0 ∩ B2⟩ ⊆ ⟨B1, B2⟩, the intersection C ∩ ⟨B0, B1⟩ lies in ⟨B1, B2⟩. Thus
C ∩⟨B0, B1⟩ ⊆ C ∩⟨B1, B2⟩. As both subspaces of this inclusion relation have dimension 2 by Property
(T1), we conclude that l := C∩⟨B0, B1⟩ = C∩⟨B1, B2⟩. Then l∩B2 ⊂ ⟨B0, B1⟩∩B2 = ⟨B0 ∩ B2, B1 ∩ B2⟩,
which implies that l ∩ B2 = c2. Then the above argument starting with c2 shows that l = C ∩ ⟨B2, B0⟩

and l ∩ B1 = c1. Hence the projective points ci = C ∩ Bi (i = 0, 1, 2) lie on the line l contained in the
member C of S. �

Now we prove the following result, originally due to Pasini.

Lemma 8. Assume that S is a d-dual hyperoval over F2 which satisfies Condition (T1). Then Af(S) is
covered by the halved hypercube.

Proof. We invoke the theory of a wrapping number developed by Pasini and Pica [5]. By [5, Corollary
4.2], in order to establish the claim it suffices to show thewrapping number w(Π) of the semibiplane
Π := Af(S) is 1.

The calculation of w(Π) is carried out as follows (see [6, Subsection 1.1]). In Π , take a point v0
and a line L = {vi, Xj | i, j ∈ {0, 1}} incident to v0. For each block X incident to v0 but not to v1, let
(u0, Y , u1, Z) be a sequence of points and blocks obtained by the following procedure:

(1) Consider the line {v0, u0; X, X0} determined by X and X0.
(2) Consider the line {u0, v1; X0, Y } determined by u0 and v1.
(3) Consider the line {v1, u1; Y , X1} determined by Y and X1.
(4) Consider the line {u1, v0; X1, Z} determined by u1 and v0.

Then the map sending X to Z is a permutation γv0,L on the set B(v0) \ B(v1) of blocks incident to
v0 but not to v1. The wrapping number w(Π) is given as the maximum number of the order of the
permutation γv0,L when (v0, L) ranges over all pairs of incident points and lines of Π .

We shall show that Z = X by tracing the above procedure. Let B and Bi be the bases of blocks X
and Xi respectively (i = 0, 1). The initial line L corresponds to the projective line ⟨v0, v1⟩ = X0 ∩ X1
with three projective points v0, v1 and B0 ∩ B1. In Step (1), it follows from the remarks given in the
last part of the definition of Af(S) above that u0 = v0 + (B0 ∩ B). In Step (2), similarly we have
Y = ⟨u0, C⟩ = ⟨v1, C⟩, where C is the unique member of S \ {X0} containing ⟨u0, v1⟩ ∩ A. This point
is determined by observing the plane (the three-dimensional subspace over F2) ⟨v0, v1, u0⟩ generated
by v0, v1 and u0. As ⟨v0, v1⟩ and ⟨v0, u0⟩ intersect A at B0 ∩ B1 and B0 ∩ B respectively, the plane
⟨v0, v1, u0⟩ (contained in X0) intersects A in the projective line ⟨B0 ∩ B1, B0 ∩ B⟩. Thus we conclude
that ⟨u0, v1⟩ ∩ A = (B0 ∩ B1) + (B0 ∩ B).
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Now we use the assumption that S satisfies Property (T1). We set c0 := (B0 ∩ B1) + (B0 ∩ B) =

⟨u0, v1⟩ ∩ A, c1 := (B1 ∩ B0) + (B1 ∩ B) and c := (B∩ B0) + (B∩ B1). It follows from Lemma 7 that the
above C is a member of S containing c0, c1 and c .

In Step (3) in the procedure, we have u1 = v1 + (B1 ∩ C). Notice that B1 ∩ C = c1. In Step
(4), Z = ⟨u1,D⟩ = ⟨v0,D⟩, where D is the unique member of S \ {B1} containing ⟨u1, v0⟩ ∩ A. The
last point is determined inside the plane ⟨v0, v1, u1⟩ as follows. As ⟨v0, v1⟩ and ⟨v1, u1⟩ intersect A
at B0 ∩ B1 and B1 ∩ C = c1 respectively, the plane ⟨v0, v1, u1⟩ (contained in X1) intersects A in
the projective line ⟨B0 ∩ B1, B1 ∩ C⟩. Then we conclude that ⟨u1, v0⟩ ∩ A = B0 ∩ B1 + B1 ∩ C . As
B1 ∩ C = c1 = (B1 ∩ B0) + (B1 ∩ B), we have ⟨u1, v0⟩ ∩ A = B1 ∩ B. Thus the unique member D of
S \ {B1} containing this point should be B. Hence we have Z = ⟨v0, B⟩ = X , as desired.

As X is any block in B(v0) \ B(v1), we have verified that the permutation γv0,L is the identity. This
holds for any pair (v0, L) of an incident point and a line of Π , whence the wrapping number of Π

is 1. �

We now show the following result, using the model D for Dd(F2) and the automorphisms of D
described in Section 2.

Lemma 9. The Buratti–Del Fra dimensional dual hyperoval satisfies Condition (T1).

Proof. Wewill work in themodelD ofDd(F2) in Section 2. Take any threemutually distinctmembers
X, Y and Z of Dd(F2). Notice that (X ∩ ⟨Y , Z⟩)g = Xg

∩ ⟨Y g , Zg⟩, whence X ∩ ⟨Y , Z⟩ and Xg
∩ ⟨Y g , Zg⟩

have the same dimension for any g ∈ Aut(D). Thus wemay assume that X = X(0) = {(x, 0) | x ∈ V }

by applying the automorphism τ(a) defined in Eq. (9) for some a ∈ V . As the subgroup of Aut(D)
consisting of l(α) (see Eq. (10)) for α ∈ GL(V ) fixing e0 has three orbits {X(0)}, {X(e0)} and {X(t) |

t ∈ V \ {0, e0}} on D , we may assume that (Y , Z) = (X(a), X(b)) for (a, b) = (e0, e1), (e0, e0 + e1) or
(e1, e2) with some fixed elements e1 ≠ e2 ∈ V \ {0, e0} with e2 ≠ e0 + e1.

Observe that there is a basis ei (i = 0, . . . , d) for V containing e0, e1, e2. Fix such a basis. As
⟨X(a), X(b)⟩ = {(x+ y, x ⊗ a+ y ⊗ b) | x, y ∈ V } for a ≠ b ∈ V , the intersection X(0) ∩ ⟨X(a), X(b)⟩
consists of (x + y, 0) for x, y ∈ V satisfying

x ⊗ a = y ⊗ b. (18)

Assume first that (X, Y , Z) = (X(0), X(a), X(b)) with a = e1 and b = e2. Expressing x =
d

i=0 xiei
and y =

d
i=0 yiei with xi, yi ∈ F2 (i ∈ {0, . . . , d}), the condition (18) is written as follows, where we

define ei ⊗ ej = ēi,j, for short (i, j ∈ I = {0, . . . , d}):

x0ē0,1 + x1ē1,1 + x2ē1,2 +


i≥3

xiē1,i = y0ē0,2 + y1ē1,2 + y2ē2,2 +


i≥3

yiē2,i.

Recall that ē0,0 = 0, ēi,i = ē0,i for i ∈ I . Thus we have

(x0 + x1)ē0,1 + (y0 + y2)ē0,2 + (x2 + y1)ē1,2 +


i≥3

xiē1,i +

i≥3

yiē2,i = 0.

As ē0,i (i ∈ I0 = {1, . . . , d}), ēi,j (i, j ∈ I0, i < j) form a basis for (V ⊗ V )/W , then we have
x0+x1 = 0, y0+y2 = 0, x2+y1 = 0 and xi = yi = 0 for all i ∈ {3, . . . , d}. Thus x = x0(e0+e1)+x2e2
and y = y0(e0 + e2) + x2e1, and then x + y = (x0 + x2)(e0 + e1) + (x2 + y0)(e0 + e2). This implies
that (x + y, 0) lies in the two-dimensional subspace spanned by (e1 + e0, 0) and (e2 + e0, 0) for any
x, y ∈ V satisfying Eq. (18). Hence X(0)∩⟨X(e1), X(e2)⟩ coincides with the two-dimensional subspace
spanned by (e1 + e0, 0) and (e2 + e0, 0). (Notice that the last vectors are b(0, e1) and b(0, e2) in view
of Eq. (7).)

Next consider the case where (X, Y , Z) = (X(0), X(a), X(b)) with a = e1 and b = e0 + e1. In this
case, the condition (18) for x =

d
i=0 xiei and y =

d
i=0 yiei (xi, yi ∈ F2, i ∈ I) is equivalent to the

following equation:

x0ē0,1 + x1ē1,1 +


i≥2

xiēi = y0(ē0,0 + ē0,1) + y1(ē0,1 + ē1,1) +


i≥2

yiē0,i +

i≥2

yiē1,i.
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As ē0,0 = 0 and ēi,i = ē0,i for i ∈ I , we have

(x0 + y0 + x1 + y1)ē0,1 +


i≥2

yiē0,i +

i≥2

(xi + yi)ē1,i = 0,

which implies x0+y0 = x1 and yi = 0 = xi for all i ∈ {2, . . . , d}. Thus (x+y, 0̄) = (x1(e0+e1)+y1e1, 0̄)
lies in the two-dimensional subspace spanned by (e0 + e1, 0) and (e1, 0) for any x, y ∈ V . Hence
X(0)∩⟨X(e1), X(e0 + e1)⟩ is the two-dimensional subspace spanned by (e0+e1, 0̄) and (e1, 0̄). (Notice
that the last two vectors are b(0, e1) and b(0, e0 + e1) in view of Eq. (7).)

In the remaining case where (X, Y , Z) = (X(0), X(a), X(b)) for a = e0 and b = e1, the condition
(18) for x =

d
i=0 xiei and y =

d
i=0 yiei (xi, yi ∈ F2, i ∈ I) is

x0ē0,0 + x1ē0,1 +


i≥2

xiē0,i = y0ē0,1 + y1ē1,1 +


i≥2

yiē1,i,

from which we have x1 + y0 + y1 = 0 and xi = yi = 0 for all i ∈ {2, . . . , d}. Then x + y =

(x0 + y0)e0 + y0e1, and so (x + y, 0) lies in the two-dimensional subspace spanned by (e0, 0) and
(e0 + e1, 0) for any x, y ∈ V satisfying Eq. (18). Hence X(0) ∩ ⟨X(e0), X(e1)⟩ coincides with the two-
dimensional subspace spanned by (e0, 0) and (e1 + e0, 0). (Notice that the last vectors coincide with
b(0, e0) and b(0, e1) in view of Eq. (7).)

Thus in either case, X ∩⟨Y , Z⟩ is of dimension 2. This establishes thatD satisfies Property (T1). �

From Lemmas 8 and 9, we obtain the following result.

Proposition 10. The affine expansion Af(Dd(F2)) of the Buratti–Del Fra dimensional dual hyperoval
Dd(F2) is covered by the halved hypercube H(2d+1).

5. Additional remarks and questions

We conclude the paper with some remarks and questions.
The first two questions are easy to state.

Question 1. Find a quotient in PG(2d+ 1, 2) of the Buratti–Del Fra d-dual hyperoval with d odd.

Question 2. Find relations between the universal cover of the affine expansion Af(Vd(F2)) of the
Veronesean dual hyperoval Vd(F2) over F2 and the universal cover of Af(Td(F2)) for Td(F2), the
deformation of Vd(F2) given by the first author [8].

Before stating the next question, we need to review some facts. Recall that for a quadratic APN
function f on K ∼= F2n , n = d + 1, we construct a d-dual hyperoval S[f ] with ambient space
K ⊕ K , which is a quotient of the Huybrechts dual hyperoval Hd(F2) [14]. There are two equivalence
relations among (not necessarily quadratic) APN functions, called the extended affine equivalence and
CCZ equivalence. Two APN functions are CCZ-equivalent if they are extended affine equivalent, but the
converse is not true in general. The following are known [16, Propositions 2 and 6; Proposition 5]:
two quadratic APN functions f and g on K ∼= F2n are extended affine equivalent if and only if the
associated d-dual hyperovals S[f ] and S[g] are isomorphic, while they are CCZ-equivalent if and only
if the associated semibiplanes Af(S[f ]) and Af(S[g]) are isomorphic as incidence structures. In fact,
the second author recently proved that for quadratic APN functions on K they are extended affine
equivalent if and only if they are CCZ-equivalent [17]. In view of the above strong similarity of the
Buratti–Del Fra dual hyperoval to the Huybrechts dual hyperoval, it is natural to ask whether a similar
phenomenon holds for quotients in K ⊕ K of the Buratti–Del Fra dual hyperoval.

Question 3. Let B and B′ be F2-bilinear maps on K ∼= F2d+1 which satisfy the conditions (1)–(3)
in Lemma 4, so that S[B] and S[B′

] are both d-dual hyperovals with ambient spaces K ⊕ K
covered by Dd(F2). Prove or give a counterexample for the following statement. The associated
semibiplanes Af(S[B]) and Af(S[B′

]) are isomorphic as incidence structures if and only if S[B]
and S[B′

] are isomorphic as dimensional dual hyperovals.

We do not attempt to state the last two questions with rigorous mathematical formulations.
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The shape of the bilinear map B(x, y) = x4y + xy4 + xy + (xy)2 on K ∼= F2d+1 , d even, in Section 3
looks quite similar to the product x · y = x9y + xy9 − xy + (xy)3 on F32e+1 , e > 1, which gives the
structure of a semifield on F32e+1 , known as the Coulter–Matthews semifield [2].

Question 4. Are there any reasons for this similarity?

The recent construction by the first author [9] of some quotients of Dd(F2) in PG(3d, 2) using
quadratic APN functions on F2d may be regarded as another example of the similarity betweenHd(F2)
and Dd(F2). It is carried out by ‘pasting’ some quotients of Hd−1(F2) together. This suggests the
following:

Question 5. Find generalmethods for constructing a d-dual hyperoval by pasting together e-dual
hyperovals (which are quotients of the Huybrechts or the Veronesean dual hyperoval) with e
smaller than d. Determine the universal cover of the resulting d-dual hyperoval.
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