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Abstract

We consider the ground state of an atom in the framework of non-relativistic qed. We assume that the ul-
traviolet cutoff is of the order of the Rydberg energy and that the atomic Hamiltonian has a non-degenerate
ground state. We show that the ground state energy and the ground state are k-times continuously differen-
tiable functions of the fine structure constant and respectively the square root of the fine structure constant
on some nonempty interval [0, ck).
© 2011 Published by Elsevier Inc.
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1. Introduction

Non-relativistic quantum electrodynamics (qed) is the theory describing the interactions be-
tween electrically charged non-relativistic quantum mechanical matter and the quantized elec-
tromagnetic field. Existence of ground states has been established under various physically
reasonable assumptions [6,7,11]. In this paper we investigate expansions of the ground state
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and the ground state energy of an atom as functions of the fine structure constant α, as α tends
to zero. In [3,4] it was proven that there exists an asymptotic expansion involving coefficients
which depend on the coupling parameter α and have at most mild singularities. In [8,13,14] re-
lated expansions of the ground state energy were obtained and it was shown that logarithmic
divergences can occur in non-relativistic qed. On the other hand it was shown that an atom in a
dipole approximation of qed (which effectively leads to an infrared regularization) has a ground
state and ground state energy which are analytic functions of the coupling constant [10].

This paper can be viewed as a continuation of [17], where it was shown that the ground state
as well as the ground state energy of the atom are analytic functions of the coupling constant,
g, which couples to the vector potential. Moreover in [17] it was shown that in an expansion in
powers of g, the corresponding expansion coefficients are bounded as functions of a coupling
constant, β , which originates from the coupling to the electrostatic potential. The main result of
this paper states that these expansions coefficients are C∞ functions of β , and we obtain satis-
factory bounds on the first k derivatives with respect to β . We consider an atom which is coupled
to the quantized radiation field in a scaling limit where the ultraviolet cutoff is measured in units
of Rydberg. This scaling limit is a reasonable limit to study the properties of atoms. For example
in this scaling limit estimates on the lifetimes of metastable states [20,7] were proven, which
agree with experiment, see also [1]. Moreover, it was shown [12] that the ionization probabil-
ity agrees with calculations done by physicists. As a corollary of the main result of this paper,
we show that the ground state and the ground state energy have convergent power series expan-
sions, with α dependent coefficients which are C∞ functions of α � 0. We show that the ground
state energy as well as the ground state are k-times continuously differentiable functions of α

respectively α1/2 on some nonempty interval [0, ck). Moreover, it follows that the ground state
as well as the ground state energy are given as an asymptotic series in powers of α1/2 and α, re-
spectively, with constant coefficients. These coefficients can be calculated by means of ordinary
perturbation theory in a straightforward manner. As a consequence of our result it follows that
in the scaling limit where the ultraviolet cutoff is of the order of the Rydberg energy no loga-
rithmic terms occur. This clarifies an issue which was raised in [4], see the remark on page 1031
therein.

Let us now address the proof of the main result. It is well known that the ground state energy is
embedded in the continuous spectrum. In such a situation regular perturbation theory is typically
not applicable and other methods have to be employed. To prove the existence result as well as the
analyticity result we use a variant of the operator theoretic renormalization analysis as introduced
in [5]. An important ingredient of the proof is that by rotation invariance one can infer that in
the renormalization analysis, terms which are linear in creation and annihilation operators do
not occur. This is explained in [17] and [18]. In that case it follows that the renormalization
transformation is a contraction even without infrared regularization. A similar idea was used in a
paper to prove existence and analyticity of the ground state and ground state energy in the spin-
boson model [16]. In the proof we will use results obtained in [16] and [17]. We note that similar
ideas were used also in [10]. The main new ingredient in the proof is the control of derivatives
with respect to the parameter β . The main estimates which control these derivatives are contained
in Theorem 6.3 and Lemma 6.4 for the initial Feshbach transformation and in Lemma 7.10,
Theorem 7.7, and Theorem 7.12(d) for the renormalization transformation. The most delicate
estimates are used in the proof of Lemma 6.4 and Theorem 7.7, and can be considered as the key
ingredients of the proof.
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2. Model and statement of results

Let (h, 〈·, ·〉h) be a Hilbert space. We introduce the direct sum of the n-fold tensor product
of h and set

F (h) :=
∞⊕

n=0

F (n)(h), F (n)(h) = h⊗n

,

where we have set h⊗0 := C. We introduce the vacuum vector Ω := (1,0,0, . . .) ∈ F (h). The
space F (h) is an inner product space where the inner product is induced from the inner product
in h. That is, on vectors η1 ⊗ · · · ⊗ ηn,ϕ1 ⊗ · · · ⊗ ϕn ∈ F (n)(h) we have

〈η1 ⊗ · · · ⊗ ηn,ϕ1 ⊗ · · · ⊗ ϕn〉 :=
n∏

i=1

〈ηi, ϕi〉h.

This definition extends to all of F (h) by bilinearity and continuity. We introduce the bosonic
Fock space

Fs(h) :=
∞⊕

n=0

F (n)
s (h), F (n)

s (h) := SnF (n)(h),

where Sn denotes the orthogonal projection onto the subspace of totally symmetric tensors in
F (n)(h). For h ∈ h we introduce the so-called creation operator a∗(h) in Fs(h) which is defined
on vectors η ∈ F (n)

s (h) by

a∗(h)η := √
n + 1Sn+1(h ⊗ η). (2.1)

The operator a∗(h) extends by linearity to a densely defined linear operator on F (h). One can
show that a∗(h) is closable, cf. [23], and we denote its closure by the same symbol. We introduce
the annihilation operator by a(h) := (a∗(h))∗. For a closed operator A ∈ h with domain D(A) we
introduce the operator Γ (A) and dΓ (A) in F (h) defined on vectors η = η1 ⊗· · ·⊗ηn ∈ F (n)(h),
with ηi ∈ D(A), by

Γ (A)η = Aη1 ⊗ · · · ⊗ Aηn

and

dΓ (A)η =
n∑

i=1

η1 ⊗ · · · ⊗ ηi−1 ⊗ Aηi ⊗ ηi+1 ⊗ · · · ⊗ ηn

and extended by linearity to a densely defined linear operator on F (h). One can show that dΓ (A)

and Γ (A) are closable, cf. [23], and we denote their closure by the same symbol. The operators
Γ (A) and dΓ (A) leave the subspace Fs(h) invariant, that is, their restriction to Fs(h) is densely
defined, closed, and has range contained in Fs(h). To define qed, we fix
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h := L2(
R

3 × Z2
)

and set F := Fs(h). We define the operator of the free field energy by

Hf := dΓ (Mω),

where ω(k,λ) := ω(k) := |k| and Mϕ denotes the operator of multiplication with the function ϕ.
For f ∈ h we write

a∗(f ) =
∑

λ=1,2

∫
f (k,λ)a∗(k, λ), a(f ) =

∑
λ=1,2

∫
f (k,λ)a∗(k, λ),

where a(k,λ) and a∗(k, λ) are operator-valued distributions. They satisfy the following commu-
tation relations, which are to be understood in the sense of distributions,[

a(k,λ), a∗(k′, λ′)]= δλλ′δ
(
k − k′), [

a#(k, λ), a#(k′, λ′)]= 0,

where a# stands for a or a∗. For λ = 1,2 we introduce the so-called polarization vectors

ε(·, λ) :S2 := {
k ∈ R

3
∣∣ |k| = 1

}→ R
3

to be measurable maps such that for each k ∈ S2 the vectors ε(k,1), ε(k,2), k form an orthonor-
mal basis of R

3. We extend ε(·, λ) to R
3 \ {0} by setting ε(k,λ) := ε(k/|k|, λ) for all nonzero k.

For x ∈ R
3 we define the field operator

AΛ(x) =
∑

λ=1,2

∫
dkκΛ(k)√

2|k|
[
e−ik·xε(k,λ)a∗(k, λ) + eik·xε(k,λ)a(k,λ)

]
, (2.2)

where the function κΛ serves as a cutoff, which satisfies κΛ(k) = 1 if |k| � Λ and which is zero
otherwise. Λ > 0 is an ultraviolet cutoff, which we assume to be finite. Next we introduce the
atomic Hilbert space, which describes the configuration of N electrons, by

Hat := {
ψ ∈ L2(

R
3N
) ∣∣ψ(xσ(1), . . . , xσ(N)) = sgn(σ )ψ(x1, . . . , xN), σ ∈ SN

}
,

where SN denotes the group of permutations of N elements, sgn denotes the signum of the per-
mutation, and xj ∈ R

3 denotes the coordinate of the j -th electron. We will consider the following
operator in H := Hat ⊗ F ,

Hg,β = :
N∑

j=1

(
pj + gAΛ(βxj )

)2: + V + Hf , (2.3)

where pj = −i∂xj
, V = V (x1, . . . , xN) denotes the potential, and :(·): stands for the Wick prod-

uct. We will make the following assumptions on the potential V , which are related to the atomic
Hamiltonian

Hat := −� + V,

which acts in Hat. We introduced the Laplacian −� :=∑N
p2.
j=1 j
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Hypothesis (H). The potential V satisfies the following properties:

(i) V is symmetric under permutations and invariant under rotations.
(ii) V is infinitesimally operator bounded with respect to −�.

(iii) Eat := infσ(Hat) is a non-degenerate isolated eigenvalue of Hat.

Note that for the hydrogen, N = 1, the potential V (x1) = −|x1|−1 satisfies Hypothesis (H).
Moreover (ii) of Hypothesis (H) implies that Hg,β is a self-adjoint operator with domain
D(−�+Hf ) and that Hg,β is essentially self-adjoint on any operator core for −�+Hf , see for
example [21,15]. For a precise definition of the operator in (2.3), see Appendix A. We will use
the notation Dr(w) := {z ∈ C | |z − w| < r} and Dr := Dr(0). Let us now state the main result
of the paper.

Theorem 2.1. Assume Hypothesis (H) and let k ∈ N0. Then there exists a positive constant g0
such that for all g ∈ Dg0 and β ∈ R the operator Hg,β has an eigenvalue Eβ(g) with eigenvector
ψβ(g) and eigen-projection Pβ(g) satisfying the following properties.

(i) For g ∈ R ∩ Dg0 we have Eβ(g) = infσ(Hg,β), and for all g ∈ Dg0 we have Pβ(g)∗ =
Pβ(g).

(ii) g �→ E(·)(g), g �→ ψ(·)(g), and g �→ P(·)(g) are analytic functions on Dg0 with values in
Ck

B(R), Ck
B(R; H), and Ck

B(R; B(H)), respectively.
(iii) There exists a finite and positive C such that for all g ∈ Dg0 we have

∥∥E(·)(g)
∥∥

Ck(R)
� C,

∥∥ψ(·)(g)
∥∥

Ck(R;H)
� C,

∥∥P(·)(g)
∥∥

Ck(R;B(H))
� C.

Remark 2.2. Under the hypotheses of Theorem 2.1, non-degeneracy of Eβ(g) is known for
g ∈ R ∩ Dg0 . This is shown in for example [6,24]; see also [19].

The next result states that the expansions coefficients of the eigenvalue, eigenfunction, and
the corresponding eigen-projection are C∞ as functions of β .

Corollary 2.3. Assume Hypothesis (H) and let k ∈ N0. Then there exists a positive constant g0
such that for all g ∈ Dg0 and β ∈ R the operator Hg,β has an eigenvalue Eβ(g) with eigenvec-
tor ψβ(g) and eigen-projection Pβ(g) satisfying the following properties. On Dg0 we have the
convergent expansions

Eβ(g) =
∞∑

n=0

E
(2n)
β g2n, ψβ(g) =

∞∑
n=0

ψ
(n)
β gn, Pβ(g) =

∞∑
n=0

P
(n)
β gn. (2.4)

There exist finite and positive constants C and r such that

∥∥E(2n)
(·)

∥∥
Ck(R)

� Cr2n,
∥∥ψ(n)

(·)
∥∥

Ck(R;H)
� Crn,

∥∥P (n)
(·)

∥∥
Ck(R;B(H))

� Crn.

The expansion coefficients are as functions of β in C∞(R), C∞(R; H), and C∞(R; B(H)),
respectively.



3254 D. Hasler, I. Herbst / Advances in Mathematics 228 (2011) 3249–3299
Various conclusions can be drawn from Theorem 2.1. For instance, if we set β = α � 0 and
g = α3/2 then we obtain the following corollary. It states that the ground state and the ground
state energy of an atom in qed, in a scaling limit where the ultraviolet cutoff is of the order
of the Rydberg energy, can be differentiated arbitrarily many times as functions of α and α1/2,
respectively, provided one chooses α sufficiently small (depending on the number of derivatives).
As a conclusion it follows that no logarithmic terms appear in this scaling limit.

Corollary 2.4. Assume Hypothesis (H). There exists a positive α0 such that for 0 � α � α0 the
operator Hα3/2,α has a ground state ψ(α1/2) with ground state energy E(α) such that we have
the convergent expansions on [0, α0)

E(α) =
∞∑

n=0

E(2n)
α α3n, ψ

(
α1/2)=

∞∑
n=0

ψ(n)
α α3n/2. (2.5)

The coefficients E
(n)
α and ψ

(n)
α are as functions of α in C∞([0,∞)) and C∞([0,∞); H), re-

spectively. For every k ∈ N0 there exists a positive α
(k)
0 such that ψ(·) and E(·) are k-times

continuously differentiable on [0, α
(k)
0 ).

In [3,4] it was shown that there exist coefficients of the type (2.5) which have slower growth
than α−t for any t > 0. Corollary 2.4 states that the coefficients E

(n)
α and ψ

(n)
α are in fact smooth.

Let us note that Corollary 2.4 implies the following corollary which states that the ground state
and the ground state energy can be written in terms of an asymptotic series with constant coeffi-
cients in the sense of [22].

Corollary 2.5. Assume Hypothesis (H). There exist formal power series with constant coefficients∑∞
n=0 c(n)αn/2 and

∑∞
n=0 e(n)αn which are asymptotic to the ground state and the ground state

energy of Hα3/2,α as α ↓ 0, respectively.

In view of Corollary 2.4 and the continuity in the infrared cutoff which has been established
in [17] one can calculate c(n) and e(n) of Corollary 2.5 using for example ordinary Rayleigh
Schrödinger perturbation theory to determine first ψ

(n)
α and E

(2n)
α , in Eq. (2.5), and then using a

Taylor expansion of these coefficients.

3. Outline of the proof

The main method used in the proof of Theorem 2.1 is operator theoretic renormalization [5,2]
and the fact that renormalization preserves analyticity [10,16]. The renormalization procedure
is an iterated application of the so-called smooth Feshbach map. The smooth Feshbach map is
reviewed in Appendix B and necessary properties of it are summarized. In this paper we will use
many results stated in the previous papers [16] and [17]. The generalization from the Fock space
over L2(R3), as considered in [16], to a Fock space over L2(R3 × Z2) is straightforward. To be
able to show that the renormalization transformation is a suitable contraction we use a rotation
invariance argument, as explained in [17]. This is used in Lemma 5.5. For a careful treatment of
this issue, see [18]. The main new ingredient in this paper is to control derivatives with respect
to β . The subtleties originate from the reparameterization of the spectral parameter. In Section 4
we define an SO(3) action on the atomic Hilbert space and the Fock space, which leaves the
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Hamiltonian invariant. In Section 5 we introduce spaces which are needed to define the renor-
malization transformation. In Section 6 we show that after an initial Feshbach transformation
the Feshbach map is in a suitable Banach space. This allows us to perform a renormalization
analysis, which is the content of Section 7. We use results from [16] and complement it with new
estimates needed to control differentiation with respect to β . In Section 8 we prove the contrac-
tion property of the renormalization transformation. In Section 9 we put the pieces together and
prove Theorem 2.1. The proof is based on Theorems 6.1 and 7.12.

We use the notation R+ = [0,∞). For a multi-index m ∈ N
l
0 we use the usual convention

|m| = ∑l
i=1 mi and m! = ∏l

i=1(mi !). We shall make repeated use of the so-called pull-through
formula which is given in Lemma A.1, in Appendix A. We refer the reader to Appendix A for
notation of function spaces and will use Lemma C.1. Finally, let us note that using an appropriate
scaling we can assume without loss of generality that the distance between the lowest eigenvalue
of Hat and the rest of the spectrum is one, i.e.,

Eat,1 − Eat = 1, (3.1)

where Eat,1 := inf{σ(Hat) \ {Eat}}. Any Hamiltonian of the form (2.3) satisfying Hypothesis (H)
is up to a positive multiple unitarily equivalent to an operator satisfying (3.1) and Hypothesis (H),
but with a rescaled potential and with different values for Λ, β , and g, see [17].

4. Symmetries

Let us introduce a representation of SO(3) on Hat and h. For details see [17]. For R ∈ SO(3)

and ψ ∈ Hat we define

Uat(R)ψ(x1, . . . , xN) = ψ
(
R−1x1, . . . ,R

−1xN

)
.

To define an SO(3) action on Fock space it is convenient to consider a different but equivalent
representation of the Hilbert space h. We introduce the Hilbert space h0 := L2(R3;C3). We
consider the subspace of transversal vector fields

hT := {
f ∈ h0

∣∣ k · f (k) = 0
}
.

It is straightforward to verify that the map φ :h → hT defined by

(φf )(k) :=
∑

λ=1,2

f (k,λ)ε(k,λ)

establishes a unitary isomorphism with inverse

(
φ−1f

)
(k, λ) = f (k) · ε(k,λ).

We define the action of SO(3) on hT by

(
UT (R)f

)
(k) = Rf

(
R−1k

)
.
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The function R �→ φ−1 UT (R)φ defines a representation of SO(3) on h which we denote by Uh.
This yields a representation on Fock space which we denote by UF . It is characterized by

UF (R)a#(f )UF (R)∗ = a#(Uh(R)f
)
, UF (R)Ω = Ω.

It is straightforward to show that the Hamiltonian Hg,β is SO(3) invariant.

5. Banach spaces of Hamiltonians

In this section we introduce Banach spaces of integral kernels, which parameterize certain
subspaces of the space of bounded operators on Fock space. These spaces are used to control
the renormalization transformation. Then we introduce Banach spaces, which we call extended
Banach spaces, which are used to control derivatives with respect to β .

The renormalization transformation will be defined on operators acting on the reduced Fock
space Hred := Pred F , where we introduced the notation Pred := χ[0,1](Hf ). We will investigate
bounded operators in B(Hred) of the form

H(w) :=
∑

m+n�0

Hm,n(w), (5.1)

with

Hm,n(w) := Hm,n(wm,n),

Hm,n(wm,n) := Pred

∫
Bm+n

1

dμ(K(m,n))

|K(m,n)|1/2
a∗(K(m)

)
wm,n

(
Hf ,K(m,n)

)
a
(
K̃(n)

)
Pred, m + n � 1,

H0,0(w0,0) := w0,0(Hf ), (5.2)

where wm,n ∈ L∞([0,1]×Bm
1 ×Bn

1) is an integral kernel for m+n � 1, w0,0 ∈ L∞([0,1]), and
w denotes the sequence of integral kernels (wm,n)m,n∈N

2
0
. We have used and will henceforth use

the following notation. We set K = (k, λ) ∈ R
3 × Z2, and write

X := X × Z2, B1 := {
x ∈ R

3
∣∣ |x| < 1

}
,

K(m) := (K1, . . . ,Km) ∈ (
R

3 × Z2
)m

, K̃(n) := (K̃1, . . . , K̃n) ∈ (
R

3 × Z2
)n

,

K(m,n) := (
K(m), K̃(n)

)
,∫

Xm+n

dK(m,n) :=
∫

Xm+n

∑
(λ1,...,λm,̃λ1,...,̃λn)∈Z

m+n
2

dk(m) dk̃(n),

dk(m) :=
m∏

i=1

d3ki, dk̃(n) :=
n∏

j=1

d3k̃j , dK(m) := dK(m,0), dK̃(n) := dK(0,n),

dμ
(
K(m,n)

) := (8π)−
m+n

2 dK(m,n),
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a∗(K(m)
) :=

m∏
i=1

a∗(Ki), a
(
K̃(m)

) :=
m∏

j=1

a(K̃j ),

∣∣K(m,n)
∣∣ := ∣∣K(m)

∣∣ · ∣∣K̃(n)
∣∣, ∣∣K(m)

∣∣ := |k1| · · · |km|, ∣∣K̃(m)
∣∣ := |̃k1| · · · |̃km|,

�
[
K(m)

] :=
n∑

i=1

|km|.

Note that in view of the pull-through formula (5.2) is equal to∫
Bm+n

1

dμ(K(m,n))

|K(m,n)|1/2
a∗(K(m)

)
χ
(
Hf + �

[
K(m)

]
� 1

)
× wm,n

(
Hf ;K(m,n)

)
χ
(
Hf + �

[
K̃(n)

]
� 1

)
a
(
K̃(n)

)
. (5.3)

Thus we can restrict attention to integral kernels wm,n which are essentially supported on the sets

Qm,n := {(
r,K(m,n)

) ∈ [0,1] × Bm+n
1

∣∣ r � 1 − max
(
�
[
K(m)

]
,�

[
K̃(m)

])}
, m + n � 1.

Moreover, note that integral kernels can always be assumed to be symmetric. That is, they lie in
the range of the symmetrization operator, which is defined as follows,

w
(sym)

M,N

(
r;K(M,N)

) := 1

N !M!
∑

π∈SM

∑
π̃∈SN

wM,N(r,Kπ(1), . . . ,Kπ(N), K̃π̃(1), . . . , K̃π̃(M)). (5.4)

Note that (5.2) is understood in the sense of forms. It defines a densely defined form which
can be seen to be bounded using Lemma A.2. Thus it uniquely determines a bounded operator
which we denote by Hm,n(wm,n). This is explained in more detail in Appendix A. We have the
following lemma.

Lemma 5.1. For wm,n ∈ L∞([0,1] × Bm
1 × Bn

1) we have∥∥Hm,n(wm,n)
∥∥� ‖wm,n‖∞(n!m!)−1/2. (5.5)

The proof follows using Lemma A.2 and the estimate∫
Sm,n

dK(m,n)

|K(m,n)|2 � (8π)m+n

n!m! , (5.6)

where Sm,n := {(K(m), K̃(n)) ∈ Bm+n
1 | �[K(m)] � 1, �[K̃(n)] � 1}. The renormalization pro-

cedure will involve kernels which lie in the following Banach spaces. We denote the norm of the
Banach space L∞(Bm+n

1 ;C[0,1]) by ‖ · ‖∞. We shall identify the space L∞(Bm+n
1 ;C[0,1])

with a subspace of L∞([0,1] × Bm+n
1 ) by setting

wm,n

(
r,K(m,n)

) := wm,n

(
K(m,n)

)
(r).

This identification is used for example in (i) and (ii) of Definition 5.2.
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Definition 5.2. We define W #
m,n to be the Banach space consisting of functions wm,n ∈

L∞(Bm+n
1 ;C1[0,1]) satisfying the following properties:

(i) wm,n(1 − χQm,n) = 0, for m + n � 1,

(ii) wm,n(r,K
(m), K̃(n)) is totally symmetric in the variables K(m) and K̃(n),

(iii) the following norm is finite

‖wm,n‖# := ‖wm,n‖∞ + ‖∂rwm,n‖∞.

For 0 < ξ < 1, we define the Banach space

W #
ξ :=

⊕
(m,n)∈N

2
0

W #
m,n

to consist of all sequences w = (wm,n)m,n∈N0 satisfying

‖w‖#
ξ :=

∑
(m,n)∈N

2
0

ξ−(m+n)‖wm,n‖# < ∞.

Given w ∈ W #
ξ , we write w�r for the vector in W #

ξ given by

(w�r )m+n =
{

wm,n, if m + n � r,

0, otherwise.

For w ∈ W #
ξ , it is easy to see using (5.5) that H(w) := ∑

m,n Hm,n(w) converges in operator
norm with bounds ∥∥H(w�r )

∥∥� ξ r‖w�r‖#
ξ . (5.7)

We shall use the notation

W [w] :=
∑

m+n�1

Hm,n(w).

We will use the following theorem, which is a straightforward generalization of a theorem proven
in [2]. A proof can also be found in [16].

Theorem 5.3. The map H : W #
ξ → B(Hred) is injective and bounded. Moreover

‖H(w)‖ � ‖w‖#
ξ .

The integral kernels depend on the spectral parameter. To accommodate for this we introduce
the Banach space Wξ := Cω

B(D1/2; W #
ξ ) with norm

‖w‖ξ := sup
z∈D

∥∥w(z)
∥∥#

ξ
.

1/2
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Moreover, the integral kernels depend on the coupling constants. We introduce the following
Banach space

W (k)
ξ (S) := C

ω,k
B

(
S × R; W #

ξ

)
,

with the norm

‖w‖(k)
ξ,S := sup

(s,β)∈S×R

∑
m,n

ξ−m−n max
0�l�k

∥∥∂l
βw(β, s)m,n

∥∥#
.

Observe that this norm is different but equivalent to the natural norm,

max
0�l�k

sup
(s,β)∈S×R

∑
m,n

ξ−m−n
∥∥∂l

βw(β, s)m,n

∥∥# � ‖w‖(k)
ξ,S

� k max
0�l�k

sup
(s,β)∈S×R

∑
m,n

ξ−m−n
∥∥∂l

βw(β, s)m,n

∥∥#
.

For notational compactness we will use an abbreviation for the case S = D1/2 and set W (k)
ξ :=

W (ω,k)
ξ (D1/2) and ‖ · ‖(k)

ξ := ‖ · ‖(k)
ξ,S . We introduce the Banach space

W (#,k)
ξ := Ck

B

(
R; W #

ξ

)
, ‖ · ‖(#,k)

ξ ,

with the norm

‖w‖(#,k)
ξ := sup

β∈R

∑
m,n

ξ−m−n max
0�l�k

∥∥∂l
βw(β)m,n

∥∥#
.

For w ∈ Wξ we will use the notation wm,n(z, ·) := (wm,n(z))(·). We extend the definition of
H(·) to Wξ in the natural way: for w ∈ Wξ , we set(

H(w)
)
(z) := H

(
w(z)

)
and likewise for Hm,n(·) and W [·]. We say that a kernel w ∈ Wξ is symmetric if wm,n(z) =
wn,m(z) for all z ∈ D1/2. Note that because of Theorem 5.3 we have the following lemma.

Lemma 5.4. Let w ∈ Wξ . Then w is symmetric if and only if H(w(z)) = H(w(z))∗ for all
z ∈ D1/2.

We define on the space of kernels W #
m,n a natural representation of SO(3), U , which is

uniquely determined by

H
(

U (R)wm,n

)= U (R)H(wm,n)U ∗(R), ∀R ∈ SO(3), (5.8)

[17]. The representation on W #
m,n yields a natural representation on W #

ξ , which is given by
(U (R)w)m,n = U (R)wm,n for all R ∈ SO(3). It lifts to a representation on Wξ by setting
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(U (R)w)(z) = U (R)w(z) for all w ∈ Wξ . We say that a kernel wm,n ∈ W #
m,n is rotation in-

variant if U (R)wm,n = wm,n and we say a kernel w ∈ W #
ξ is rotation invariant if U (R)w = w.

We will use the following lemma which is proven in [17].

Lemma 5.5. (i) Let wm,n ∈ W #
m,n. Then H(wm,n) is rotation invariant if and only if wm,n is

rotation invariant. Let w ∈ W #
ξ . Then H(w) is rotation invariant if and only if w is rotation

invariant. (ii) If wm,n ∈ W #
m,n with m + n = 1 is rotation invariant, then wm,n = 0.

We will use the following polydiscs to define the renormalization transformation.

B#(α,β, γ ) := {
w ∈ W #

ξ

∣∣ ‖∂rw0,0 − 1‖∞ � α,
∣∣w0,0(0)

∣∣� β, ‖w�1‖#
ξ � γ

}
,

B(α,β, γ ) :=
{
w ∈ Wξ

∣∣∣ sup
z∈D1/2

∥∥∂rw0,0(z) − 1
∥∥∞ � α,

sup
z∈D1/2

∣∣w0,0(z,0) + z
∣∣� β, ‖w�1‖ξ � γ

}
,

B0(α,β, γ ) := {
w ∈ B(α,β, γ )

∣∣w(z) is rotation invariant for all z ∈ D1/2
}
.

To control the derivatives with respect to β , we introduce the following extended polydisc.

B(#,k)(α,β, γ ) := {
w ∈ W (#,k)

ξ

∣∣ ‖∂rw0,0 − 1‖Ck(R;CB [0,1]) � α,∥∥w0,0(0)
∥∥

Ck(R)
� β, ‖w�1‖(#,k)

ξ � γ
}
,

B(k)(α,β, γ ) :=
{
w ∈ W (k)

ξ

∣∣∣ sup
z∈D1/2

∥∥∂rw0,0(z) − 1
∥∥

Ck(R;CB [0,1]) � α,

sup
z∈D1/2

∥∥w0,0(z,0) + z
∥∥

Ck(R)
� β, ‖w�1‖(k)

ξ � γ
}
,

B(k)
0 (α,β, γ ) := {

w ∈ B(k)(α,β, γ )
∣∣w(z) is rotation invariant for all z ∈ D1/2

}
.

6. Initial Feshbach transformation

In this section we shall assume that the assumptions of Hypothesis (H) hold. Without loss of
generality, see Section 3, we assume that the distance between the lowest eigenvalue of Hat and
the rest of the spectrum is one, that is

inf
(
σ(Hat) \ {Eat}

)− Eat = 1. (6.1)

Let χ1 and χ1 be two functions in C∞(R+; [0,1]) with χ2
1 + χ2

1 = 1, χ1 = 1 on [0,3/4), and
suppχ1 ⊂ [0,1]. We use the abbreviations χ1 = χ1(Hf ) and χ1 = χ1(Hf ). It should be clear
from the context whether χ1 or χ1 denotes a function or an operator. By ϕat we denote a fix
choice for a normalized eigenstate of Hat with eigenvalue Eat and by Pat we denote the eigen-
projection of Hat corresponding to the eigenvalue Eat. By Hypothesis (H) the range of Pat is
one dimensional. Thus to every ψ ∈ RanPat ⊗ Pred there exists a unique ι(ψ) ∈ Hred such that
ψ = ϕat ⊗ ι(ψ). It follows that ι : RanPat ⊗Pred → Hred is unitary and commutes with the SO(3)
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action. We will use ι to identify the range of Pat ⊗ Pred with Hred. We define χ(I)(r) := Pat ⊗
χ1(r) and χ(I)(r) = P̄at ⊗ 1 + Pat ⊗ χ1(r), with P̄at = 1 − Pat. We set χ(I) := χ(I)(Hf ) and

χ(I) := χ(I)(Hf ). It follows directly from the definition that χ(I)2 +χ(I)2 = 1. We use an initial
transformation based on the smooth Feshbach map and its associated auxiliary operator, see
Appendix B.

Theorem 6.1. Assume Hypothesis (H). Let k ∈ N. For any 0 < ξ < 1 and any positive numbers
δ1, δ2, δ3 there exists a positive number g0 such that the following is satisfied. For all (g,β, z) ∈
Dg0 ×R×D1/2 the pair of operators (Hg,β − z−Eat,H0 − z−Eat) is a Feshbach pair for χ(I).
The operator-valued map

Qχ(I) (g,β, z) := Qχ(I) (Hg,β − z − Eat,H0 − z − Eat)

is uniformly bounded in (g,β, z) and the function (g, z) �→ Qχ(I) (g, ·, z) is in Cω
B(Dg0 ×

D1/2;Ck
B(R; B(Hred, H))). There exists a unique kernel w(0)(g,β, z) ∈ W #

ξ such that

H
(
w(0)(g,β, z)

)= ι
(
Fχ(I) (Hg,β − z − Eat,H0 − z − Eat) � RanPat ⊗ Pred

)
ι−1. (6.2)

Moreover, w(0) satisfies the following properties.

(a) We have w(0)(g) := w(0)(g, ·, ·) ∈ B(k)
0 (δ1, δ2, δ3) for all g ∈ Dg0 .

(b) w(0)(g,β, ·) is a symmetric kernel for all (g,β) ∈ (Dg0 ∩ R) × R.

(c) The function (g, z,β) �→ w(0)(g,β, z) is in C
ω,k
B (Dg0 × D1/2 × R; W #

ξ ).

The remaining part of this section is devoted to the proof of Theorem 6.1. Throughout this
section we assume that

z = ζ − Eat ∈ D1/2. (6.3)

To prove Theorem (6.1), we write the interaction part of the Hamiltonian in terms of integral
kernels as follows,

Hg,β = Hat + Hf + :Wg,β :,
Wg,β :=

∑
m+n=1,2

Wm,n(g,β), (6.4)

where Wm,n(g,β) := Hm,n(w
(I)
m,n(g,β)) with

Hm,n(wm,n) :=
∫

(R3)
m+n

dK(m,n)

|K(m,n)|1/2
a∗(K(m)

)
wm,n

(
K(m,n)

)
a
(
K̃(n)

)
, (6.5)

and
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w
(I)
1,0(g,β)(K) := 2g

N∑
j=1

pj · ε(k,λ)
κΛ(k)eiβk·xj

√
2

,

w
(I)
1,1(g,β)(K, K̃) := g2

N∑
j=1

ε(k,λ) · ε(̃k, λ̃)
κΛ(k)e−iβk·xj

√
2

κΛ(̃k)eiβk̃·xj

√
2

,

w
(I)
2,0(g,β)(K1,K2) := g2

N∑
j=1

ε(k1, λ1) · ε(k2, λ2)
κΛ(k1)e

−iβk1·xj

√
2

κΛ(k2)e
−iβk2·xj

√
2

, (6.6)

w
(I)
0,1(g,β)(K̃) := w

(I)
0,1(g,β)(K̃)∗, and w

(I)
0,2(g,β)(K̃1, K̃2) := w

(I)
2,0(g,β)(K̃1, K̃2). We note that

(6.5) is understood in the sense of forms, cf. Appendix A. We set

w
(I)
0,0(z)(r) := Hat − z + r.

By w(I) we denote the vector consisting of the components w
(I)
m,n with m + n = 0,1,2.

The next theorem establishes the Feshbach property. To state it, we denote by P0 the orthogo-
nal projection onto the closure of Ranχ(I). We will use the convention that (H0 −z)−1χ(I) stands
for ((H0 − z) � Ranχ(I))−1χ(I), and that (H0 − z)−1P0 stands for ((H0 − z) � RanP0)

−1P0. The
proof of the Feshbach property is based on the fact that

infσ(H0 � RanP0) � Eat + 3

4
, (6.7)

which follows directly from the definition, and the fact that the interaction part of the Hamiltonian
is bounded with respect to the free Hamiltonian. A proof can be found in [17].

Theorem 6.2. Let |Eat − ζ | < 1
2 . Then

∥∥((H0 − ζ ) � RanP0
)−1∥∥� 4. (6.8)

There is a C < ∞ and g0 > 0 such that for all β and |g| < g0,

∥∥(H0 − ζ )−1χ(I)Wg,β

∥∥� C|g|, ∥∥Wg,β(H0 − ζ )−1χ(I)
∥∥� C|g|, (6.9)

and (Hg,β − ζ,H0 − ζ ) is a Feshbach pair for χ(I).

Theorem 6.3. For g0 sufficiently small

(g, z) �→ Qχ(I) (g, ·, z) (6.10)

is in Cω(Dg × D1/2;Ck (R; B(Hred, H))).
B 0 B
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We write

〈x〉 :=
(

1 +
N∑

j=1

|xj |2
)1/2

.

We will use the Leibniz rule for higher derivatives

∂l
β(f1 · · ·fL) =

∑
n∈N

L
0 : |n|=l

l!
n!f

(n1)
1 · · ·f (nL)

L . (6.11)

Proof of Theorem 6.3. For notational simplicity we set W = Wg,β and Qχ(I) = Qχ(I) (g,β, z).
We have

Qχ(I) = χ(I) −
∞∑

n=0

(−1)nχ(I)
(
(H0 − ζ )−1χ(I)Wχ(I)

)n
(H0 − ζ )−1χ(I)Wχ(I)

= χ(I) −
∞∑

n=0

(−1)n
(
χ(I)(H0 − ζ )−1χ(I)W

)n+1
χ(I). (6.12)

Formally differentiating l times with respect to β , the n-th term under the summation sign gen-
erates (n + 1)l terms, each of the form(

χ(I)(H0 − ζ )−1χ(I)∂
ln+1
β W

) · · · (χ(I)(H0 − ζ )−1χ(I)∂
l1
β W

)
χ(I), (6.13)

where l1 + · · · + ln+1 = l. We write

χ(I)(H0 − ζ )−1χ(I) = (
χ(I)

)2
(H0 + 2 − ζ )−1

+ 2(H0 − ζ )−1(χ(I)
)2

(H0 + 2 − ζ )−1. (6.14)

It is well known that ‖eγ1〈x〉Pat‖ < ∞ for some γ1 > 0 [22]. Define

γj+1 =
(

1 − k−1
j∑

t=1

(1 − δlt ,0)

)
γ1; j = 1, . . . , n.

Since
∑n

j=1(1 − δlj ,0) � k, γn+1 � 0. With

Gj = (
eγj+1〈x〉χ(I)(H0 − ζ )−1χ(I)e−γj+1〈x〉)(eγj+1〈x〉∂lj

β We−γj 〈x〉) (6.15)

the expression in (6.13) can be written as

e−γn+1〈x〉(Gn+1 · · ·G1)e
γ1〈x〉χ(I). (6.16)

We claim that for small enough γ1 > 0 (chosen independent of n), for |g| � 1, and for ζ ∈
D1/2 + Eat
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‖Gj‖ � C|g|, (6.17)

where C is independent of j , ζ , β , and n. It is clear that∥∥(H0 + i)−1eγj+1〈x〉∂lj
β We−γj 〈x〉∥∥� C1|g|,

since if lj > 0, γj − γj+1 = γ1/k. (There is a slight subtlety here with the term W
(I)
0,1 which

contains (eiβk·xj )(pj · ε(k,λ)). But note that the two terms in parentheses commute so that the
bound is indeed independent of β .) It remains to show

eγ 〈x〉χ(I)(H0 − ζ )−1χ(I)e−γ 〈x〉(H0 + i)

is bounded with bound independent of γ for small γ and ζ ∈ D1/2 + Eat. We have

H0(γ ) := eγ 〈x〉H0e
−γ 〈x〉 = Hat(γ ) + Hf ,

Hat(γ ) := Hat + iγ

(
x

〈x〉 · p + p · x

〈x〉
)

− γ 2 |x|2
〈x〉2

and thus for all small γ ∥∥(H0(γ ) + 2 − ζ
)−1

(H0 + i)
∥∥� C2.

For ζ ∈ D1/2 + Eat. Clearly ‖eγ 〈x〉(χ(I))2e−γ 〈x〉‖ � c3 for γ small so from (6.14) it remains to
bound

eγ 〈x〉(H0 − ζ )−1(χ(I)
)2

e−γ 〈x〉.

Since (χ(I))2 = Pat ⊗ χ1(Hf )2 + P̄at ⊗ 1 and

(H0 − ζ )−1Pat ⊗ 1 = (1 ⊗ Hf + Eat − ζ )−1Pat ⊗ 1

we must only control

eγ 〈x〉(H0 − ζ )−1(P̄at ⊗ 1)e−γ 〈x〉.

We write

(Hat + t − ζ )−1P̄at = 1

2πi

∫
Γ

(w + t − ζ )−1(w − Hat)
−1 dw, (6.18)

where Γ is the contour Γ− − Γ+ with

Γ±(s) = Eat + 3/4 + e±iπ/4s, 0 � s < ∞.

Thus (using an analytic continuation argument)
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eγ 〈x〉(H0 − ζ )−1(P̄at ⊗ 1)e−γ 〈x〉

= 1

2πi

∫
Γ

(
w − Hat(γ )

)−1 ⊗ (w + Hf − ζ )−1 dw. (6.19)

The expression (6.19) is bounded using a numerical range argument for large w and a perturba-
tion argument for small w. These estimates require γ to be small. We have thus shown (6.17).
Moreover, it follows from the estimates above and Taylor’s theorem with remainder that the
derivative with respect to β in (6.15) and thus (6.13) exists with respect to the operator norm
topology. It follows that for l � k,

∥∥∂l
β

(
Qχ(I) − χ(I)

)∥∥�
∞∑

n=0

(n + 1)l
(
C|g|)n+1∥∥eγ1〈x〉Pat

∥∥ (6.20)

for all β ∈ R and ζ ∈ D1/2 + Eat. If g0 > 0 is sufficiently small, then (6.20) converges for
|g| < g0. The expression in (6.13) is complex differentiable in ζ ∈ D1/2 + Eat and in g with
respect to the operator norm topology. The bounds (6.17) and (6.20) imply uniform convergence
and that (g, z) �→ Qχ(I) (g, ·, z) is in Cω

B(Dg0 × D1/2;Ck
B(R; B(Hred, H))). �

Next we want to show that there exists a w(0)(g,β, z) ∈ W #
ξ such that (6.2) holds. Uniqueness

will follow from Theorem 5.3. In view of Theorem 6.2 for z = ζ − Eat ∈ D1/2 and g sufficiently
small we can define the Feshbach map and express it in terms of a Neumann series.

Fχ(I) (Hg,β − ζ,H0 − ζ ) � Xat ⊗ Hred

= (
T + χWχ − χWχ

(
T + χWχ

)−1
χWχ

)
� Xat ⊗ Hred

=
(

T + χW χ − χWχ

∞∑
n=0

(−T −1χW χ
)n

T −1χW χ

)
� Xat ⊗ Hred,

where here we used the abbreviations T = H0 − ζ , W = Wg,β , χ = χ(I), χ = χ(I) and Xat =
RanPat. We normal order above expression, using the pull-through formula. To this end we use
a generalized version of the Wick theorem, see [7], see also [17, Appendix B]. Moreover we will
use the definition

Wm,n
p,q [w](K(m,n)

) :=
∫

(R3)
p+q

dX(p,q)

|X(p,q)|1/2
a∗(X(p)

)
wm+p,n+q

(
K(m),X(p), K̃(n), X̃(q)

)
a
(
X̃(q)

)
.

We obtain a sequence of integral kernels w̃(0), which are given as follows. For M + N � 1,

w̃
(0)
M,N(g,β, z)

(
r,K(M,N)

)
= (8π)

M+N
2

∞∑
L=1

(−1)L+1
∑

(m,p,n,q)∈N
4L
0 :

|m|=M,|n|=N,

L∏
l=1

{(
ml + pl

pl

)(
nl + ql

ql

)}

1�ml+pl+ql+nl�2
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× V(m,p,n,q)

[
wI (g,β, ζ )

](
r,K(M,N)

)
. (6.21)

Furthermore,

w̃
(0)
0,0(g,β, z)(r) = −z + r +

∞∑
L=2

(−1)L+1
∑

(p,q)∈N
2L
0 : pl+ql=1,2

V(0,p,0,q)

[
w(I)(g,β, ζ )

]
(r).

Above we have used the definition

Vm,p,n,q [w](r,K(|m|,|n|))
:=

〈
ϕat ⊗ Ω,F0[w](Hf + r)

×
L∏

l=1

{
Wml,nl

pl ,ql
[w](K(ml,nl)

)
Fl[w](Hf + r + r̃l )

}
ϕat ⊗ Ω

〉
, (6.22)

where for l = 0,L we set Fl[w](r) := χ1(r), and for l = 1, . . . ,L − 1 we set

Fl[w](r) := F [w](r) := χ(I)(r)2

w0,0(r)
.

Moreover, we used the notation

rl := �
[
K̃

(n1)
1

]+ · · · + �
[
K̃

(nl−1)

l−1

]+ �
[
K

(ml+1)

l+1

]+ · · · + �
[
K

(mL)
L

]
, (6.23)

r̃l := �
[
K̃

(n1)
1

]+ · · · + �
[
K̃

(nl)
l

]+ �
[
K

(ml+1)

l+1

]+ · · · + �
[
K

(mL)
L

]
. (6.24)

We have w(0)(g,β, z) = (w̃(0))(sym)(g,β, z). So far we have determined w(0) on a formal level
only.

Lemma 6.4. Let k ∈ N0. The function (g, ζ,β) �→ Vm,p,n,q [w(I)(g,β, ζ )] is in C
ω,k
B (C ×

D1/2(Eat) × R; W #|m|,|n|). There exists a finite constant C such that for all (g,β, ζ ) ∈ C × R ×
D1/2(Eat) we have

max
0�l�k

∥∥∂l
βVm,p,n,q

[
w(I)(g,β, ζ )

]∥∥# � Lk+1CL|g||m|+|n|+|p|+|q|. (6.25)

Proof. For compactness we shall drop the ζ and β dependence in the notation. We show∣∣∂s
βVm,p,n,q

[
w(I)(g)

](
r,K(|m|,|n|))∣∣� LsCL|g||m|+|n|+|p|+|q|, (6.26)∣∣∂r∂

s
βVm,p,n,q

[
w(I)(g)

](
r,K |m|,|n|)∣∣� Ls+1CL|g||m|+|n|+|p|+|q|. (6.27)

Consider
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∂s
βVm,p,n,q

[
w(I)

](
r,K(|m|,|n|))

=
∑
j∈N

L
0|j |=s

s!
j !

〈
ϕat ⊗ Ω,F0

[
w(I)

]
(Hf + r)

×
L∏

l=1

{
∂

jl

β Wml,nl
pl ,ql

[
w(I)

](
K(ml,nl)

)
Fl

[
w(I)

]
(Hf + r + r̃l )

}
ϕat ⊗ Ω

〉
. (6.28)

To estimate (6.28) we will use the same technique as in Theorem 6.3. For l = 1, . . . ,L − 1
define

A
jl

l = eγl+1〈x〉∂jl

β Wml,nl
pl ,ql

[
w(I)

](
K(ml,nl)

)
Fl

[
w(I)

]
(Hf + r + r̃l )e

−γl〈x〉 (6.29)

and similarly for A
jL

L except that we replace FL[w(I)](Hf + r + r̃l ) by (H0 − Eat + 1)−1. Here

γl+1 =
(

1 − k−1
l∑

t=1

(1 − δjt ,0)

)
γ1; l = 1, . . . ,L.

Note again that since s � k, γL+1 � 0. It follows that

∣∣∂s
βVm,p,n,q

[
w(I)

](
r,K(|m|,|n|))∣∣� ∑

j∈N
L
0|j |=s

s!
j !

(
L∏

l=1

∥∥Ajl

l

∥∥)∥∥eγ1〈x〉ϕat
∥∥.

We will show the bound ∥∥Ajl

l

∥∥� C|g|ml+pl+nl+ql , (6.30)

which gives (6.26). We write for l � L,

A
jl

l = eγl+1〈x〉∂jl

β Wml,nl
pl ,ql

[
w(I)

](
K(ml,nl)

)
(H0 − Eat + 1)−1e−γl〈x〉

× eγl〈x〉(H0 − Eat + 1)Fl

[
w(I)

]
(Hf + r + r̃l )e

−γl〈x〉. (6.31)

First we estimate the second factor. To this end we write

Fl

[
w(I)

]
(Hf + r + r̃l ) = (H0 − Eat − z + r + r̃l )

−1(P at ⊗ 1 + Pat ⊗ χ2
1 (Hf + r + r̃l )

)
.

Since eγl〈x〉Pate
−γl〈x〉 is bounded for γ1 small, it is clear that∥∥eγl〈x〉(H0 − Eat + 1)Fl

[
w(I)

]
(Hf + r + r̃l )e

−γl〈x〉∥∥
� C1 + (r + r̃l )

∥∥eγl〈x〉(H0 − Eat − z + r + r̃l )
−1P at ⊗ 1e−γl〈x〉∥∥.
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For u � 0 we write

(Hat − Eat − z + u)−1P at = 1

2πi

∫
Γ

(w − Eat − z + u)−1(w − Hat)
−1 dw (6.32)

where Γ is the contour Γ = Γ− − Γ+ with

Γ±(t) = Eat + 3/4 + e±i π
4 t, 0 � t < ∞,

and obtain for λ small

eλ〈x〉(Hat − Eat − z + u)−1P ate
−λ〈x〉

= 1

2πi

∫
Γ

(w − Eat − z + u)−1(w − Hat(λ)
)−1

dw, (6.33)

where Hat(λ) is given as in the proof of Theorem 6.3. As in that proof we estimate (6.33) for
large w ∈ Γ using a numerical range estimate to bound ‖(w −Hat(λ))−1‖ while for small w ∈ Γ

the resolvent can be bounded using∥∥(Hat(λ) − Hat
)
(−� + 1)−1

∥∥= O
(|λ|)

for small λ. Then using the spectral theorem, which allows us to substitute u = Hf + r + r̃l , we
obtain for small γ1

y
∥∥eγl〈x〉(H0 − Eat − z + y)−1P at ⊗ 1e−γl〈x〉∥∥� C

independent of y � 0. In order to show (6.30) for 1 � l � L it remains to bound the first factor
on the right-hand side of (6.31). Using ‖( x

〈x〉 ·p +p · x
〈x〉 )(−�+ 1)−1‖ < ∞ and Hypothesis (H)

we see that ∥∥(−� ⊗ 1 + 1 ⊗ Hf + 1)eγl〈x〉(H0 − Eat + 1)−1e−γl〈x〉∥∥
is bounded uniformly in L for small γ1. Thus to prove (6.30) we need only bound

eγl+1〈x〉∂jl

β Wml,nl
pl ,pl

[
w(I)

](
K(ml,nl)

)
e−γl〈x〉(−� ⊗ 1 + 1 ⊗ Hf + 1)−1

or carrying out the differentiations with respect to β (if any) we need to bound

W
ml,pl
pl ,ql

(
eγl+1〈x〉w(I,jl)e−γl〈x〉)(K(ml,nl)

)
(−� ⊗ 1 + 1 ⊗ Hf + 1)−1,

where w(I,jl) := ∂
jl

β w(I). Referring to (6.6) we have

∥∥eγl+1〈x〉w(I,jl)

1,0 (K)e−γl 〈x〉(−� + 1)−1/2
∥∥

Hat→Hat
� c1|g|κΛ(k), (6.34)

and similarly for w
(I,jl), while for m + n = 2
0,1
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∥∥eγl+1〈x〉w(I,jl)
m,n

(
K(m,n)

)
e−γl〈x〉∥∥

Hat→Hat
� c2|g|2κΛ

(
K(m)

)
κΛ

(
K̃(n)

)
, (6.35)

where κΛ(K(m)) = ∏m
j=1 κΛ(kj ). Given (6.34) and (6.35) we need only consider W

ml,nl
pl ,ql

with
pl + ql � 1. From Lemma A.2, if ml + nl � 1, pl = 1, ql = 0,

∥∥∥∥∫ dX

|X|1/2
a∗(X)eγl+1〈x〉w(I,jl)

ml+1,nl

(
K(ml),X, K̃(nl)

)
e−γl〈x〉(−� + 1)−1/2 ⊗ (Hf + 1)−1/2

∥∥∥∥2

�
∫

dX

|X|2 sup
r�0

∥∥eγl+1〈x〉w(I,jl)

ml+1,nl

(
K(ml),X, K̃(nl)

)
e−γl〈x〉(−� + 1)−1/2

∥∥
Hat→Hat

r + |X|
r + 1

� c|g|ml+nl+1,

and similarly if pl = 0, ql = 1. If pl = ql = 1

∥∥∥∥∫ dX(1,1)

|X(1,1)|1/2
a∗(X1)e

γl+1〈x〉w(I,jl)

1,1 (X1, X̃2)e
−γl〈x〉a(X2)(Hf + 1)−1

∥∥∥∥2

�
∫

dX(1,1)

|X(1,1)|2 sup
r�0

∥∥eγl+1〈x〉w(I,jl)

1,1 (X1, X̃2)e
−γl〈x〉∥∥

Hat→Hat

(r + |X1|)(r + |X̃2|)
(r + |X̃2|)2

� c|g|2,

and similarly if pl = 2, ql = 0 or pl = 0, ql = 2. Since∥∥(−� + 1)1/2 ⊗ (Hf + 1)1/2(−� ⊗ 1 + 1 ⊗ Hf + 1)−1
∥∥= 1,∥∥1 ⊗ (Hf + 1)(−� ⊗ 1 + 1 ⊗ Hf + 1)−1
∥∥= 1

we have proven (6.26). A similar argument gives (6.27)∣∣∂r∂
s
βVm,p,n,q

[
w(I)

](
r,K |m|,|n|)∣∣� Lk+1CL|g||m|+|n|+|p|+|q|. (6.36)

One can use the same estimates as above to show that the β derivative in (6.29) exists in
L∞(B

(|m|,|n|)
1 ;C1([0,1]; B(H))). To show this one replaces w(I,jl) by its difference from the

differential quotient, i.e., (�β)−1(w(I,jl−1)(β + �β) − w(I,jl−1)(β)) − w(I,jl)(β) and using
the explicit expressions for w(I) it is straightforward to verify using Taylor’s theorem with
remainder that the right-hand side in the corresponding estimates converge to zero as �β

tends to zero. Likewise one shows continuity in β . It now follows that the β derivative in
(6.28) exists in L∞(B

(|m|,|n|)
1 ;C1[0,1]) The mapping (g, z) �→ Vm,p,n,q [w(I)(g,Eat + z)] is in

Cω
B(C×D1/2;Ck

B(R; W #|m|,|n|)). To this end, observe that for fixed z, Vm,p,n,q is a polynomial in

g with coefficients in C
ω,k
B (R; W #|m|,|n|). For fixed g it is straightforward to verify that Vm,p,n,q

is differentiable with respect to z. To this end observe that only w
(I)
0,0 depends on z. �

Using Lemma 6.4 the proof of Theorem 6.1(a) is analogous to the proof of [17, Theo-
rem 7.1(a)]. Below we summarize the main estimates of the proof. Let SL denote the set
M,N
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of tuples (m,p,n, q) ∈ N
4L
0 with |m| = M , |n| = N , and 1 � ml + pl + ql + nl � 2. We find,

with ξ̃ := (8π)−1/2ξ ,∥∥w(0)
�1(g, z)

∥∥(#,k)

ξ

= sup
β∈R

∑
M+N�1

ξ−(M+N) max
0�l�k

∥∥∂l
βw̃M,N(g,β, z)

∥∥#

�
∑

M+N�1

∞∑
L=1

∑
(m,p,n,q)∈SL

M,N

ξ̃−(M+N)4L sup
β∈R

max
0�l�k

∥∥∂l
βVm,p,n,q

[
w(I)(g,β, ζ )

]∥∥#

�
∞∑

L=1

∑
M+N�1

∑
(m,p,n,q)∈SL

M,N

ξ̃−|m|−|n|Lk+1(4C)Lg|m|+|n|+|p|+|q|

�
∞∑

L=1

Lk+114Lξ̃−2L
(
4C|g|)L, (6.37)

for all (g, z) ∈ D1 × D1/2. A similar but simpler estimate yields

sup
r∈[0,1]

∥∥∂rw
(0)
0,0(g, z)(r) − 1

∥∥
Ck(R)

�
∞∑

L=2

∑
(p,q)∈N

2L
0 : pl+ql=1,2

sup
β∈R

max
0�l�k

∥∥∂l
βV0,p,0,q

[
w(I)(g,β, ζ )

]∥∥#

�
∞∑

L=2

3LLk+1(C|g|)L, (6.38)

for all (g, z) ∈ D1 × D1/2. Analogously we have for all (g, z) ∈ D1 × D1/2,

∥∥w(0)
0,0(g, z)(0) + z

∥∥
Ck(R)

�
∞∑

L=2

∑
(p,q)∈N

2L
0 : pl+ql=1,2

sup
β∈R

max
0�l�k

∥∥∂l
βV0,p,0,q

[
w(I)(g, ζ )

]∥∥#

�
∞∑

L=2

3LLk+1(C|g|)L. (6.39)

The right-hand sides in (6.37)–(6.39) can be made arbitrarily small for sufficiently small |g|.
This implies that w(0)(g) is in B(k)(δ1, δ2, δ3). Rotation invariance and the symmetry property
have already been shown in [17, Theorem 7.1]. Theorem 6.1(c) follows from Lemma 6.4 and the
convergence for small g established in (6.37)–(6.39).

7. Renormalization transformation

In this section we define the renormalization transformation as in [2]. It is a combination of
the Feshbach transformation which cuts out higher photon energies, a rescaling of the resulting
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operator so that it acts on the fixed subspace Hred and a conformal transformation of the spectral
parameter. Let 0 < ξ < 1 and 0 < ρ < 1. For w ∈ Wξ we define the analytic function

Eρ[w](z) := ρ−1E[w](z) := −ρ−1〈Ω,H
(
w(z)

)
Ω
〉

and the set

U [w] := {
z ∈ D1/2

∣∣ ∣∣E[w](z)∣∣< ρ/2
}
.

Lemma 7.1. Let 0 < ρ � 1/2. Then for all w ∈ B(ρ/8, ρ/8, ρ/8), the function Eρ[w] :U [w] →
D1/2 is an analytic bijection, D3ρ/8 ⊂ U [w] ⊂ D5ρ/8, and for all z ∈ D5ρ/8 we have

∣∣∂zE[w](z) − 1
∣∣� 4ρ

(4 − 5ρ)2
. (7.1)

If w ∈ B(ρ/32, ρ/32, ρ/32), then D15ρ/32 ⊂ U [w] ⊂ D17ρ/32 and for all z ∈ D17ρ/32 we have

∣∣∂zE[w](z) − 1
∣∣� 16ρ

(16 − 17ρ)2
. (7.2)

For a proof of the lemma we apply following lemma with r = ρ/2 and ε = ρ/8 respectively
ε = ρ/32. For a proof of Lemma 7.2 see [16, Lemma 6.2] or [2].

Lemma 7.2. Let 0 < ε < 1/2, and let E :D1/2 → C be an analytic function which satisfies

sup
z∈D1/2

∣∣E(z) − z
∣∣� ε.

Then for any r > 0 with r + ε < 1/2 the following are true.

(a) For w ∈ Dr there exists a unique z ∈ D1/2 such that E(z) = w.
(b) The map E :Ur := {z ∈ D1/2 | |E(z)| < r} → Dr is biholomorphic.
(c) We have Dr−ε ⊂ Ur ⊂ Dr+ε .
(d) If z ∈ Dr+ε , then |∂zE(z) − 1| � ε

2 (1/2 − (r + ε))−2.

If 0 < ρ � 1/4, then for w ∈ B(ρ/32, ρ/32, ρ/32) we find using (7.2), that for all z ∈ D17ρ/32

∣∣∂zEρ[w]∣∣� 1

ρ

(
1 − |∂zE − 1|)� 15

16ρ
. (7.3)

Let Iρ[w] denote the inverse of Eρ[w] :U [w] → D1/2. It satisfies

Eρ[w](Iρ[w](z))= z, (7.4)

for all z ∈ D1/2. For notational compactness we shall occasionally drop the dependence on w

and write Eρ and Iρ . In the previous section we introduced smooth functions χ1 and χ1. We set

χρ(·) = χ1(·/ρ), χρ(·) = χ1(·/ρ),
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and use the abbreviation χρ = χρ(Hf ) and χρ = χρ(Hf ). It should be clear from the context
whether χρ or χρ denotes a function or an operator. The following theorem is proven in [2,16].

Lemma 7.3. Let 0 < ρ � 1/2. Then for all w ∈ B(ρ/8, ρ/8, ρ/8), and all z ∈ D1/2 the pair of
operators (H(w(E−1

ρ (z))),H0,0(w(E−1
ρ (z)))) is a Feshbach pair for χρ .

The definition of the renormalization transformation involves a scaling transformation Sρ

which scales the energy value ρ to the value 1. For operators A ∈ B(F ) we define

Sρ(A) = ρ−1ΓρAΓ ∗
ρ ,

where Γρ is the unitary dilation on F which is uniquely determined by

Γρa#(k)Γ ∗
ρ = ρ−3/2a#(ρ−1k

)
, ΓρΩ = Ω.

It is easy to check that ΓρHf Γ ∗
ρ = ρHf and hence ΓρχρΓ ∗

ρ = χ1. We are now ready to define
the renormalization transformation, which in view of Lemmas 7.1 and 7.3 is well defined.

Definition 7.4. Let 0 < ρ � 1/2. For w ∈ B(ρ/8, ρ/8, ρ/8) we define the renormalization trans-
formation

(
RρH(w)

)
(z) := SρFχρ

(
H
(
w
(
E−1

ρ (z)
))

,H0,0
(
w
(
E−1

ρ (z)
)))

� Hred,

where z ∈ D1/2.

Theorem 7.5. Let 0 < ρ � 1/2 and 0 < ξ � 1/2. For w ∈ B(ρ/8, ρ/8, ρ/8) there exists a unique
integral kernel Rρ(w) ∈ Wξ (

RρH(w)
)
(z) = H

(
Rρ(w)(z)

)
.

If w is symmetric then also Rρ(w) is symmetric. If w(z) is invariant under rotations for all
z ∈ D1/2 then also Rρ(w)(z) is invariant under rotations for all z ∈ D1/2.

A proof of the existence of the integral kernel as stated in Theorem 7.5 can be found in [2]
or [16, Theorem 8.1]. The uniqueness follows from Theorem 5.3. The statement about the
symmetry and the rotation invariance follows from Lemmas 5.4 and 5.5 and the fact that the
renormalization transformation preserves symmetry and rotation invariance, respectively. This is
explained in detail in [17]. The renormalized kernels are given as follows. For w ∈ W #

m+p,n+q

we define

Wm,n
p,q [w](r,K(m,n)

)
:= Pred

∫
B

p+q

dX(p,q)

|X(p,q)|1/2
a∗(x(p)

)
wp+m,q+n

(
Hf + r, x(p), k(m), x̃(q), k̃(n)

)
a
(̃
x(q)

)
Pred
1
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which defines an operator for a.e. K(m,n) ∈ Bm+n
1 . In the case m = n = 0 we set W

0,0
m,n[w](r) :=

Wm,n[w](r). For w ∈ B(ρ/8, ρ/8, ρ/8) we have

Rρ(w)(z) = R#
ρ

(
w
(
Iρ[w](z))).

For w ∈ W #
ξ we define

R#
ρ(w) := ŵ(sym),

where the kernels ŵ are given as follows. For M + N � 1,

ŵM,N

(
r,K(M,N)

) :=
∞∑

L=1

(−1)L−1ρM+N−1
∑

(m,p,n,q)∈N
4L
0 :

|m|=M,|n|=N,
ml+pl+nl+ql�1

×
L∏

l=1

{(
ml + pl

pl

)(
nl + ql

ql

)}
vm,p,n,q [w](r,K(M,N)

)
, (7.5)

and

ŵ0,0(r) := ρ−1w0,0(ρr) + ρ−1
∞∑

L=2

(−1)L−1
∑

(p,q)∈N
2L
0 :

pl+ql�1

v0,p,0,q [w](r). (7.6)

Moreover, we have introduced the expressions

vm,p,n,q [w](r,K(|m|,|n|))
:=

〈
Ω,F0[w](Hf + ρ(r + r̃0)

)
×

L∏
l=1

{
Wml,nl

pl ,ql
[w](ρ(r + rl), ρK

(ml,nl)
l

)
Fl[w](Hf + ρ(r + r̃l )

)}
Ω

〉
, (7.7)

where F0[w](r) := χρ(r) and FL[w](r) := χρ(r), and for l = 1, . . . ,L − 1

Fl[w](r) := F [w](r) := χ2
ρ(r)

w0,0(r)
. (7.8)

We used the notation introduced in (6.23) and (6.24). The next theorem states the contraction
property.
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Theorem 7.6. For any positive numbers ρ0 � 1/4 and ξ0 � 1/2 there exist numbers ρ, ξ, ε0
satisfying ρ ∈ (0, ρ0], ξ ∈ (0, ξ0], and 0 < ε0 � ρ/8 such that the following property holds,

Rρ : B0(ε, δ1, δ2) → B0(ε + δ2/2, δ2/2, δ2/2), ∀ε, δ1, δ2 ∈ [0, ε0). (7.9)

A proof of Theorem 7.6 can be found in [16, Theorem 9.1]. The proof given there relies on
the fact that there are no terms which are linear in creation or annihilation operators. Since by
rotation invariance and Lemma 5.5 there are no terms which are linear in creation and annihila-
tion operators, Theorem 7.6 follows from the same proof. The contraction property allows us to
iterate the renormalization transformation. To this end we introduce the following hypothesis.

(R) Let ρ, ξ, ε0 be positive numbers such that the contraction property (7.9) holds and ρ � 1/4,
ξ � 1/4 and ε0 � ρ/8.

Now we extend the renormalization transformation to B(0)(ρ/8, ρ/8, ρ/8) by setting

Rρ(w)(β) = Rρ

(
w(β)

)
for w ∈ B(0)(ρ/8, ρ/8, ρ/8) and

R#
ρ(w)(β) = R#

ρ

(
w(β)

)
for w ∈ B(#,0)(ρ/8, ρ/8, ρ/8). That is we have

Rρ(w)(β, z) = R#
ρ

(
w
(
β, Iρ(β, z)

))
.

The next theorem states that the extended renormalization transformation preserves the B(k)
0 -

balls and acts as a contraction on these balls in all but one dimension.

Theorem 7.7. For k ∈ N0 and positive numbers ρ0 � 1/4 and ξ0 � 1/4 there exist numbers
ρ, ξ, ε0 satisfying ρ ∈ (0, ρ0], ξ ∈ (0, ξ0], and 0 < ε0 � ρ/32 such that

Rρ : B(k)
0 (ε, δ1, δ2) → B(k)

0 (ε + δ2/4 + δ1/4, δ2/2, δ2/2), ∀ε, δ1, δ2 ∈ [0, ε0). (7.10)

Theorem 7.7 will be shown below. The next theorem states that the extended renormalization
transformation preserves analyticity.

Theorem 7.8. Let 0 < ρ � 1/2 and 0 < ξ � 1/2. Let S be an open subset of Cν with ν ∈ N.
Suppose the map w(·, ·) :S ×R → W #

ξ is in Cω,k(S ×R; W #
ξ ) and for all s ∈ S we have w(s, ·) ∈

B(#,k)(ρ/32,5ρ/8, ρ/32). Then

(s, β) �→ R#
ρ

(
w(s,β)

)
is in C

ω,k
B (S × R; W #

ξ ).
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Theorem 7.9. Let 0 < ρ � 1/2 and 0 < ξ � 1/2. Let S be an open subset of C. Suppose

w(·, ·, ·) :S × D1/2 × R → W #
ξ

(s, z,β) �→ w(s, z,β)

is in Cω,k(S × D1/2 × R; W #
ξ ) and for all s ∈ S we have w(s, ·, ·) ∈ B(k)(ρ/32, ρ/32, ρ/32).

Then

(s, z,β) �→ (
Rρ

(
w(s, ·, β)

))
(z)

is in C
ω,k
B (S × D1/2 × R; W #

ξ ).

To show Theorems 7.7, 7.8, and 7.9 we will use the explicit expression for the renormalized
integral kernels introduced above. For w ∈ B(0)(ρ/8, ρ/8, ρ/8) we define

Eρ(β, z) := Eρ

[
w(β)

]
(z), Iρ(β, z) := Iρ

[
w(β)

]
(z).

The crucial point of that following estimate is that the constant CL grows at most polynomially
in L and that ρ−1 occurs to a power of at most L − 1.

Lemma 7.10. Let 0 � ρ � 1/4 and let w ∈ B(#,k)(ρ/32,5ρ/8, ·). Then for (m,p,n, q) ∈ (NL
0 )4

we have

max
0�l�k

∥∥∂l
βvm,p,n,q

[
w(β)

]∥∥# � CL

(
1

t

)L−1 L∏
l=1

max0�l�k ‖∂l
βwml+pl,nl+ql

(β)‖#

√
pl !ql ! , (7.11)

where t := 3ρ/32 and CL is a constant which satisfies a bound

CL � c
(
1 + ‖∂rχ1‖∞

)k(1 + Lk
)
,

where c is a finite numerical constant.

Proof. First we consider the case k = 0. Since in that case the β dependence is not relevant we
drop the β dependence in the notation. Using∣∣〈Ω,A1A2 · · ·AnΩ〉∣∣� ‖A1‖op‖A2‖op · · · ‖An‖op, (7.12)

we find

ess sup
K(|m|,|n|)

sup
r∈[0,1]

∣∣vm,p,n,q [w](r,K(|m|,|n|))∣∣
�

L∏
l=1

ess sup
K(ml ,nl )

sup
r∈[0,1]

∥∥Wm,n
p,q [w](r,K(ml,nl)

)∥∥
op,

L−1∏
l=1

∥∥χ2
ρ/w0,0

∥∥
C[0,1].

To estimate the right-hand side we use
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ess sup
K(m,n)

sup
r∈[0,1]

∥∥Wm,n
p,q [w](r,K(m,n)

)∥∥
op �

‖wp+m,q+n,‖L∞(Bm+n
1 ;C[0,1])√

p!q! , (7.13)∥∥χ2
ρ/w0,0

∥∥
C[0,1] � 1/t. (7.14)

Inequality (7.13) can be shown using Lemma A.2 and (5.6). Inequality (7.14) can be shown as
follows. For r � ρ3/4 we have

∣∣w0,0(r)
∣∣� r − ∣∣r − (

w0,0(r) − w0,0(0)
)∣∣− ∣∣w0,0(0)

∣∣� r − r
ρ

32
− 5ρ/8 � ρ

3

32
,

and thus [
inf

r∈[ρ 3
4 ,1]

∣∣w0,0(r)
∣∣]−1

� 1/t. (7.15)

Next we calculate the derivative with respect to r . To this end first observe that using
Lemma A.2 and dominated convergence one can show that for a.e. K(m,n) the partial deriva-
tive ∂rW

m,n
p,q [w](r,K(m,n)) exists with respect to the operator norm topology and equals

W
m,n
p,q [∂rw](r,K(m,n)). Thus

ess sup
K(m,n)

sup
r∈[0,1]

∥∥∂rW
m,n
p,q [w](r,K(m,n)

)∥∥
op �

‖∂rwp+m,q+n,‖L∞(Bm+n
1 ;C[0,1])√

p!q! . (7.16)

Furthermore,

Dr

χ2
ρ

w0,0
= − χ2

ρ

w2
0,0

(∂rw0,0) + 2χρ∂rχρ

w0,0

and thus for s + ρr ∈ [0,1] we have∣∣∣∣Dr

χ2
ρ

w0,0
(s + ρr)

∣∣∣∣� 3

2

ρ

t2
+ 2‖χ ′

1‖∞
t

, (7.17)

where we used ‖∂rw0,0‖C[0,1] � 3/2. Calculating the derivative with respect to r using Leibniz
and estimating the resulting expression with the help of (7.12), (7.13) (7.14), (7.16), and (7.17)
the inequality (7.11) follows for k = 0.

Next we show (7.11) for k � 1. It follows from Lemma F.1(b) that β �→ χ2
ρ

w0,0(β)
is in

Ck(R, W #
0,0). We use (D.1) to calculate the derivative of χ2

ρ/w0,0(β) with respect to β ,

∂l
β

χ2
ρ

w0,0(β)
=

∑
X∈Pl

|X|!(−1)|X| χ2
ρ

(w0,0(β))|X|+1

∏
x∈X

∂
|x|
β w0,0(β). (7.18)

The derivative in (7.18) is with respect to the C[0,1] norm. To estimate the right-hand side of
(7.18) we use (7.15) that by assumption ‖∂j

βw0,0(β)‖C[0,1] � 5ρ/8. It follows that there exists a
finite constant, CF,l , independent of ρ such that
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∥∥∥∥∂l
β

χ2
ρ

w0,0(β)

∥∥∥∥
C[0,1]

� CF,l

t
, (7.19)

and CF,0 = 1. Using (D.1) we find

Dr∂
l
β

χ2
ρ

w0,0(β)

=
∑
X∈Pl

|X|!(−1)|X| χρ

(w0,0(β))|X|+1
D
(
w0,0(β), |X|, χ1, ρ

) ∏
x∈X

∂
|x|
β w0,0(β)

+
∑
X∈Pl

|X|!(−1)|X| χρ

(w0,0(β))|X|+1

∑
x∈X

(
∂r∂

|x|
β w0,0(β)

) ∏
x′∈X,x′ �=x

∂
|x′|
β w0,0(β), (7.20)

where we wrote

D(w0,0,m,χ1, ρ) := 2∂rχ1(·/ρ)

ρ
− (m + 1)

χρ

w0,0
∂rw0,0.

We estimate

∥∥D(w0,0,m,χ1, ρ)
∥∥∞ � 2

ρ
‖∂rχ1‖∞ + (m + 1)

8

ρ
, (7.21)

where we used that by assumption it follows that ‖∂rw0,0‖∞ � 3/2. The derivative in (7.20) is
with respect to the C[0,1] norm. Inserting (7.21) into (7.20) we find for s + ρr ∈ [0,1]∣∣∣∣Dr∂

l
β

(
χ2

ρ

w0,0(β)
(s + ρr)

)∣∣∣∣� t−1CF,l

(
2‖∂rχ1‖∞ + (l + 1)8

)+ t−1lCF,l . (7.22)

Next observe that vm,p,n,q [·] is given as a multilinear expression of kernels (wm,n)m+n�1 and
χρ

w0,0
. It follows from Lemma F.1 that β �→ vm,p,n,q [w(β)] is in Ck(R; W|m|,|n|) and that Leibniz

rule for higher derivatives (6.11) is applicable to calculate derivatives Dl
βvm,p,n,q [w(β)]. We

thus apply (6.11) and estimate the resulting expression using (7.12). To this end we use

ess sup
K(m,n)

sup
r∈[0,1]

1∑
s=0

∥∥∂s
r W

m,n
p,q

[
∂l
βw

](
r,K(m,n)

)∥∥
op �

‖∂l
βwp+m,q+n‖#

√
p!q! , (7.23)

which follows from (7.13) and (7.16). Using (7.19), (7.22), and (7.23) inequality (7.11) now
follows from the following observation. The right-hand side of (6.11) contains Lk terms. Each
term contains at most k factors involving a derivative. �
Proof of Theorem 7.8. First observe that by Lemma F.1(b)

[
(s, β) �→ χ2

ρ

]
∈ Cω,k

(
S × R, W #

0,0

)
. (7.24)
w0,0(s, β)
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It now follows from part (a) of the same lemma that the map (s, β) → vm,p,n,q [w(s,β)] is in

Cω,k(S × R; W #|m|,|n|). Using the estimate of Lemma 7.10 one can show the same way as in [16,

Theorem 8.1] that R#
ρ(w(s,β)) is given as a sum which is uniformly convergent on subsets

which constitute an open covering of R × S and that the sum is uniformly bounded. This is done
in Appendix F. �
Lemma 7.11. Let 0 < ρ � 1/4 and assume w ∈ B(k)(·, δ, ·), with δ � ρ/32. Then Iρ ∈ C

k,ω
B (R×

D1/2) and

sup
(β,z)∈R×D1/2

∣∣∂zIρ(β, z)
∣∣� 16ρ

15
. (7.25)

Moreover, there exists a finite constant Ck depending only on k, such that

max
1�s�k

sup
(β,z)∈R×D1/2

∣∣∂s
βIρ(β, z)

∣∣� Ckδ. (7.26)

Proof. The assumption w ∈ B(k)(·, δ, ·) implies that Eρ ∈ Ck,ω(R × D1/2). By this and in-
equality (7.3) it follows from the inverse function theorem that Iρ is in Ck,ω(R × D1/2). Let
(β, z) ∈ R × D1/2. From (7.4) we have

Eρ

(
β, Iρ(β, z)

)= z. (7.27)

Differentiating (7.27) with respect to z we find

∂zIρ(β, z) = − 1

∂2Eρ(β, Iρ(β, z))
,

where ∂i denotes the derivative with respect to the i-th argument (note that ∂1 is a real derivative
and ∂2 is a complex derivative). By this and (7.3) we obtain the bound (7.25). Now we show the
remaining bounds. Differentiating (7.27) with respect to β , we find

∂βIρ(β, z) = −∂1E(β, Iρ(β, z))

∂2E(β, Iρ(β, z))
, (7.28)

with E(β, z) = ρEρ(β, z). This and (7.3) show (7.26) for k = 1. To show (7.26) for k � 2 we
proceed by induction and use that the assumption w ∈ B(k)(·, δ, ·) implies∣∣∂s

1E(β, z)
∣∣� δ (7.29)

for all 1 � s � k. Suppose (7.26) holds for k = n. We then show that it holds for k = n + 1. We
differentiate (7.28) with respect to β . Using Leibniz we obtain

∂n+1
β Iρ(β, z) =

n∑(
n

p

)
ApBn−p,
p=0
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where

Ap := D
p
β ∂1E

(
β, Iρ(β, z)

)
,

Bp := D
p
β i
(
∂2E

(
β, Iρ(β, z)

))
,

with i(z) := −z−1. Now using (D.1), we find

Ap =
p∑

q=0

(
p

q

) ∑
X∈Pq

∂
1+p−q

1 ∂
|X|
2 E

(
β, Iρ(β, z)

) ∏
x∈X

∂
|x|
β Iρ(β, z).

Using (7.29), analyticity of Eρ in the second argument, and the induction hypothesis it follows
that |Ap| � Cδ for some finite constant, C, depending only on p. To this end we note that
derivatives ∂2 can be estimated using Cauchy’s formula and Ran Iρ ⊂ D17ρ/32, which follows
from Lemma 7.1. Using (D.1) we find that

Bp =
∑

X∈Pp

(−1)|X|+1|X|!(∂2E
(
β, Iρ(β, z)

))−|X|−1 ∏
x∈X

D
|x|
β ∂2E

(
β, Iρ(β, z)

)
.

By (7.3) and (7.29) we now see, similarly as for Ap , that |Bp| � C for some finite constant C

depending only on p. �
Proof of Theorem 7.9. By assumption it follows that Eρ ∈ Cω,k(S ×D1/2 × R). By the inverse
function theorem and (7.3) it follows that Iρ ∈ Cω,k(S × D1/2 × R). Moreover by Lemma 7.1

Ran Iρ ⊂ D17ρ/32. (7.30)

For ζ ∈ D17ρ/32 we have

∥∥w(s, ζ,β)
∥∥

Ck(R)
�
∥∥w(s, ζ,β) + ζ

∥∥
Ck(R)

+ ‖ζ‖Ck(R) � 5ρ

8
. (7.31)

Thus we can apply Theorem 7.8 for w|S×D17ρ/32×R and conclude that

(s, ζ,β) �→ R#
ρ

(
w(s, ζ,β)

)
is in Cω,k(S × D17ρ/32 × R; W #

ξ ). By (7.30) it follows from the chain rule that

(s, z,β) �→ Rρ

(
w(s,β)

)
(z) = R#

ρ

(
w(s, ζ,β)

)∣∣
ζ=Iρ(s,z,β)

is in Cω,k(S × D1/2 × R; W #
ξ ). �

Theorem 7.7, which is proven in Section 8, allows us to iterate the extended renormalization
transformation on the extended balls. Let us introduce the following hypothesis.
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(R(k)) Let ρ, ξ, ε0 be positive numbers such that the contraction property (7.10) holds and ρ �
1/4, ξ � 1/4 and ε0 � ρ/32.

Recall that by Theorem 7.7 and Theorem 7.6 there exists a nonempty set of parameters for
which Hypotheses (R) and (R(k)) are satisfied.

Theorem 7.12. Let k ∈ N0. Assume Hypotheses (R) and (R(k)). Then for ε0 > 0 and ρ > 0
sufficiently small there exist functions

e(0)[·] : B0(ε0/2, ε0/2, ε0/2) → D1/2,

ψ(0)[·] : B0(ε0/2, ε0/2, ε0/2) → F

such that the following hold.

(a) For all w ∈ B0(ε0/2, ε0/2, ε0/2),

dim ker
{
H
(
w
(
e(0)[w]))}� 1,

and ψ(∞)[w] is a nonzero element in the kernel of H(w(e(0,∞)[w])).
(b) If w is symmetric and −1/2 < z < e(0)[w], then H(w(z)) is bounded invertible.
(c) The function ψ(0)[·] is uniformly bounded with bound

sup
w∈B0(ε0/2,ε0/2,ε0/2)

∥∥ψ(0)[w]∥∥� 4e4.

If H(w(z)) = Hf − z, then ψ(0)[w] = Ω .

(d) Suppose w ∈ B(k)
0 (ε0/2, ε0/2, ε0/2). Then β → e(0)[w(β)] and β → ψ(0)[w(β)] are in

Ck
B(R) and Ck

B(R; F ), respectively.
(e) Let S be an open subset of C. Suppose we are given a mapping (s, z,β) �→ w(s, z,β) in

C
ω,k
B (S × D1/2 × R; W #

ξ ) such that for all s ∈ S we have w(s, ·, ·) ∈ B(k)
0 (ε0/2, ε0/2, ε0/2).

Then s �→ (β �→ e(0)[w(s)(β)]) and s �→ (β �→ ψ(0)[w(s)(β)]) are in Cω
B(S;Ck

B(R)) and
Cω

B(S;Ck
B(R; F )), respectively.

Assumption (R) allows us to iterate the renormalization transformation as follows,

B0

(
1

2
ε0,

1

2
ε0,

1

2
ε0

)
Rρ−→ B0

([
1

2
+ 1

4

]
ε0,

1

4
ε0,

1

4
ε0

)
Rρ−→ · · ·

Rρ−→ B0

(
n∑

l=1

1

2l
ε0,

1

2n
ε0,

1

2n
ε0

)
Rρ−→ · · · .

For w ∈ B0(ε0/2, ε0/2, ε0/2) and n ∈ N0, we define

w(n) := Rn
ρ(w) ∈ B0

(
ε0,

1
n
ε0,

1
n
ε0

)
.

2 2
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We introduce the definitions

En,ρ[w] := Eρ

[
w(n)

]= ρ−1E[w],
Un[w] := U

[
w(n)

] := {
z ∈ D1/2

∣∣ ∣∣E[
w(n)

]
(z)

∣∣< ρ/2
}
.

By Lemma 7.1 the map

Jn[w] := En,ρ[w] :Un[w] → D1/2, z �→ En,ρ[w](z)

is an analytic bijection and Jn[w]−1 :D1/2 → Un[w] ⊂ D1/2. For 0 � n � m we define

e(n,m)[w] := Jn[w]−1 ◦ · · · ◦ Jm[w]−1(0).

It has been shown in [2], see also [16], that the following limit exists

e(n,∞)[w] := lim
m→∞ e(n,m)[w]. (7.32)

We define the vectors in F , of

ψ(n,m)[w] = Qn[w]Γ ∗
ρ Qn+1[w]Γ ∗

ρ · · ·Qm−1Ω,

with

Qn[w] = χρ − χρ

(
Hn[w])−1

χρ
χρWn[w]χρ,

where

Hn[w] := H
(
w(n)

(
e(n,∞)[w])),

Tn[w] := w
(n)
0,0

(
e(n,∞)[w])(Hf ),

Wn[w] := Hn[w] − Tn[w].

It has been shown in [2], see also [16], that the following limit exists

ψ(n,∞)[w] := lim
m→∞ψ(n,m)[w] (7.33)

and that Hn[w]ψ(n,∞)[w] = 0. This implies part (a) of Theorem 7.12, with e(0)[w] = e(0,∞)[w]
and ψ(0)[w] = ψ(0,∞)[w]. Part (b) has been shown in [16]. Moreover, in [16], the bound
supw∈B0(ε0/2,ε0/2,ε0/2) ‖ψ(0)[w]‖ � 4e4 was shown. The second part of (c) is a direct conse-
quence of the definition of ψ(0). Now let us show (d). Assumption (R(k)) allows us to iterate the
renormalization transformation as follows,
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B(k)
0

(
1

2
ε0,

1

2
ε0,

1

2
ε0

)
Rρ−→ B(k)

0

([
1

2
+ 1

4

]
ε0,

1

4
ε0,

1

4
ε0

)
Rρ−→ · · ·

Rρ−→ B(k)
0

(
n∑

l=1

1

2l
ε0,

1

2n
ε0,

1

2n
ε0

)
Rρ−→ · · · .

We view w ∈ B(k)
0 ( 1

2ε0,
1
2ε0,

1
2ε0) as a function of β . Now e(n,m)[w(β)] and ψ(n,m)[w(β)] are

functions of β as well as their limits as m tends to infinity. First we show that e(n,m)[w(β)] →
e(n,∞)[w(β)] converges uniformly in Ck(R) for any n. This will then imply that e(n,∞) is in Ck .
We introduce for γ, δ > 0 the balls

E (γ, δ) :=
{
f ∈ Ck(R;C)

∣∣∣ ‖f ‖∞ < γ, max
1�l�k

∥∥∂l
1f

∥∥∞ < δ
}
.

Let w ∈ B(k)(·, ε, ·) with ε � ρ/32. We define a mapping K[w] on E (1/2, δ) by(
K[w](f )

)
(β) := Iρ

(
β,f (β)

)
.

From Lemma 7.1 it follows that K[w](E (1/2, δ)) ⊂ E (3/8,∞). Using Faa di Bruno’s formula
we find

Ds
βIρ

(
β,f (β)

)=
s∑

p=0

(
s

p

) ∑
X∈Pp

∂
s−p

1 ∂
|X|
2 Iρ

(
β,f (β)

) ∏
x∈X

∂
|x|
β f (β).

We use this to estimate the following difference

Ds
βIρ

(
β,f (β)

)− Ds
βIρ

(
β,g(β)

)
=
∑′

∂
s−p

1 ∂
|X|
2

[
Iρ

(
β,f (β)

)− Iρ

(
β,g(β)

)] ∏
x∈X

∂
|x|
β f (β)

+
∑′

∂
s−p

1 ∂
|X|
2 Iρ

(
β,g(β)

)[∏
x∈X

∂
|x|
β f (β) −

∏
x∈X

∂
|x|
β g(β)

]
, (7.34)

where we used the abbreviation
∑ ′ =∑s

p=0

(
s
p

)∑
X∈Pp

. To estimate (7.34) we use that

∣∣Iρ

(
β,f (β)

)− Iρ

(
β,g(β)

)∣∣� sup
z∈D1/2

∣∣∂2Iρ(β, z)
∣∣∣∣f (β) − g(β)

∣∣ (7.35)

and that for f,g ∈ E (1/2,1) we have∣∣∣∣ ∏
x∈X

∂
|x|
β g(β) −

∏
x∈X

∂
|x|
β f (β)

∣∣∣∣� C|X|‖f − g‖Ck(R), (7.36)

for some constant depending only on the number of elements of the partition X. On the other
hand by Lemma 7.11 there exists a constant C such that for all (β, z) ∈ R × D3/8, we have
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max
1�l′�k+1

∣∣∂l′
z Iρ(β, z)

∣∣� Cρ, max
1�l�k

max
0�l′�k+1

∣∣∂l
β∂l′

z Iρ(β, z)
∣∣� Cε, (7.37)

where we used the analyticity of Iρ in its second argument. Using (7.37)–(7.35) to estimate (7.34)
it follows that for ε and ρ sufficiently small we have

K[w](E (3/8,1)
)⊂ E (3/8,1),

∥∥K[w]f − K[w]g∥∥
Ck(R)

� 1

2
‖f − g‖Ck(R) (7.38)

for all f,g ∈ E (3/8,1). For the sequence of kernels w(l) ∈ B(k)
0 (·,2−lε0, ·) define Kl := K[w(l)].

By definition we have

e(n,m) = Kn ◦ Kn+1 ◦ · · · ◦ Km(0),

where 0 denotes the zero function. Thus if we choose ρ and ε0 sufficiently small, then it follows
from (7.38) that

‖e(n,m) − e(n,m+l)‖Ck(R) � 2−(m−n)−1,

and thus e(n,m) → e(n,∞) uniformly in Ck(R) as m → ∞ for any n. Since e(n,n) = 0 it follows
that

‖e(n,∞)‖Ck(R) � 2. (7.39)

Thus e(n,m)[w(β)] → e(n,∞)[w(β)] converges uniformly in Ck(R) for any n. Next we
show that the ground state eigenvector ψ(0,∞)[w(β)] is Ck in β . For notational compact-
ness we write ψ(n,m)(β) for ψ(n,m)[w(β)] and similarly e(n,m)(β) for e(n,m)[w(β)]. We set
W̃n(β, z) := W [w(n)(β, z)] with w(n)(β, z) = w(n)(β)(z). Observe that with this notation
Wn(β) := Wn[w(β)] = W̃n(β, e(0,∞)(β)). We use analogous definitions for Tn, Wn, and Qn.
Let (β, z) ∈ R × D1/2. We estimate the derivatives with respect to β of

ψ(n,m+1) − ψ(n,m) = QnΓ
∗
ρ Qn+1 · · ·Qm−1Γ

∗
ρ (Qm − χρ)Ω.

Let

An := (Tn + χρWnχρ)|Ranχρ .

Observe that ∥∥A−1
n

∥∥� 16/ρ. (7.40)

This can be seen using ‖Wn‖ � 2−n−1ε0 � ρ/16, see [2,16] for details. We have already proven
estimates of the form ∣∣∂l

βe(n,∞)

∣∣� cl

for n ∈ N0 which we will use without comment. We also have estimates of the form
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∥∥w(n)
�1

∥∥(k)

ξ
� ε0

2n
, (7.41)

∥∥w(n)
0,0

∥∥(k) � ε0

2n
+ 1

2
+ ε0 + 1 � 2ε0 + 3

2
. (7.42)

By the inequality given in Theorem 5.3 and the differentiability of the integral kernels it fol-
lows that Tn and Wn are differentiable functions of β (w.r.t. the operator norm topology) with
uniformly bounded derivatives, and hence also Qn and ψ(n,m). We have

Dl
β(Qn − χρ) = −

∑
l1+l2=l

l!
l1!l2!χρ

[
D

l1
β A−1

n

]
χρD

l2
β Wnχρ.

It is straightforward to verify that for all l � k,

∥∥Dl
βA−1

n

∥∥� C.

To see this we note that taking inverses is a differentiable mapping with respect to the operator
norm topology, the first k derivatives of Tn and Wn with respect to β are uniformly bounded,
and (7.40). Since

DβWn|β =
(

∂W̃n

∂β
+ ∂zW̃n∂βe(n,∞)

)∣∣∣∣
(β,e(n,∞)(β))

it is clear that if we can show that for l, l′ � k

∥∥∂l
β∂l′

z W̃n

(
β, e(n,∞)(β)

)∥∥� cl

2n
, (7.43)

it will follow that for l � k,

∥∥Dl
β(Qn − χρ)

∥∥� cl

2n
. (7.44)

The Cauchy integral formula gives

∂l
β∂l′

z W̃n(β, z) = l′!
2πi

∫
|ζ |=1/2−ε

∂l
βW̃n(β, ζ )

(ζ − z)l
′+1

dζ.

If |z| < 1/2 − ε. Since e(n,∞) ∈ D5ρ/8 we obtain from (7.41)

∥∥(∂l
β∂l′

z W̃n

)(
β, e(n,∞)(β)

)∥∥� (l′)!ε0

2n+1(1/2 − 5ρ/8)l
′+1

� c

2n
.

Thus we have shown (7.44). Using this inequality we find for l � k, with p = m − n + 1,
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∥∥Dl
β(ψ(n,m+1) − ψ(n,m))

∥∥
= ∥∥Ds

βQnΓ
∗
ρ Qn+1 · · ·Qm−1Γ

∗
ρ (Qm − χρ)Ω

∥∥
=

∑
l∈N

p
0 : |l|=l

l!
l!
(
D

l1
β Qn

)
Γ ∗

ρ · · · (Dlp−1
β Qm−1

)
Γ ∗

ρ

(
D

lp
β (Qm − χρ)

)
Ω

� (m − n + 1)l
m−1∏
j=n

(
1 + C

2j

)
C

2m
� (m + 1)lC2−m exp

(
C

∞∑
j=1

2−j

)
. (7.45)

This implies that ψ(n,m)[w(β)] → ψ(n,∞)[w(β)] converges uniformly in Ck(R) for any n. Since
ψ(n,n) = Ω , it follows that

‖ψ(n,∞)‖Ck(R) � 1 + Ce2C
∞∑

m=0

(m + 1)k2−m. (7.46)

Now (d) follows.
To show (e) first observe by Theorem 7.9 (s, z,β) �→ w(n)(s, z,β) = Rn

ρ(w(s,β))(z) is in

C
ω,k
B (S × D1/2 × R; W #

ξ ). It follows by (7.3) that J−1
n ∈ C

ω,k
B (S × D1/2 × R). Thus e(n,m) ∈

C
ω,k
B (S × R) ∼= Cω

B(S;Ck
B(R)). It follows from the uniform convergence established in (d) that

e(n,∞) ∈ Cω
B(S;Ck

B(R)). It now follows from the bound in Theorem 5.3 and the chain rule that

Hn[w],Wn[w] are in C
ω,k
B (S × R; B(Hred)). Since Hn[w] is bounded invertible on the range

of χρ it follows from the bound (7.40) that Qn[w] ∈ C
ω,k
B (S × R; B(Hred)). Thus ψ(n,m) ∈

C
ω,k
B (S × R; Hred) ∼= Cω

B(S;Ck(R; Hred)). By the uniform convergence established in (7.45) it
follows that ψ(n,∞) ∈ Cω

B(S;Ck
B(R; Hred)).

8. Contraction estimate

In this section we prove Theorem 7.7. By Lemma 7.10 we know that there exists a constant Cθ

which is greater than 1 such that for w ∈ B(#,k)(ρ/32,5ρ/8, ρ/32). We have

max
0�l�k

∥∥∂l
βvm,p,n,q

[
w(β)

]∥∥# � Cθ

(
16

ρ

)L−1 L∏
l=1

max0�l′�k ‖∂l′
β wml+pl,nl+ql

(β)‖#

√
pl !ql ! . (8.1)

The crucial point of Eq. (8.1) is that ρ−1 occurs to a power of at most L − 1. This allows us
to prove Theorem 7.7 using similar estimates as in the proof of [16, Theorem 9.1] or [2, Theo-
rem 3.8]. There is an additional complication due to the β dependence of the reparameterization
of the spectral parameter. We introduce the constant Dk =∑k

l=0

(
k
l

)∑
X∈Pl

1.

Let 0 < ρ � (k!16CθDkC
k
k )−1, 0 < ξ � min(1/2, (Cθ

64 τCk
kDk)

−1/4), and 0 < ε0 � min(
ρ
32 ,

1
Dk8k+1k!Ck

k

).

We assume that w ∈ B(k)(ε, δ1, δ2) with ε, δ1, δ2 ∈ [0, ε0). Then the following estimates hold.
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Step 1. We have

∥∥Rρ(w)�2
∥∥(k)

ξ
� 1

2
‖w�2‖(k)

ξ .

By definition (Rρw)(β, z) = R#
ρ(w(β, Iρ(β, z))). Taking the derivative with respect to β we

obtain

Dl
β(Rρw)(β, z) = ∂l

β R#
ρ

(
w(β, ζ )

)∣∣
ζ=Iρ(β,z)

+
l∑

p=1

(
l

p

) ∑
X∈Pp

∂
l−p
β ∂

|X|
ζ R#

ρ

(
w(β, ζ )

) ∏
x∈X

∂
|x|
β Iρ(β, z)|ζ=Iρ(β,z). (8.2)

Let us first estimate the first term on the right-hand side. To this end let u ∈ D19ρ/32. Then
w(β,u) ∈ B(#,k)(ρ/32,5ρ/8, ρ/32) as the following estimate shows∥∥w0,0(·, u)

∥∥
Ck(R)

�
∥∥w0,0(·, u) + u

∥∥
Ck(R)

+ |u| � 5ρ/8.

By (7.5) we find for M + N � 2,∥∥∂l
β R#

ρ

(
w(β,u)

)
M,N

∥∥#

�
∞∑

L=1

∑
(m,p,n,q)∈N

4L
0 :

|m|=M,|n|=N,ml+pl+nl+ql�1

ρ|m|+|n|−1

×
L∏

l=1

(
ml + pl

pl

)(
nl + ql

ql

)∥∥∂l
βvm,p,n,q

[
w(β,u)

]∥∥#
.

Inserting this below and using (8.1), we find with τ := 16/ρ,∥∥∂l
β R#

ρ

(
w(β,u)

)
�2

∥∥#
ξ

=
∑

M+N�2

ξ−(M+N) max
0�l�k

∥∥∂l
β R#

ρ

(
w(β,u)

)
M,N

∥∥#

�
∞∑

L=1

∑
(m,p,n,q)∈N

4L
0 :

|m|+|n|�2,ml+pl+nl+ql�1

ρ−1(2ρ)|m|+|n|(2ξ)−(|m|+|n|)Cθτ
L−1

×
L∏

l=1

{(
ml + pl

pl

)(
nl + ql

ql

)max0�l′�k ‖∂l′
β wml+pl,nl+ql

(β,u)‖#

√
pl !ql !

}

� Cθ

16
[2ρ]2

∞∑
L=1

τL
∑

(m,p,n,q)∈N
4L
0 :
ml+pl+nl+ql�1
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×
L∏

l=1

{(
ml + pl

pl

)(
nl + ql

ql

)
ξpl+ql 2−(ml+nl)ξ−(ml+pl+nl+ql)

× max
0�l′�k

∥∥∂l′
β wml+pl,nl+ql

(β,u)
∥∥#
}

� Cθ

4
ρ2

∞∑
L=1

τL

[ ∑
m+p+n+q�1

(
m + p

p

)(
n + q

q

)
ξp+q2−(m+n)ξ−(m+p+n+q)

× max
0�l�k

∥∥∂l
βwm+p,n+q(β,u)

∥∥#
]L

� Cθ

4
ρ2

∞∑
L=1

τL

[ ∑
l+k�1

ξ−(l+k) max
0�l′�k

∥∥∂l′
β wl,k(β,u)

∥∥#
]L

� Cθ

4
ρ2

∞∑
L=1

τL
(‖w�2‖(k)

ξ

)L
� 8Cθρ‖w�2‖(k)

ξ , (8.3)

where in the third last inequality we used the binomial formula and 0 < ξ � 1/2 and we used
τ‖w�2‖(k)

ξ � 1/2 in the last inequality. Now we estimate the terms involving derivatives with
respect to ζ . By Cauchy we have for ζ ∈ U [w] ⊂ D17ρ/32

∂l
β∂s

ζ R#
ρ

(
w(β, ζ )

)= s!
2πi

∫
|μ|=18ρ/32

∂l
β R#

ρ(w(β,μ))

(μ − ζ )s+1
dμ.

Using this and (8.3), we obtain the bound

∥∥∂s
ζ

(
R#

ρw
)
�2

∥∥(k)

ξ
�
(

32

ρ

)s

s!8Cθρ‖w�2‖(k)
ξ .

Now by Lemma 7.11 we know that for 1 � l � k there exists a finite constant Ck such that

sup
(β,z)∈R×D1/2

∣∣∂l
βIρ(β, z)

∣∣� Ck

ρ

32
.

This and (8.2) imply that the ρ’s cancel out. Collecting the above estimates we arrive at the bound

∥∥(Rρw)�2
∥∥(k)

ξ
� k!8CθρDkC

k
k‖w�2‖(k)

ξ .
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Step 2.

sup
z∈D1/2

∥∥∂r (Rρw)0,0(z) − 1
∥∥

Ck(R;CB [0,1])

� sup
z∈D1/2

∥∥∂rw0,0(z) − 1
∥∥

Ck(R;CB [0,1]) + 1

4
sup

z∈D1/2

∥∥w0,0(0, z) + z
∥∥

Ck(R)
+ 1

4
‖w�1‖(k)

ξ .

By (7.6) we have

∂r

(
Rρw(β)

)
0,0(z, r) − 1 = (∂rw0,0)

(
β, Iρ(β, z), ρr

)− 1 + ∂rT
[
w
(
β, Iρ(β, z)

)]
(r), (8.4)

where we defined

T [w] := ρ−1(−1)L−1
∞∑

L=2

∑
(p,q)∈N

2L
0 :

pl+ql�1

v0,p,0,q [w].

We need to estimate the derivative with respect to β . For the first term in (8.4) we find for
1 � l � k, using (D.1)

Dl
β(∂rw0,0)

(
β, Iρ(β, z), ρr

)
= ∂l

β(∂rw0,0)
(
β, Iρ(β, z), ρr

)
+

l∑
p=1

(
l

p

) ∑
X∈Pp

∂
l−p
β ∂

|X|
ζ (∂rw0,0)(β, ζ, ρr)|ζ=Iρ(β,z)

∏
x∈X

∂
|x|
β Iρ(β, z). (8.5)

We use analyticity, Cauchy, and that ζ = Iρ(β, z) ∈ D3/8 to estimate the derivatives with respect
to the spectral parameter. We have

∂s
ζ

(
(∂rw0,0)(β, ζ, ρr) − 1

)= lim
η↓0

s!
2πi

∫
|μ|=1/2−η

(∂rw0,0)(β,μ,ρr) − 1

(μ − ζ )s+1
dμ.

This yields for 1 � l � k or 0 � l � k and 1 � s,∣∣∂l
β∂s

ζ (∂rw0,0)(β, ζ, ρr)
∣∣� 8ss!a, ∀ζ ∈ D3/8, (8.6)

where a := ‖∂rw0,0 − 1‖Ck(R;CB [0,1]). Using estimate (8.6) and the estimate of Lemma 7.11 to
bound the last line of (8.5) we find

sup
0�l�k

∣∣Dl
β

(
(∂rw0,0)

(
β, Iρ(β, z), ρr

)− 1
)∣∣

� ‖∂rw0,0 − 1‖Ck(R;CB [0,1]) + Dk8kk!Ck
k a
∥∥w0,0(0, z) + z

∥∥
Ck(R)

. (8.7)

The second term in (8.4) is estimated as follows. For u ∈ D19ρ/32 and 0 � l � k we estimate
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∣∣∂l
β∂rT

[
w(β,u)

]
(r)

∣∣� ρ−1
∞∑

L=2

Cθτ
L−1

∑
(p,q)∈N

2L
0 :

pl+ql�2

L∏
l=1

max0�l′�k ‖∂l′
β wpl,ql

(β,u)‖#

√
pl !ql !

� Cθ

16

∞∑
L=2

[
τξ2]L[ ∑

p+q�2

ξ−(p+q) max
0�l′�l

∥∥∂l′
β wp,q(β,u)

∥∥#
]L

� Cθ

16
ξ4

∞∑
L=2

[
τ‖w�2‖(k)

ξ

]L
� Cθ

16
ξ4τ‖w�2‖(k)

ξ (8.8)

where in the last estimate we used τ‖w�1‖(k)
ξ � 1/2. Now using a contour estimate as in Step 1

one can show that

∥∥Dl
β∂rT

[
w
(
β, Iρ(β, z)

)]∥∥
C[0,1] � k!Cθ

16
ξ4τCk

kDk‖w�2‖(k)
ξ . (8.9)

Now estimates (8.7) and (8.9) yield Step 2.

Step 3.

sup
z∈D1/2

∥∥(Rρw)0,0(z,0) + z
∥∥

Ck(R)
� 1

4
‖w�1‖(k)

ξ .

By (7.6) we have

(
Rρw(β)

)
0,0(z,0) + z = T

[
w
(
β, Iρ(β, z)

)]
(0).

We estimate for u ∈ D19ρ/32 and 0 � l � k the same way as (8.8)

∣∣∂l
βT

[
w(β,u)

]
(0)

∣∣� Cθ

16
ξ4τ‖w�1‖(k)

ξ .

As above one calculates the derivative with respect to β and estimates the derivatives with respect
to the spectral parameter using a contour integral as in Step 1. As a result

sup
z∈D1/2

∥∥(Rρw)0,0(z,0) + z
∥∥

Ck(R)
� k!Cθ

16
ξ4τCk

kDk‖w�2‖(k)
ξ .

Step 3 now follows.
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9. Main theorem

In this section, we prove Theorem 2.1, the main result of this paper. Its proof is based on
Theorems 6.1 and 7.12.

Proof of Theorem 2.1. Choose ρ, ξ, ε0 such that the assertions of Theorem 7.12 hold. Choose
g0 such that the conclusions of Theorem 6.1 hold for δ1 = δ2 = δ3 = ε0/2. Let g ∈ Dg0 .
It follows from Theorem 7.12(a) that ψ(0)[w(0)(g,β)] is a nonzero element in the kernel of

H
(0)
g,β(e(0)[w(0)(g,β)]). From the Feshbach property, Theorem B.2, it follows that

ψβ(g) := Qχ(I)

(
g,β, e(0)

[
w(0)(g,β)

])
ψ(0)

[
w(0)(g,β)

]
(9.1)

is nonzero and an eigenvector of Hg,β with eigenvalue Eβ(g) := Eat + e(0)[w(0)(g,β)].
By Theorem 6.1, we know that g �→ w(0)(g, ·, ·) is an analytic W (k)

ξ -valued function,

with values in the ball B(k)(ε0/2, ε0/2, ε0/2). By Theorem 7.12(d) it follows that the func-
tions g �→ ψ(0)[w(0)(g, ·)] and g �→ E(·)(g) are in Cω

B(Dg0;Ck
B(R; F )) and Cω

B(Dg0;Ck
B(R)),

respectively. From Theorem 6.1 we know that the function (g, z) �→ Qχ(I) (g, ·, z) is in

Cω
B(Dg0 × D1/2;Ck

B(R; B(Hred; H))). It now follows from (9.1) that g �→ ψ(·)(g) is in
Cω

B(Dg0;Ck
B(R; H)). By possibly restricting to a smaller ball than Dg0 we can ensure that the

projection operator

Pβ(g) := |ψβ(g)〉〈ψβ(g)|
〈ψβ(g),ψβ(g)〉 (9.2)

is well defined for all (g,β) ∈ Dg0 ×R, which is shown as follows. First observe that the denom-
inator of (9.2) is for each β an analytic complex-valued function of g. By Theorem 7.12(c) we
have 〈ψβ(0),ψβ(0)〉 = 1. If we estimate the remainder of the Taylor expansion of the denomina-
tor of (9.2) using analyticity and the uniform bound on ψ(·), it follows, by possibly choosing g0
smaller but still positive, that there exists a positive constant c0 such that |〈ψβ(g),ψβ(g)〉| � c0
for all |g| � g0. Using already established properties of ψβ(g), it follows from (9.2) that
g �→ P(·)(g) is in Cω

B(Dg0;Ck
B(R; B(H))). If g ∈ Dg0 ∩ R, then by definition (9.2) we see that

Pβ(g)∗ = Pβ(g). The kernel w(0)(g,β) is symmetric for g ∈ Dg0 ∩ R, see Theorem 6.1. Exactly
the same way as in the proof of [17, Theorem 2.1] one can show that Eβ(g) = infσ(Hg,β) for
real g ∈ Dg0 ∩ R. �
Proof of Corollary 2.4. We use Cauchy’s formula. For any positive r which is less than g0, we
have

E
(n)
β = 1

2πi

∫
|z|=r

Eβ(z)

zn+1
dz, ψ

(n)
β = 1

2πi

∫
|z|=r

ψβ(z)

zn+1
dz,

P
(n)
β = 1

2πi

∫
Pβ(z)

zn+1
dz. (9.3)
|z|=r
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The first equation of (9.3) implies that β �→ E
(n)
β is in Ck

B(R) and that ‖E(n)
(·) ‖Ck(R) �

r−n‖E(·)‖Cω
B(Dg0 ;Ck

B(R)). Similarly we conclude by (9.3) that ψ
(n)
β and P

(n)
β are as func-

tions of β in Ck
B(R; H) and Ck

B(R; B(H)), respectively, and that there exists a finite con-

stant C such that ‖ψ(n)
(·) ‖Ck(R;H) � Cr−n and ‖P (n)

(·) ‖Ck(R;B(H)) � Cr−n. Finally observe that

(−1)NHg,β(−1)N = H−g,β where N is the linear operator on F with N � F (n)(h) = n. This
implies that the ground state energy Eβ(g) cannot depend on odd powers of g. �
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Appendix A. Elementary estimates and the pull-through formula

To give a precise meaning to expressions which occur in (5.2) and (6.5), we introduce the
following. For ψ ∈ F having finitely many particles we have

[
a(K1) · · ·a(Km)ψ

]
n
(Km+1, . . . ,Km+n) =

√
(m + n)!

n! ψm+n(K1, . . . ,Km+n), (A.1)

for all K1, . . . ,Km+n ∈ R
3 := R

3 × Z2, and using Fubini’s theorem it is elementary to see that
the vector-valued map (K1, . . . ,Km) �→ a(K1) · · ·a(Km)ψ is an element of L2((R3)m; F ). The
following lemma states the well-known pull-through formula. For a proof see for example [5,16].

Lemma A.1. Let f : R+ → C be a bounded measurable function. Then for all K ∈ R
3 × Z2

f (Hf )a∗(K) = a∗(K)f
(
Hf + ω(K)

)
, a(K)f (Hf ) = f

(
Hf + ω(K)

)
a(K).

Let wm,n be function on R+ × (R3)
n+m

with values in the linear operators of Hat or the
complex numbers. To such a function we associate the quadratic form

qwm,n(ϕ,ψ) :=
∫

(R3)
m+n

dK(m,n)

|K(m,n)|1/2

〈
a
(
K(m)

)
ϕ,wm,n

(
Hf ,K(m,n)

)
a
(
K̃(n)

)
ψ
〉
,

defined for all ϕ and ψ in H respectively F , for which the right-hand side is defined as a complex
number. To associate an operator to the quadratic form we will use the following lemma.

Lemma A.2. Let X = R
3 × Z2. Then

∣∣qwm,n(ϕ,ψ)
∣∣� ‖wm,n‖�‖ϕ‖‖ψ‖, (A.2)
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where

‖wm,n‖2
� :=

∫
Xm+n

dK(m,n)

|K(m,n)|2 sup
r�0

[∥∥wm,n

(
r,K(m,n)

)∥∥2
m∏

l=1

{
r + �

[
K(l)

]} n∏
l̃=1

{
r + �

[
K̃(̃l)

]}]
.

Proof. We set P [K(n)] :=∏n
l=1(Hf + �[Kl])1/2 and insert 1’s to obtain the trivial identity

∣∣qwm,n(ϕ,ψ)
∣∣= ∣∣∣∣ ∫

Xm+n

dK(m,n)

|K(m,n)|
〈
P
[
K(m)

]
P
[
K(m)

]−1∣∣K(m)
∣∣1/2

a
(
K(m)

)
ϕ,wm,n

(
Hf ,K(m,n)

)

× P
[
K̃(n)

]
P
[
K̃(n)

]−1∣∣K̃(n)
∣∣1/2

a
(
K̃(n)

)
ψ
〉∣∣∣∣.

The lemma now follows using the Cauchy–Schwarz inequality and the following well-known
identity for n � 1 and φ ∈ F ,

∫
Xn

dK(n)
∣∣K(n)

∣∣∥∥∥∥∥
n∏

l=1

[
Hf + �

[
K(l)

]]−1/2
a
(
K(n)

)
φ

∥∥∥∥∥
2

= ∥∥P ⊥
Ω φ

∥∥2
, (A.3)

where P ⊥
Ω := |Ω〉〈Ω|. A proof of (A.3) can for example be found in [16, Appendix A]. �

Provided the form qwm,n is densely defined and ‖wm,n‖� is a finite real number, then the form
qwm,n determines uniquely a bounded linear operator Hm,n(wm,n) such that

qwm,n(ϕ,ψ) = 〈
ϕ,Hm,n(wm,n)ψ

〉
,

for all ϕ,ψ in the form domain of qwm,n . Moreover, ‖Hm,n(wm,n)‖ � ‖wm,n‖�. Using the pull-
through formula and Lemma A.2 it is easy to see that for w(I), defined in (6.6), with m+n = 1,2,
the form

q(I)
m,n(ϕ,ψ) := q

w
(I)
m,n

(
ϕ, (Hf + 1)−

1
2 (m+n)(−� + 1)−

1
2 δ1,m+nψ

)
is densely defined and bounded. Thus we can associate a bounded linear operator L

(I)
m,n such that

q
(I)
m,n(ϕ,ψ) = 〈ϕ,L

(I)
m,nψ〉. This allows us to define

Hm,n

(
w(I)

m,n

) := L(I)
m,n(Hf + 1)

1
2 (m+n)(−� + 1)

1
2 δ1,m+n

as an operator in H.

Appendix B. Smooth Feshbach property

In this appendix we follow [2,9]. We introduce the Feshbach map and its auxiliary operator
and state basic isospectrality properties. Let χ and χ be commuting, nonzero bounded operators,
acting on a separable Hilbert space H and satisfying χ2 +χ2 = 1. A Feshbach pair (H,T ) for χ
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is a pair of closed operators with the same domain,

H,T :D(H) = D(T ) ⊂ H → H

such that H,T ,W := H − T , and the operators

Wχ := χWχ, Wχ := χWχ,

Hχ := T + Wχ, Hχ := T + Wχ,

defined on D(T ) satisfy the following assumptions:

(a) χT ⊂ T χ and χT ⊂ T χ ,
(b) T ,Hχ :D(T ) ∩ Ranχ → Ranχ are bijections with bounded inverse,
(c) χH−1

χ χWχ :D(T ) ⊂ H → H is a bounded operator.

Remark B.1. By abuse of notation we write H−1
χ χ for (Hχ � Ranχ)−1χ and likewise T −1χ for

(T � Ranχ)−1χ .

We call an operator A : D(A) ⊂ H → H bounded invertible in a subspace V ⊂ H (V not
necessarily closed), if A :D(A) ∩ V → V is a bijection with bounded inverse. Given a Feshbach
pair (H,T ) for χ , the operator

Fχ(H,T ) := Hχ − χWχH−1
χ χWχ (B.1)

on D(T ) is called the Feshbach map of H . The auxiliary operator

Qχ := Qχ(H,T ) := χ − χH−1
χ χWχ (B.2)

is by conditions (a), (c) bounded, and Qχ leaves D(T ) invariant. The Feshbach map is isospectral
in the sense of the following theorem.

Theorem B.2. Let (H,T ) be a Feshbach pair for χ on a Hilbert space H. Then the following
holds. χ kerH ⊂ kerFχ(H,T ) and Qχ kerFχ(H,T ) ⊂ kerH . The mappings

χ : kerH → kerFχ(H,T ), Qχ : kerFχ(H,T ) → kerH

are linear isomorphisms and inverse to each other.

The proof of Theorem B.2 can be found in [2,9]. The next lemma gives sufficient conditions
for two operators to be a Feshbach pair. It follows from a Neumann expansion [9].

Lemma B.3. Conditions (a), (b), and (c) on Feshbach pairs are satisfied if:

(a′) χT ⊂ T χ and χT ⊂ T χ ,
(b′) T is bounded invertible in Ranχ ,
(c′) ‖T −1χWχ‖ < 1, ‖χWT −1χ‖ < 1, and T −1χWχ is a bounded operator.
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Appendix C. Function spaces

Let (X,‖ · ‖X) and (Y,‖ · ‖Y ) be Banach spaces. By B(X,Y ) we denote the Banach space of
bounded linear operators from X to Y . We set B(X) := B(X,X). Let (M,μ) be a measure space.
We say that a function f :M → X is measurable if there exists a sequence (fj )j∈N0 of simple
functions from M to X, such that ‖fj (m) − f (m)‖X → 0 as j → ∞, for a.e. m ∈ M . We define
L∞(M;X) to be the Banach space of measurable functions from M to X with norm

‖f ‖L∞(M;X) := ess sup
m∈M

∥∥f (m)
∥∥

X
.

Let [a, b] be a closed interval of R. For p ∈ N0 we define the space Cp[a, b] to be the space of
functions f : (a, b) → C such that for all q = 0, . . . , p the partial derivatives ∂

q

1 f exist and are
uniformly continuous on bounded subsets of (a, b). We define the norm

‖f ‖Cp[a,b] := max
0�q�p

sup
r∈(a,b)

∣∣∂q
r f (r)

∣∣. (C.1)

By C
p
B [a, b] we denote the Banach space with norm ‖ · ‖Cp[a,b] which consists of elements in

Cp[a, b] for which the norm ‖ · ‖Cp[a,b] is finite. We denote by Ck(R;X) the space of strongly
(w.r.t. the norm in X) k-times continuously differentiable functions. The norm is given by

‖f ‖Ck(R;X) := max
0�s�k

sup
x∈R

∥∥∂s
xf (x)

∥∥
X
.

Let Ck
B(R;X) denote the set of functions f in Ck(R;X) for which the norm ‖f ‖Ck(R;X) is

finite. Let U ⊂ C
n be a domain. We define the space Cω(U ;X) to consist of all strongly analytic

functions f :U → X. We define the norm

‖f ‖Cω(U ;X) := sup
z∈U

∥∥f (z)
∥∥

X
.

By Cω
B(U ;X) we denote the Banach space with norm ‖ · ‖Cω(U ;X) which consists of elements

in Cω(U ;X) for which the norm ‖ · ‖Cω(U ;X) is finite. We define the space Cω,k(U × R;X) to
consist of all functions f :U ×R → X such that all partial derivatives ∂l

x∂
t
zi
f , with l ∈ N0, l � k,

i = 1, . . . , n, and t = 0,1, exist and are continuous. We define the norm

‖f ‖Cω,k(U×R;X) := sup
z∈U

max
0�l�k

sup
x∈R

∥∥∂l
xf (z, x)

∥∥
X
.

By C
ω,k
B (U × R;X) we denote the Banach space with norm ‖ · ‖Cω(U×R;X) which consists of

elements in Cω(U × R;X) for which the norm ‖ · ‖Cω(U ;X) is finite. In the case where X = C

we will drop the X dependence in the notation. We introduce the polydiscs Dr =∏n
i=1 Dri with

r ∈ (0,∞)n.

Lemma C.1. We have the canonical isomorphism of Banach spaces

C
ω,k
B (Dr × R;X) ∼= Cω

B

(
Dr ;Ck

B(R;X)
)
. (C.2)
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Proof. Let f ∈ C
ω,k
B (Dr × R;X). Then for every x ∈ R the function z �→ f (z, x) is analytic

on Dr and bounded. Thus for ε > 0 sufficiently small

f (z, x) =
∑
n

cn(x)zn

with

cn(x) = 1

(2πi)n

∫
Dr−ε

f (ζ, x)

ζ n+1

n∏
j=1

dζj ,

where the integral is a strong Riemann integral in X and we used the notation 1 = (1, . . . ,1) and
ε = ε1. It follows that ‖cn‖Ck(R;X) �

∏n
j=1 r

−nj

j ‖f ‖Cω,k(Dr×R;X). This implies that the function

f̂ : z �→ f (z, ·) is in Cω
B(Dr ;Ck

B(R;X)). Moreover,

sup
z∈Dr

∥∥f̂ (z)
∥∥

Ck
B(R;X)

= sup
z∈Dr

max
0�l�k

sup
x∈R

∥∥∂l
xf (z, x)

∥∥
X

= ‖f ‖Cω,k(Dr×R;X).

Now suppose g ∈ Cω
B(Dr ;Ck

B(R;X)). Then

g(z) =
∑
n

anz
n

with

an = 1

(2πi)n

∫
Dr−ε

g(ζ )

ζ n+1

n∏
j=1

dζj ,

where the integral is a strong Riemann integral in Ck
B(R;X). It follows that

‖an‖Ck(R;X) �
n∏

j=1

r
−nj

j ‖g‖Cω(Dr ;Ck
B(R;X)). (C.3)

We define

g̃(x, z) :=
∑
n

an(x)zn.

It follows from (C.3) that g̃ ∈ C
ω,k
B (Dr × R;X). Moreover,

‖g̃‖Cω,k(Dr×R;X) = sup
z∈Dr

max
0�l�k

sup
x∈R

∥∥∂l
x g̃(z, x)

∥∥
X

= sup
z∈Dr

∥∥g(z)
∥∥

Ck(R;X)
. �
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Appendix D. Faa di Bruno’s formula

Let Pn denote the set of all partitions of {1, . . . , n}. Then

(f ◦ g)(n) =
∑

X∈Pn

f (|X|) ◦ g ·
∏
x∈X

g(|x|), (D.1)

where |X| and |x| stand for the cardinality of the sets X and x, respectively.

Appendix E. Uniform convergence

Let (s0, β0) ∈ S × R. Then for every ε > 0 there is an open set U ⊂ S × R containing (s0, β0)

such that

sup
(β,s)∈U

max
0�l�k

∥∥∂l
βw(β, s) − ∂l

βw(s0, β0)
∥∥#

ξ
< ε.

This implies

sup
(β,s)∈U

max
0�l�k

∥∥∂l
βw(β, s)m,n

∥∥# � max
0�l�k

∥∥∂l
βw(s0, β0)m,n

∥∥# + ξm+nε =: Em,n.

By Lemma 7.10,

sup
(β,s)∈U

max
0�l�k

∥∥∂l
βvm,p,n,q

[
w(β, s)

]∥∥# � CLt−L+1
L∏

l=1

Eml+pl,nlql√
pl !ql ! , (E.1)

where we used the notation introduced in that lemma. We estimate

∑
M+N�0

∞∑
L=1

∑
(m,p,n,q)∈N

4L
0|m|=M,|n|=N

ml+pl+nl+ql�1

ξ−|m|−|n|ρ|m|+|n|

×
L∏

l=1

{(
ml + pl

pl

)(
nl + ql

ql

)}
sup

(β,s)∈U

max
0�l�k

∥∥∂l
βvm,p,n,q

[
w(β, s)

]∥∥#

�
∞∑

L=1

CLt1−LGL, (E.2)

where we used Eq. (E.1) and the definition

G :=
∑

m+p+n+q�1

(
m + p

p

)(
n + q

q

)
ξp+q(1/2)m+nξ−m−p−n−q Em+p,n+q√

p!q! .

Below we will show that
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G �
∥∥w(s0, ·)�1

∥∥(k,#)

ξ
+ ε16e4. (E.3)

Since t−1G < 1 for ε sufficiently small inequality (E.3) implies the convergence of (E.2), for
small ε. To show (E.3), we will use the following estimate

∑
m+p�0

(
m + p

p

)
ξp(1/2)m

1√
p! �

∑
m+p�0

(
m + p

p

)
(1/4)p(1/2)me8ξ2 = 4e8ξ2 � 4e2, (E.4)

where in the first inequality we used the trivial estimate (16ξ2)p/p! � e16ξ2
. Now (E.3) is seen

by inserting the definition of Em,n into the definition of G. This yields two terms, which one has
to estimate. The second term, involving ε, is estimated using (E.4), and the first term, involving
wm,n(s0, β0), is estimated using the binomial formula, i.e.,

∑
m+p+n+q�1

(
m + p

p

)(
n + q

q

)
ξp+q(1/2)m+nξ−m−p−n−q max

0�l�k

∥∥∂l
βw(β0, s0)m+p,n+q

∥∥
=

∑
i+j�1

(ξ + 1/2)i(ξ + 1/2)j ξ−i−j max
0�l�k

∥∥∂l
βw(β0, s0)i,j

∥∥.
Appendix F. Differentiability

Lemma F.1.

(a) The mapping

ṽm,p,n,q [·] :
(

W #
ξ

)L × (
W #

0,0

)L+1 → W #|m|,|n|
(w1, . . . ,wL,G0, . . . ,GL) �→ ṽm,p,n,q [w1, . . . ,wL,G0, . . . ,GL]

defined by

ṽm,p,n,q [w1, . . . ,wL,G0, . . . ,GL](r,K(|m|,|n|))
:=

〈
Ω,G0

(
Hf + ρ(r + r̃0)

)
×

L∏
l=1

{
Wml,nl

pl ,ql
[wl]

(
ρ(r + rl), ρK

(ml,nl)
l

)
Gl

(
Hf + ρ(r + r̃l )

)}
Ω

〉

is continuous and multilinear.
(b) The following mapping is in C∞.{

t ∈ W #
0,0

∣∣∣ inf
r∈[ρ 3

4 ,1]
∣∣t (r)∣∣> ε

}
→ W #

0,0

t �→ χ2
ρ

t
.
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Proof. (a) Using (7.12) we find

ess sup
K(|m|,|n|)

sup
r∈[0,1]

∣∣̃vm,p,n,q [w1, . . . ,wL,G0, . . . ,GL](r,K(|m|,|n|))∣∣
�

L∏
l=1

ess sup
K(ml ,nl )

sup
r∈[0,1]

∥∥Wm,n
p,q [w](r,K(ml,nl)

)∥∥
op,

L∏
l=0

‖Gl‖C[0,1].

To estimate the right-hand side we use

ess sup
K(m,n)

sup
r∈[0,1]

∥∥Wm,n
p,q [w](r,K(m,n)

)∥∥
op �

‖wp+m,q+n,‖L∞(Bm+n
1 ;C[0,1])√

p!q! . (F.1)

Inequality (F.1) can be shown using Lemma A.2 and (5.6). Next we calculate the derivative
with respect to r . To this end first observe that using Lemma A.2 and dominated convergence
one can show that for a.e. K(m,n) the partial derivative ∂rW

m,n
p,q [w](r,K(m,n)) exists and equals

W
m,n
p,q [∂rw](r,K(m,n)). Using Leibniz we obtain

∂r ṽm,p,n,q [w1, . . . ,wL,G0, . . . ,GL](r,K(|m|,|n|))
= ρ

2L+1∑
j=1

ṽm,p,n,q

[
∂

δ1,j
r w1, . . . , ∂

δL,j
r wL, ∂

δL+1,j
r G0, . . . , ∂

δ2L+1,j
r GL

](
r,K(|m|,|n|)).

Using again (7.12) and (F.1) to estimate this we find

∥∥ṽm,p,n,q [w1, . . . ,wL,G0, . . . ,GL]∥∥# �
L∏

l=1

‖wl‖#
ξ

L∏
l=0

‖Gl‖#.

This yields (a).
(b) It is straightforward to verify that the mapping t �→ χ2

ρ/t is differentiable with derivative
−χ2

ρ/t2, see [16, Lemma 8.6(b)]. Using the product rule one can now show iteratively that the
function is in C∞. �
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