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Abstract

A weighted graph is one in which every edge e is assigned a nonnegative number w(e), called the weight of e. The weight of
a cycle is defined as the sum of the weights of its edges. The weighted degree of a vertex is the sum of the weights of the edges
incident with it. In this paper, we prove that: Let G be a k-connected weighted graph with k �2. Then G contains either a Hamilton
cycle or a cycle of weight at least 2m/(k + 1), if G satisfies the following conditions: (1) The weighted degree sum of any k + 1
pairwise nonadjacent vertices is at least m; (2) In each induced claw and each induced modified claw of G, all edges have the same
weight. This generalizes an early result of Enomoto et al. on the existence of heavy cycles in k-connected weighted graphs.
© 2007 Elsevier B.V. All rights reserved.
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1. Terminology and notation

We use Bondy and Murty [5] for terminology and notation not defined here and consider finite simple graphs only.
Let G = (V , E) be a simple graph. G is called a weighted graph if each edge e is assigned a nonnegative number

w(e), called the weight of e. For a subgraph H of G, V (H) and E(H) denote the sets of vertices and edges of H,
respectively. The weight of H is defined by

w(H)=
∑

e∈E(H)

w(e).

For a vertex v ∈ V , NH (v) denotes the set, and dH (v) the number, of vertices in H that are adjacent to v. We define
the weighted degree of v in H by

dw
H (v)=

∑

h∈NH (v)

w(vh).

When no confusion occurs, we will denote NG(v), dG(v) and dw
G(v) by N(v), d(v) and dw(v), respectively.
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An unweighted graph can be regarded as a weighted graph in which each edge e is assigned weight w(e)= 1. Thus,
in an unweighted graph, dw(v) = d(v) for every vertex v, and the weight of a subgraph is simply the number of its
edges.

An (x, y)-path is a path connecting two vertices x and y. Let H be a path or a cycle with a given orientation. By←−
H we mean the same graph as H but with the reverse orientation. If v is a vertex of H, then v+1

H and v−1
H denote the

immediate successor and immediate predecessor (if it exists) of v on H, respectively. In the following, we use v+H for

v+1
H and v−H for v−1

H for simplicity. For an integer k�2, v+k
H and v−k

H are defined recursively by v+k
H = (v

+(k−1)
H )+

and v−k
H = (v

−(k−1)
H )−. If S is a set of vertices of H, then define S+H = {s+H |s ∈ S}. When no confusion occurs, we

denote v+H , v−H , v+m
H , v−m

H and S+H by v+, v−, v+m, v−m and S+, respectively. For two vertices u and v of H, we use
H [u, v] to denote the segment of H from u to v. For a path P [u, v], by P(u, v), P [u, v) and P(u, v], we mean the path
P [u, v] − {u, v}, P [u, v] − {v} andP [u, v] − {u}, respectively.

The number of vertices in a maximum independent set of G is denoted by �(G). If G is noncomplete, then for a
positive integer k��(G) we denote by �k(G) the minimum value of the degree sum of any k pairwise nonadjacent
vertices, and by �w

k (G) the minimum value of the weighted degree sum of any k pairwise nonadjacent vertices. If G is
complete, then both �k(G) and �w

k (G) are defined as∞.
We call the graph K1,3 a claw, and the graph obtained by joining a pendant edge to some vertex of a triangle a

modified claw.

2. Results

There have been many results on the existence of long paths and cycles in unweighted graphs. In [3,4], Bondy and
Fan generalized several classical theorems of Dirac and of Erdös and Gallai on paths and cycles to weighted graphs. A
weighted generalization of Ore’s theorem was obtained by Bondy et al. [2]. In [11], it was shown that if one wants to
generalize Fan’s theorem on the existence of long cycles to weighted graphs some extra conditions cannot be avoided.
By adding two extra conditions, the authors gave a weighted generalization of Fan’s theorem.

Among the many results on cycles in unweighted graphs, the following generalization of Ore’s theorem is well-
known.

Theorem A (Fournier and Fraisse [8]). Let G be a k-connected graph where 2�k < �(G), such that �k+1(G)�m.
Then G contains either a Hamilton cycle or a cycle of length at least 2m/(k + 1).

A natural question is whether Theorem A also admits an analogous generalization for weighted graphs. This leads
to the following problem.

Problem 1. Let G be a k-connected weighted graph where 2�k < �(G), such that �w
k+1(G)�m. Is it true that G

contains either a Hamilton cycle or a cycle of weight at least 2m/(k + 1).

It seems very difficult to settle this problem, even for the case k = 2. Motivated by the result in [11], Zhang et al.
[10] proved that the answer to Problem 1 in the case k = 2 is positive with the two same extra conditions as in [11].

Theorem 1 (Zhang et al. [10]). Let G be a 2-connected weighted graph which satisfies the following conditions:

(1) �w
3 (G)�m;

(2) w(xz)= w(yz) for every vertex z ∈ N(x) ∩N(y) with d(x, y)= 2;
(3) In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least 2m/3.

In [7], after giving a characterization of the connected weighted graphs satisfying Conditions (2) and (3) of
Theorem 1, Enomoto et al. proved that the answer to Problem 1 is positive for any k�2 with these two extra
conditions.
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Theorem 2 (Enomoto et al. [7]). Let G be a k-connected weighted graph where k�2. Suppose that G satisfies the
following conditions:

(1) �w
k+1(G)�m;

(2) w(xz)= w(yz) for every vertex z ∈ N(x) ∩N(y) with d(x, y)= 2;
(3) In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least 2m/(k + 1).

On the other hand, Fujisawa [9] gave so-called claw conditions for the existence of heavy cycles in weighted graphs,
generalizing a result of Bedrossian et al. [1] on the existence of long cycles in unweighted graphs.

Theorem 3 (Fujisawa [9]). Let G be a 2-connected weighted graph which satisfies the following conditions:

(1) For each induced claw and each induced modified claw of G, all its nonadjacent pair of vertices x and y satisfy
max{dw(x), dw(y)} �s/2;

(2) For each induced claw and each induced modified claw of G, all of its edges have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least s.

A result similar to this theorem was obtained by Chen and Zhang [6]. It also generalizes Theorem 1.

Theorem 4 (Chen and Zhang [6]). Let G be a 2-connected weighted graph which satisfies the following conditions:

(1) �w
3 (G)�m;

(2) For each induced claw and each induced modified claw of G, all of its edges have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least 2m/3.

Clearly, Condition (2) of Theorem 4 is weaker than Conditions (2) and (3) of Theorem 2. Thus, we have the following
problem: Can Conditions (2) and (3) in Theorem 2 be weakened by Condition (2) of Theorem 4? In this paper, we give
a positive answer to this problem. Our result is a generalization of Theorem 2.

Theorem 5. Let G be a k-connected weighted graph where k�2. Suppose that G satisfies the following conditions:

(1) �w
k+1(G)�m;

(2) For each induced claw and each induced modified claw of G, all of its edges have the same weight.

Then G contains either a Hamilton cycle or a cycle of weight at least 2m/(k + 1).

We postpone the proof of Theorem 5 to the next section.

3. Proof of Theorem 5

In this section we give a proof of Theorem 5. In order to make the proof easy to understand, we postpone the proof
of two claims (Claims 4 and 5) to the next section.

We first present some lemmas. Lemma 1 can be proved by a minor modification of the proof of Lemma 5 in [4],
while the proof of Lemma 2 is almost immediate.

Lemma 1. Let G be a 2-connected weighted graph which is non-hamiltonian and P an (s, t)-path in G. Then there is
a cycle C̃ in G with w(C̃)�dw(s)+ dw(t), if the following conditions are satisfied:

(i) N(s) ∪N(t) ⊆ V (P );
(ii) NP (s) ∩NP (t)+ = ∅;

(iii) w(x−P x)�w(sx) if x ∈ NP (s) and w(xx+P )�w(xt) if x ∈ NP (t).



4534 B. Chen et al. / Discrete Mathematics 308 (2008) 4531–4543

Lemma 2. Let G be a k-connected weighted graph where 2�k < �(G), {u1, u2, . . . , uk+1} an independent set of G.
Then there exist ui and uj with 1� i < j �k + 1 such that dw(ui)+ dw(uj )�2/(k + 1)�w

k+1(G).

Lemma 3 (Fujisawa [9]). Let G be a weighted graph satisfying Condition (2) of Theorem 5. If x1yx2 is an induced
path with w(x1y) 	= w(x2y) in G, then each vertex x ∈ N(y)\{x1, x2} is adjacent to both x1 and x2.

Lemma 4 (Fujisawa [9]). Let G be a weighted graph satisfying Condition (2) of Theorem 5. Suppose x1yx2 is an
induced path such that w1=w(x1y) and w2=w(x2y) with w1 	= w2, and yz1z2 is a path such that {z1, z2}∩{x1, x2}=∅
and x2z2 /∈E(G). Then

(i) {z1x1, z1x2, z2x1} ⊆ E(G),and yz2 /∈E(G). Moreover, all edges in the subgraph induced by {x1, y, x2, z1, z2},
other than x1y, have the same weight w2.

(ii) Let Y be the component of G− {x2, z1, z2} with y ∈ V (Y ). For each vertex v ∈ V (Y )\{x1, y}, v is adjacent to all
of x1, x2, y and z2. Furthermore, w(vx1)= w(vx2)= w(vy)= w(vz2)= w2.

Proof of Theorem 5. Let G be a k-connected weighted graph satisfying the conditions of Theorem 5. Suppose that G
does not contain a Hamilton cycle. Then it suffices to prove that G contains a cycle of weight at least 2m/(k + 1).

Choose a cycle C in G such that

(1) C is as long as possible;
(2) w(C) is as large as possible, subject to (1).

Then from the assumption that G does not contain a Hamilton cycle, we can immediately see that R=V (G)\V (C) 	= ∅.
Choose u0 ∈ R such that dw(u0)=min{dw(u)|u ∈ R} and denote by A0 the component containing u0 in G− V (C).
Since G is k-connected, there exist k paths Pi = u0 · · ·wivi (i = 1, 2, . . . , k), such that V (Pi) ∩ V (C) = {vi}, and
V (Pi) ∩ V (Pj )= {u0} for i 	= j . Now, we assume that Pi has an orientation from u0 to vi .

Assign an orientation to C. Now let ui = v+i . It is easy to see that {u0, u1, u2, . . . , uk} is an independent set of G by
the choice of C.

If NR(ui) 	= ∅, choose a path Qi = uiyi · · · zi in G[R ∪ {ui}] such that

(1) Qi is as long as possible;
(2) w(Qi) is as large as possible, subject to (1).

Then from the choice of Qi , we know that NR(zi) ⊆ Qi . Let Ai be the component of G−V (C) such that yi∈V (Ai) .
Without loss of generality, we can assume NR(ui)=∅ for i= 1, 2, . . . , q and NR(ui) 	= ∅ for i= q + 1, q + 2, . . . , k.

Claim 1. Let P be an (s, t)-path with |V (P )|> |V (C)|. Then NP (s) ∩NP (t)+ = ∅.

Proof. Suppose NP (s)∩NP (t)+ 	= ∅. Let x be a vertex in NP (s)∩NP (t)+. Then we get a cycle C′ =sP [s, x−]x−t
←−
P

[t, x]xs which is longer than C, a contradiction. �

Claim 2. A0, Aq+1, . . . , Ak are different components of G− V (C).

Proof. If A0 = Ai for some i ∈ {q + 1, q + 2, . . . , k}, then there exists a (wi, yi)-path P ∗i in this component. So we
can get a cycle C′ = wiP

∗
i yiuiC[ui, vi]viwi which is longer than C, a contradiction.

If Ai = Aj for some i, j with q + 1� i < j �k, then there exists a (yi, yj )-path P ∗ij in this component. So we can

get a cycle C′ = yiP
∗
ij yjujC[uj , vi]vi

←−
Pi u0Pjvj

←−
C [vj , ui]uiyi which is longer than C, a contradiction. �

Claim 3. {u0, u1, u2, . . . , uq, zq+1, zq+2, . . . , zk} is an independent set.

Proof. As we noted before, {u0, u1, . . . , uk} is an independent set. From Claim 2, we know that {u0, zq+1, zq+2, . . . , zk}
is an independent set. The result follows from the assumption that NR(ui) = ∅, where i = 1, 2, . . . , q, and zj ∈ R,
immediately. �
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Claim 4. Let i be an integer with 1� i�k and let x be a vertex in NG(ui) ∩ V (C). Then w(x−C x)�w(uix).

Claim 5. Let i and j be distinct integers with 1� i, j �k and let x be a vertex in NG(ui) ∩ V (C). If x ∈ C(uj , vi),
then w(x+C x)�w(uix).

The proofs of these two claims are somewhat complicated. So we leave them to the next section.

Claim 6. Let u be a vertex with u ∈ V (G)\V (C) and let x be a vertex in NG(u) ∩ V (C). Then we have w(xx−C) =
w(xx+C)= w(ux).

Proof. By the choice of C, we have ux−C /∈E(G) and ux+C /∈E(G). So {x, x−C , x+C , u} induces a claw or a modified
claw. Thus, w(xx−C)= w(xx+C)= w(ux). �

Applying Lemma 2 to the independent set {u0, u1, u2, . . . , uq, zq+1, zq+2, . . . , zk}, there must be two vertices s and
t in this set such that dw(s)+ dw(t)�2m/(k + 1).

We distinguish two cases:

Case 1. u0 /∈ {s, t}.
Case 1.1. s = ui and t = uj for some i and j with 1� i < j �q.

Consider the path P = sC[s, vj ]vj
←−
Pju0Pivi

←−
C [vi, t]t . It is obvious that V (C) ⊂ V (P ). Then, from N(s) ⊂ V (C)

and N(t) ⊂ V (C), we have N(s)∪N(t) ⊂ V (P ); from |V (P )|> |V (C)| and Claim 1, we have NP (s)∩NP (t)+ =∅.
Let x be a vertex in NP (s). Since N(s) ⊂ V (C), we have x ∈ V (C). By Claim 3, it is clear that x 	= uj . If x = vi ,

then x−P = wi . By Claim 6, we have w(x−P x)= w(sx). If x 	= vi , by Claims 4 and 5, we have w(x−P x)�w(sx).
By the symmetry of s and t, we can prove that w(xx+P )�w(xt) if x ∈ NP (t).
Now, by Lemma 1, G contains a cycle C̃ of weight w(C̃)�dw(s)+ dw(t)�2m/(k + 1).

Case 1.2. s = ui for some i with 1� i�q and t = zj for some j with q + 1�j �k.

Consider the path P = sC[s, vj ]vj
←−
Pju0Pivi

←−
C [vi, uj ]ujQj t . It is obvious that V (C) ⊂ V (P ). Then, from N(s) ⊂

V (C) and N(t) ⊂ (V (C) ∪ V (Qj )), we have N(s) ∪ N(t) ⊂ V (P ); from |V (P )|> |V (C)| and Claim 1, we have
NP (s) ∩NP (t)+ = ∅.

Let x be a vertex in NP (s). Since N(s) ⊂ V (C), we have x ∈ V (C). By Claim 3, it is clear that x 	= uj . If x = vi ,
then x−P = wi . By Claim 6, we have w(x−P x)= w(sx). If x 	= vi , by Claims 4 and 5, we have w(x−P x)�w(sx).

Let x be a vertex in NP (t). If x ∈ V (Qj ), then we have w(xx+P )�w(xt) by the choice of Qj . If x ∈ (V (C)\{uj }),
by Claim 6, we have w(xx+P )�w(xt).

Then, by Lemma 1, G contains a cycle C̃ of weight w(C̃)�dw(s)+ dw(t)�2m/(k + 1).

Case 1.3. s = zi and t = zj for some i and j with q + 1� i < j �k.

Consider the path P = s
←−
QiuiC[ui, vj ]vj

←−
Pju0Pivi

←−
C [vi, uj ]ujQj t . It is obvious that V (C) ⊂ V (P ). Then, from

N(s) ⊂ (V (C) ∪ V (Qi)) and N(t) ⊂ (V (C) ∪ V (Qj )), we have N(s) ∪ N(t) ⊂ V (P ); from |V (P )|> |V (C)| and
Claim 1, we have NP (s) ∩NP (t)+ = ∅.

Let x be a vertex in NP (s). If x ∈ V (Qi), then we have w(x−P x)�w(sx) by the choice of Qi . If x ∈ (V (C)\{ui}),
by Claim 6, we have w(x−P x)�w(sx).

By the symmetry of s and t, we can prove that w(xx+P )�w(xt) if x ∈ NP (t).
Then, by Lemma 1, G contains a cycle C̃ of weight w(C̃)�dw(s)+ dw(t)�2m/(k + 1).
This completes the proof of Case 1.

Case 2. u0 ∈ {s, t}.
Without loss of generality, we may assume that t = u0.
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Case 2.1. s = ui for some i with 1� i�q.

Choose a path Q′ = viy
′
0 · · · z′0 in G[V (A0) ∪ {vi}] such that

(1) Q′ is as long as possible;
(2) w(Q′) is as large as possible, subject to (1).

Then by the choice of Q′ and u0, we know that NR(z′0) ⊆ Q′ and dw(z′0)�dw(u0).
Now consider the path P=sC[s, vi]viQ

′z′0. It is obvious that V (C) ⊂ V (P ). Then, from N(s) ⊂ V (C) and N(z′0) ⊂
(V (C)∪V (Q′)), we have N(s)∪N(z′0) ⊂ V (P ); from |V (P )|> |V (C)| and Claim 1, we have NP (s)∩NP (z′0)

+=∅.
Let x be a vertex in NP (s). Since N(s) ⊂ V (C), we have x ∈ V (C). By Claim 4, we have w(x−P x)�w(sx).
Let x be a vertex in NP (z′0). If x ∈ V (Q′), then we have w(xx+P )�w(xz′0) by the choice of Q′. If x ∈ (V (C)\{vi}),

by Claim 6, we have w(xx+P )�w(xz′0).
Now, we can see that the path P = sC[s, vi]viQ

′z′0 satisfies the three conditions of Lemma 1. Therefore, G contains
a cycle C̃ of weight w(C̃)�dw(s)+ dw(z′0)�dw(s)+ dw(t)�2m/(k + 1).

Case 2.2. s = zj for some j with q + 1�j �k.

Choose a path Q′′ = vjy
′′
0 · · · z′′0 in G[V (A0) ∪ {vj }] such that

(1) Q′′ is as long as possible;
(2) w(Q′′) is as large as possible, subject to (1)

Then by the choice of Q′′ and u0, we know that NR(z′′0) ⊆ Q′′ and dw(z′′0)�dw(u0).

Consider the path P = s
←−
QjujC[uj , vj ] vjQ

′′z′′0. It is obvious that V (C) ⊂ V (P ). Then, from N(s) ⊂ (V (C) ∪
V (Qj )) and N(z′′0) ⊂ (V (C) ∪ V (Q′′)), we have N(s) ∪ N(z′′0) ⊂ V (P ); from |V (P )|> |V (C)| and Claim 1, we
have NP (s) ∩NP (z′′0)+ = ∅.

Let x be a vertex in NP (s). If x ∈ V (Qj ), then we have w(x−P x)�w(sx) by the choice of Qj . If x ∈ (V (C)\{uj }),
then by Claim 6, we have w(x−P x)�w(sx). Let x be a vertex in NP (z′′0). If x ∈ V (Q′′), then we have w(xx+P )�w(xz′′0)
by the choice of Q′′. If x ∈ (V (C)\{vj }), then by Claim 6, we have w(xx+P )�w(xz′′0).

Now, we can see that the path P = s
←−
QjujC[uj , vj ]vjQ

′′z′′0 satisfies the three conditions of Lemma 1. Therefore, G
contains a cycle C̃ of weight w(C̃)�dw(s)+ dw(z′′0)�dw(s)+ dw(t)�2m/(k + 1).

The proof of the theorem is complete. �

4. Proof of Claims 4 and 5

In the proof of Claims 4 and 5, we denote v+C , v−C , v+m
C and v−m

C by v+, v−, v+m and v−m for simplicity.

Proof of Claim 4. If w(x−x)= w(uix), then there is nothing to prove. So we make the following assumption.

Assumption 1. w(x−x) 	= w(uix).

We now prove that w(x−x) > w(uix).

Subclaim 1. If x−v− ∈ E(G) for some v ∈ V (C(ui, x)), then wjv /∈E(G) for every j, 1�j �k; If x−v ∈ E(G) for
some v ∈ V (C(x, vi)), then wjv

− /∈E(G) for every j, 1�j �k.

Proof. Suppose there exists a vertex v ∈ V (C(ui, x)) such that x−v− ∈ E(G) and wjv ∈ E(G) for some j with
1�j �k. Then we have another cycle C′ = vi

←−
C [vi, x]xuiC[ui, v

−] v−x−←−C [x−, v]vwj
←−
Pju0Piwivi which is longer

than C, a contradiction.
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Suppose there exists a vertex v ∈ V (C(x, vi)) such that x−v ∈ E(G) and wjv
− ∈ E(G) for some j with 1�j �k.

Then we have another cycle C′ = vi
←−
C [vi, v]vx−←−C [x−, ui]uix C[x, v−]v−wj

←−
Pju0Piwivi which is longer than C, a

contradiction.

Subclaim 2. wjx /∈E(G) and wjx
− /∈E(G) when 1�j �k.

Proof. Suppose wjx ∈ E(G). By the choice of C, we have wjui /∈E(G) and wjx
− /∈E(G). Then {x, x−, ui, wj }

induces a claw or a modified claw. So we have w(x−x)= w(uix), contradicting Assumption 1.
By Subclaim 1, it follows from x−x−2 ∈ E(G) that wjx

− /∈E(G) when 1�j �k.

Case 1. uix
− ∈ E(G).

Subclaim 3. Exactly one of vix and vix
− is an edge of G.

Proof. If vix /∈E(G) and vix
− /∈E(G), then {ui, x, x−, vi} induces a modified claw. If vix ∈ E(G) and vix

− ∈ E(G),
then by Subclaim 2 and the choice of C, both {vi, x, x−, wi} and {vi, ui, x, wi} induce modified claws. We can always
get w(x−x)= w(uix), contradicting Assumption 1. �

Case 1.1. vix /∈E(G) and vix
− ∈ E(G).

Subclaim 4. w(uivi)= w(vix
−).

Proof. By the choice of C and Subclaim 2, we can easily see that {vi, ui, x
−, wi} induces a modified claw. So

w(uivi)= w(vix
−). �

Consider the longest cycle C′ = uiC[ui, x
−]x−vi

←−
C [vi, x]xui . By the choice of C, we have w(uivi)+ w(x−x)�

w(uix)+ w(vix
−). By Subclaim 4 and Assumption 1, we get w(x−x) > w(uix).

Case 1.2. vix ∈ E(G) and vix
− /∈E(G).

Subclaim 5. w(x−x) 	= w(vix).

Proof. Since {vi, ui, x, wi} induces a modified claw, w(uix)=w(vix). By Assumption 1, we have w(x−x) 	= w(vix).
�

Let j be an integer with 1�j �k. By the choice of C, we have wjui /∈E(G) and wjv
−
i /∈E(G). By Subclaim 2, we

have wjx
− /∈E(G) and wjx /∈E(G). So vj /∈ {ui, v

−
i , x−, x}.

Case 1.2.1. There exists vj ∈ V (C(ui, x
−)) for some j ∈ {1, . . . , k}\{i}.

Subclaim 6. u+i ∈ N(vi) ∩N(x−).

Proof. By Subclaim 1, it follows from x−ui ∈ E(G) that wju
+
i /∈E(G). So we get vj 	= u+i . Suppose u+i /∈N(vi) ∩

N(x−). It is clear that wi is a vertex of the component of G − {vi, ui, u
+
i } containing x, and wi is also a vertex of

the component of G − {x−, ui, u
+
i } containing x. If viu

+
i /∈E(G) or x−u+i /∈E(G), by applying Lemma 4 (ii) to

{x−, x, vi, ui, u
+
i }, we can get that wix ∈ E(G), contradicting Subclaim 2. �

By Subclaim 1, it follows from wjvj ∈ E(G) that x−v−j /∈E(G). This implies that there exists some vertex u
+p
i ∈

V (C(ui, vj )) such that u
+p
i /∈N(vi)∩N(x−). Choose the vertex u

+p
i such that p is as small as possible. By Subclaim

6, we have p�2. Clearly, if p = 2, then u
+(p−2)
i = ui .

Subclaim 7. w(uivi)= w(viu
+(p−1)
i ) and w(x−u

+(p−2)
i )= w(u

+(p−2)
i u

+(p−1)
i ).
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Proof. By the choice of C and Subclaim 1, we have wiui /∈E(G) and wiu
+(p−1)
i /∈E(G). Then {vi, ui, u

+(p−1)
i , wi}

induces a claw or a modified claw. So w(uivi)= w(viu
+(p−1)
i ).

If p=2, then by the choice of C and Subclaim 1, we have wiu
+(p−2)
i /∈E(G) and wiu

+(p−1)
i /∈E(G). If p�3, then by

the choice of u
+p
i and Subclaim 1, we have wiu

+(p−2)
i /∈E(G) and wiu

+(p−1)
i /∈E(G). Now {vi, u

+(p−1)
i , u

+(p−2)
i , wi}

induces a modified claw. So w(viu
+(p−2)
i )= w(u

+(p−2)
i u

+(p−1)
i ).

Suppose w(x−u
+(p−2)
i ) 	= w(u

+(p−2)
i u

+(p−1)
i ). Then w(viu

+(p−2)
i ) 	= w(x−u

+(p−2)
i ). It is clear that wi is a

vertex of the component of G − {vi, u
+(p−1)
i , u

+p
i } containing u

+(p−2)
i , and wi is also a vertex of the component

of G − {x−, u
+(p−1)
i , u

+p
i } containing u

+(p−2)
i . By the choice of u

+p
i , we have viu

+p
i /∈E(G) or x−u

+p
i /∈E(G).

By applying Lemma 4(ii) to {x−, u
+(p−2)
i , vi, u

+(p−1)
i , u

+p
i }, we can get that wiu

+(p−2)
i ∈ E(G), which leads a

contradiction. �

Let C′ =vi
←−
C [vi, x]xuiC[ui, u

+(p−2)
i ]u+(p−2)

i x−←−C [x−, u
+(p−1)
i ]u+(p−1)

i vi . By the choice of C, we have w(C′)�
w(C). This implies that

w(uivi)+ w(u
+(p−2)
i u

+(p−1)
i )+ w(x−x)�w(uix)+ w(viu

+(p−1)
i )+ w(x−u

+(p−2)
i ).

By Subclaim 7 and Assumption 1, we get w(x−x) > w(uix).

Case 1.2.2. Otherwise.

By Subclaim 1, it follows from wjvj ∈ E(G) that x−uj /∈E(G). This implies that there exists some vertex x+p ∈
V (C(x, uj ]) such that x+p /∈N(vi) ∩N(x−). Choose the vertex x+p such that p is as small as possible. By Subclaim
5 and Lemma 3, it follows from x+x ∈ E(G) that x+ ∈ N(vi) ∩ N(x−). So we have p�2. Clearly, if p = 2, then
x+(p−2) = x.

Subclaim 8. w(uivi)= w(vix
+(p−2)) and w(x−x+(p−1))= w(x+(p−2)x+(p−1)).

Proof. By Subclaim 1, it follows from x−x+(p−1)∈E(G) that wix
+(p−2) /∈E(G). By Subclaim 2, we have wix

− /∈E(G).
By the choice of x+p, we have {x+(p−2), x+(p−1)} ⊂ {N(vi) ∩N(x−)}.

Now {vi, ui, x
+(p−2), wi} induces a claw or a modified claw, which implies that w(uivi)= w(vix

+(p−2)).
Suppose wix

+(p−1) ∈ E(G). Then {x+(p−1), x+(p−2), x−, wi} induces a modified claw. So w(x−x+(p−1)) =
w(x+(p−2)x+(p−1)). Suppose wix

+(p−1) /∈E(G). Then {vi, x
+(p−2), x+(p−1), wi} induces a modified claw. On the

other hand, {x+(p−1), x+p, x−, vi} induces a claw or a modified claw. So w(x+(p−2)x+(p−1)) = w(vix
+(p−1)) and

w(x−x+(p−1))= w(vix
+(p−1)). Thus we have w(x−x+(p−1))= w(x+(p−2)x+(p−1)). �

Let C′ = vi
←−
C [vi, x

+(p−1)]x+(p−1)x−←−C [x−, ui]uixC[x, x+(p−2)]x+(p−2) vi . Then C′ is a longest cycle different
from C. By the choice of C, we have w(C′)�w(C). This implies that w(uivi)+w(x+(p−2)x+(p−1))+w(x−x)�w(uix)

+ w(vix
+(p−2))+ w(x−x+(p−1)). By Subclaim 8 and Assumption 1, we get w(x−x) > w(uix).

Case 2. uix
− /∈E(G).

Suppose vix
− ∈ E(G). By the choice of C and Subclaim 2, we have wiui /∈E(G) and wix

− /∈E(G). Then
{vi, ui, x

−, wi} induce a claw. So we have w(vix
−)= w(uivi). Let C′ = uiC[ui, x

−]x−vi
←−
C [vi, x]xui . Then C′ is a

longest cycle different from C. By the choice of C, we have w(C′)�w(C). This implies that w(uivi)+w(x−x)�w(uix)

+ w(vix
−). Since w(vix

−)= w(uivi), by Assumption 1, we get w(x−x) > w(uix).
Now we make the following assumption.

Assumption 2. vix
− /∈E(G).

Subclaim 9. vix /∈E(G).
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Proof. Suppose vix ∈ E(G). Applying Lemma 3 to the induced path uixx− and vi , we have vi ∈ N(ui) ∩ N(x−),
contradicting Assumption 2. �

By Assumption 2, there exists a vertex x+q ∈ V (C(x, vi]) such that x+q /∈N(ui) ∩ N(x−). Choose x+q such that
q is as small as possible. Applying Lemma 3 to the induced path uixx− and x+, we know that x+ ∈ N(ui) ∩N(x−).
So we have q �2. Clearly, if q = 2, then x+(q−2) = x.

Subclaim 10. xx+q /∈E(G).

Proof. If xx+q ∈ E(G), then from the choice of x+q , {x, x−, x+q, ui} induces a claw or a modified claw. So w(x−x)=
w(uix), contradicting Assumption 1. �

Case 2.1. xx+(q−1) ∈ E(G).

Subclaim 11. x−x+q ∈ E(G).

Proof. By Assumption 1, we have w(uix) 	= w(x−x). Suppose x−x+q /∈E(G). It is clear that wi is a vertex of the
component of G − {x−, x+(q−1), x+q} containing x. Applying Lemma 4 (ii) to {x−, x, ui, x

+(q−1), x+q}, we have
wix ∈ E(G), contradicting Subclaim 2, so x−x+q ∈ E(G). �

By Subclaim 11 and the choice of x+q , we have uix
+q /∈E(G). Since uix

− /∈E(G), we have x−2 	= ui . Now x−2 is
a vertex of the component of G−{ui, x

+(q−1), x+q} containing x, by applying Lemma 4 to {x−, x, ui, x
+(q−1), x+q},

we have x−2x ∈ E(G), and

w(x−2x−)= w(x−2x)= w(x−x+(q−1))= w(x−x+q)= w(x+(q−1)x+q)= w(uix). (1)

Let C′ = x−2←−C [x−2, x+q ]x+qx−x+(q−1)←−C [x+(q−1), x]xx−2. Then C′ is another longest cycle. By the choice of
C, we have

w(x−2x−)+ w(x−x)+ w(x+(q−1)x+q)�w(x−2x)+ w(x−x+q)+ w(x−x+(q−1)).

By (1), we get w(x−x)�w(x−x+q). This implies that w(x−x)�w(uix). By Assumption 1, we have w(x−x) > w(uix).

Case 2.2. xx+(q−1) /∈E(G).

Now, it is clear that q �3.

Subclaim 12. w(uix)= w(x−x+(q−1)).

Proof. By the choice of x+q , uix
+(q−1) ∈ E(G). By Subclaim 9, {ui, vi, x

+(q−1), x} induces a claw or a modified
claw. So w(uix)=w(uix

+(q−1)). At the same time, by the choice of x+q , {x+(q−1), x+q, ui, x
−} induces a claw or a

modified claw. So w(uix
+(q−1))= w(x−x+(q−1)). This implies that w(uix)= w(x−x+(q−1)). �

Subclaim 13. x−2x, x−2x+(q−1), uix
−2 ∈ E(G), x−x+q, vix

−2, x−2x+q, x+(q−2)x+q /∈E(G).

Proof. By Subclaim 12 and Assumption 1, we get w(x−x) 	= w(x−x+(q−1)). Applying Lemma 3 to the induced path
xx−x+(q−1) and the vertex x−2, we get x−2x ∈ E(G) and x−2x+(q−1) ∈ E(G). By applying Lemma 3 to the induced
path uixx− and the vertex x−2, we get uix

−2 ∈ E(G).
Suppose x−x+q ∈ E(G). Applying Lemma 3 to the induced path xx−x+(q−1) and the vertex x+q , we get xx+q ∈

E(G), contradicting Subclaim 10.
Suppose vix

−2 ∈ E(G) (x−2x+q ∈ E(G), or x+(q−2)x+q ∈ E(G)). Then since ui is a vertex of the component
of G − {x, x−2, vi} (G − {x, x−2, x+q}, or G − {x, x+(q−2), x+q}) containing x−, by Subclaim 9 and Subclaim 10,
applying Lemma 4 (ii) to {x+(q−1), x−, x, x−2, vi} ({x+(q−1), x−, x, x−2, x+q}, or {x+(q−1), x−, x, x+(q−2), x+q}),
we have uix

− ∈ E(G), a contradiction. �
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Subclaim 14. w(x−2x−)= w(x−2x)= w(x−x+(q−2))= w(x+(q−2)x+(q−1)).

Proof. By the choice of x+q , we have x−x+(q−1) ∈ E(G) and x−x+(q−2) ∈ E(G). By Subclaim 13, both {x+(q−1),

x−2, x−, x+q} and {x+(q−1), x+(q−2), x−, x+q} induce modified claws. So we have w(x−x+(q−1))= w(x−2x−) and
w(x−x+(q−1)) = w(x−x+(q−2)) = w(x+(q−2)x+(q−1)). By Subclaim 9 and Subclaim 13, {ui, x

−2, x, vi} induces a
modified claw. So w(x−2x)= w(uix). The result follows from Subclaim 12 immediately. �

Let C′ = x−2xC[x, x+(q−2)]x+(q−2)x−x+(q−1)C[x+(q−1), x−2]x−2. Then C′ is a longest cycle different from C.
By the choice of C, we have w(C′)�w(C). This implies that

w(x−2x−)+ w(x+(q−2)x+(q−1))+ w(x−x)�w(x−2x)+ w(x−x+(q−2))+ w(x−x+(q−1)).

It follows from Subclaim 14 thatw(x−x)�w(x−x+(q−1)). By Subclaim 12 and Assumption 1, we getw(x−x) > w(uix).

Proof of Claim 5. If w(x+x)= w(uix), then there is nothing to prove. So we make the following assumption.

Assumption 3. w(x+x) 	= w(uix).

We now prove that w(x+x) > w(uix).

Subclaim 15. If x+v ∈ E(G) for some v ∈ V (C(ui, x)), then wlv
+ /∈E(G) and wlv

− /∈E(G) for every l, 1� l�k.

Proof. Suppose there exists a vertex v ∈ V (C(ui, x)) such that x+v ∈ E(G) and wlv
+ ∈ E(G) for some l with

1� l�k. Then we have another cycle C′ = vi
←−
C [vi, x

+]x+v
←−
C [v, ui]ui x

←−
C [x, v+]v+wl

←−
Pl u0Piwivi which is longer

than C, a contradiction.
Suppose there exists a vertex v ∈ V (C(ui, x)) such that x+v ∈ E(G) and wlv

− ∈ E(G) for some l with 1� l�k.
Then we have another cycle C′ = vi

←−
C [vi, x

+]x+vC[v, x]xuiC[ui, v−]v− wl
←−
Pl u0Piwivi which is longer than C, a

contradiction. �

Subclaim 16. wlx /∈E(G) when 1� l�k.

Proof. Suppose wlx ∈ E(G) for some l with 1� l�k. By the choice of C, we have wlui /∈E(G) and wlx
+ /∈E(G).

Then {x, x+, ui, wl} induces a claw or a modified claw. So w(x+x)= w(uix), contradicting Assumption 3. �

Case 1. uix
+ ∈ E(G).

Subclaim 17. wix
+ /∈E(G) and wiu

+
i /∈E(G).

Proof. Suppose wix
+ ∈ E(G). By the choice of C and Subclaim 16, we have wiui /∈E(G) and wix /∈E(G). Then

{x+, x, ui, wi} induces a modified claw. So w(x+x)= w(uix), contradicting Assumption 3.
Suppose wiu

+
i ∈ E(G). Then we have another cycle C′ =u+i C[u+i , x]xuix

+C[x+, vi]vi wiu
+
i which is longer than

C, a contradiction. �

Subclaim 18. Exactly one of vix and vix
+ is an edge of G.

Proof. If vix /∈E(G) and vix
+ /∈E(G), then {ui, x, x+, vi} induces a modified claw. If vix ∈ E(G) and vix

+ ∈ E(G),
by Subclaim 16, Subclaim 17 and the choice of C, both {vi, x, x+, wi} and {vi, ui, x, wi} induce modified claws. We
can always get w(x+x)= w(uix), contradicting Assumption 3. �

Case 1.1. vix /∈E(G) and vix
+ ∈ E(G).

Subclaim 19. w(uix
+)= w(uivi)= w(vix

+).
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Proof. By the choice of C and Subclaim 17, we can easily see that {vi, ui, x
+, wi} induces a modified claw. So

w(uix
+)= w(uivi)= w(vix

+). �

Subclaim 20. viu
+
i ∈ E(G).

Proof. Suppose viu
+
i /∈E(G). Then {ui, x, vi, u

+
i } induced a claw or a modified claw. So w(uivi) = w(uix). By

Subclaim 19 and Assumption 3, we have w(vix
+) 	= w(x+x). It is clear that wi is a vertex of the component of

G−{vi, ui, u
+
i }which contains x+. Applying Lemma 4 (ii) to {x, x+, vi, ui, u

+
i }, we get wix

+ ∈ E(G), contradicting
Subclaim 17. �

Subclaim 21. w(viu
+
i )= w(uiu

+
i ).

Proof. By Subclaim 17, Subclaim 20 and the choice of C, {vi, ui, u
+
i , wi} induces a modified claw. So we have

w(viu
+
i )= w(uiu

+
i ). �

Let C′ = vi
←−
C [vi, x

+]x+uix
←−
C [x, u+i ]u+i vi . Then C′ is a longest cycle different from C. By the choice of C, we

have w(C′)�w(C). This implies that w(uivi)+w(uiu
+
i )+w(x+x)�w(uix

+)+w(viu
+
i )+w(uix). By Subclaim

19, Subclaim 21 and Assumption 3, we get w(x+x) > w(uix).

Case 1.2. vix ∈ E(G) and vix
+ /∈E(G).

Subclaim 22. w(x+x) 	= w(vix).

Proof. By the choice of C and Subclaim 16, {vi, ui, x, wi} induces a modified claw. Sow(uix)=w(vix). By Assumption
3, we have w(x+x) 	= w(vix). �

By Subclaim 15, it follows from wjvj ∈ E(G) that x+uj /∈E(G). This implies that there exists some vertex
x−p ∈ V (C[uj , x)) such that x−p /∈N(vi) ∩ N(x+). Choose the vertex x−p such that p is as small as possible. By
Subclaim 22 and Lemma 3, it follows from x−x ∈ E(G) that x− ∈ N(vi) ∩ N(x+). So we have p�2. Clearly, if
p = 2, then x−(p−2) = x.

Subclaim 23. w(uivi)= w(vix
−(p−2)) and w(x+x−(p−1))= w(x−(p−2)x−(p−1)).

Proof. By the choice of x−p, we have {x−(p−2), x−(p−1)} ⊂ {N(vi) ∩ N(x+)}. By Subclaim 15, it follows from
x+x−(p−2) ∈ E(G) and x+x−(p−1) ∈ E(G) that wix

−(p−1) /∈E(G) and wix
−(p−2) /∈E(G).

Now {vi, ui, x
−(p−2), wi} induces a claw or a modified claw, which implies that w(uivi) = w(vix

−(p−2)). At
the same time, {vi, x

−(p−2), x−(p−1), wi} induces a modified claw and {x−(p−1), x−p, x+, vi} induces a claw or a
modified claw. This implies that w(x−(p−2)x−(p−1)) = w(vix

−(p−1)) and w(x+x−(p−1)) = w(vix
−(p−1)). Thus,

w(x+x−(p−1))= w(x−(p−2)x−(p−1)). �

Let C′ = vi
←−
C [vi, x

+]x+x−(p−1)←−C [x−(p−1), ui]uix
←−
C [x, x−(p−2)]x−(p−2)vi . Then C′ is a longest cycle different

from C. By the choice of C, we havew(C′)�w(C). This implies thatw(uivi)+w(x−(p−2)x−(p−1))+w(x+x)�w(uix)+
w(vix

−(p−2))+ w(x+x−(p−1)). By Subclaim 23 and Assumption 3, we get w(x+x) > w(uix).

Case 2. uix
+ /∈E(G).

By Subclaim 15, it follows from wjvj ∈ E(G) that x+uj /∈E(G). This implies that there exists some vertex
x−q ∈ V (C[uj , x)) such that x−q /∈N(ui)∩N(x+). Choose x−q such that q is as small as possible. Applying Lemma
3 to the induced path uixx+ and x−, we know that x− ∈ N(ui)∩N(x+), so q �2. Clearly, if q = 2, then x−(q−2)= x.

Subclaim 24. xx−q /∈E(G).
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Proof. If xx−q ∈ E(G), then from the choice of x−q , {x, x+, x−q, ui} induces a claw or a modified claw. So w(x+x)=
w(uix), contradicting Assumption 3. �

Subclaim 25. xx−(q−1) /∈E(G).

Proof. Assume not. By the choice of x−q , we know that x−q /∈N(ui) ∩N(x+).
Suppose uix

−q /∈E(G) (or x+x−q /∈E(G)). It is clear that wi is a vertex of the component of G−{ui, x
−(q−1), x−q}

(or G−{x+, x−(q−1), x−q}) containing x. By applying Lemma 4(ii) to {x+, x, ui, x
−(q−1), x−q}, we can get that wix ∈

E(G), contradicting Subclaim 16. �

By Subclaim 25, it is clear that q �3.

Subclaim 26. vix /∈E(G).

Proof. Suppose vix ∈ E(G). By Assumption 3, we have w(uix) 	= w(x+x). By the choice of C, we have wiui /∈E(G).
Since wj is a vertex of the component of G−{ui, vi, wi} containing x, by applying Lemma 4(ii) to {x+, x, ui, vi, wi},
we have wjx ∈ E(G), contradicting Subclaim 16. �

Subclaim 27. w(uix)= w(x+x−(q−1)).

Proof. By the choice of x−q , we have uix
−(q−1) ∈ E(G). By Subclaims 25 and 26, {ui, vi, x

−(q−1), x} induces a
claw or a modified claw. So w(uix)= w(uix

−(q−1)). At the same time, by the choice of x−q , {x−(q−1), x−q, ui, x
+}

induces a claw or a modified claw. So w(uix
−(q−1))=w(x+x−(q−1)). This implies that w(uix)=w(x+x−(q−1)). �

Subclaim 28. x+2x, x+2x−(q−1), uix
+2 ∈ E(G), x+x−q, vix

+2, x+2x−q, x−(q−2)x−q /∈E(G).

Proof. By Subclaim 27 and Assumption 3, we get w(x+x)	=w(x+x−(q−1)). By Subclaim 25, we have xx−(q−1) /∈E(G).
Applying Lemma 3 to the induced path xx+x−(q−1) and the vertex x+2, we get x+2x ∈ E(G) and x+2x−(q−1) ∈ E(G).
By applying Lemma 3 to the induced path uixx+ and the vertex x+2, we get uix

+2 ∈ E(G).
Suppose x+x−q ∈ E(G). By the choice of x−q , we have x+x−(q−1) ∈ E(G). Then, by Subclaims 24 and 25,
{x+, x−q, x−(q−1), x} induces a modified claw. Sow(x+x)=w(x+x−(q−1)). By Subclaim 27, we getw(uix)=w(x+x),
contradicting Assumption 3.

Suppose vix
+2 ∈ E(G) (x+2x−q ∈ E(G), or x−(q−2)x−q ∈ E(G)). It is clear that wi is a vertex of the component

of G− {x, x+2, vi} (G− {x, x+2, x−q}, or G− {x, x−(q−2), x−q}) containing x+. By Subclaims 24 and 26, applying
Lemma 4(ii) to {x−(q−1), x+, x, x+2, vi} ({x−(q−1), x+, x, x+2, x−q}, or {x−(q−1), x+, x, x−(q−2), x−q}), we have
wix
+ ∈ E(G). Now there exists a cycle C′ = wivi

←−
C [vi, x

+2]x+2xuiC[ui, x
−]x−x+wi which is longer than C,

contradicting the choice of C. �

Subclaim 29. w(x+2x+)= w(x+2x)= w(x+x−(q−2))= w(x−(q−2)x−(q−1)).

Proof. By the choice of x−q , we have x+x−(q−1) ∈ E(G) and x+x−(q−2) ∈ E(G). By Subclaim 28, both {x−(q−1),

x+2, x+, x−q} and {x−(q−1), x−(q−2), x+, x−q} induce modified claws. So we have w(x+x−(q−1))= w(x+2x+) and
w(x+x−(q−1))= w(x+x−(q−2))= w(x−(q−2)x−(q−1)). By Subclaims 26 and 28, {ui, x

+2, x, vi} induces a modified
claw. So w(x+2x)= w(uix). The result follows from Subclaim 27 immediately. �

Let C′ = x+2C[x+2, x−(q−1)]x−(q−1)x+x−(q−2)C[x−(q−2), x]xx+2. Then C′ is a longest cycle different from C.
By the choice of C, we have w(C′)�w(C). This implies that

w(x+2x+)+ w(x−(q−2)x−(q−1))+ w(x+x)�w(x+2x)+ w(x+x−(q−2))+ w(x+x−(q−1)).

It follows from Subclaim 29 thatw(x+x)�w(x+x−(q−1)). By Subclaim 27 and Assumption 3, we getw(x+x)>w(uix).
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