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Abstract Background/purpose: This literature review provides an overview of the first
detection, structure, chemical composition, morphology characterization, phase transforma-
tion, and clinical application of amorphous calcium phosphate (ACP) to dentistry.
Materials and methods: ACP is the essential mineral phase formed in mineralized tissue and
the first product to be used as artificial hydroxyapatite. ACP is unique among the calcium phos-
phates in that it lacks the long-range, periodic atomic scale order of crystalline calcium phos-
phates. Its X-ray diffraction patterns are broad and diffuse with a maxima at 25� 2q, and no
other different features compared with well-crystallized hydroxyapatite. Under electron
microscopy, its morphologic form appears as small spheroidal particles of a few tenths of
a nanometer in scale. In aqueous media ACP is easily transformed into crystalline phases such
as octacalcium phosphate and apatite, due to the growth of the microcrystal.
Results: ACP has better osteoconductivity and biodegradability than tricalcium phosphate and
hydroxyapatite in vivo. Moreover, it can increase alkaline phosphatase activity of mesoblasts,
enhance cell proliferation activity, and promote cell adhesion. The unique role of ACP in the
formation of mineralized tissues makes it a potentially useful candidate for use in materials for
tissue repair and regeneration. The same properties may make ACP suitable as a potential
remineralizing agent for dental applications.
Conclusion: Recently developed bioactive ACP-filled composites are potentially effective anti-
demineralizing/remineralizing agents for the preservation and repair of teeth.
Copyright ª 2012, Association for Dental Sciences of the Republic of China. Published by
Elsevier Taiwan LLC. All rights reserved.
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Introduction

Over the last decade, calcium phosphates have been of
special interest to dentistry, the orthopedic industry, and
public of China. Published by Elsevier Taiwan LLC. All rights reserved.

https://core.ac.uk/display/82612675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:wbsun@nju.edu.cn
http://dx.doi.org/10.1016/j.jds.2012.09.001
www.sciencedirect.com/science/journal/19917902
http://www.e-jds.com
http://dx.doi.org/10.1016/j.jds.2012.09.001
http://dx.doi.org/10.1016/j.jds.2012.09.001


Amorphous calcium phosphate 317
medicine because of their excellent performance. This
appears logical due to their similarity to the mineral phases
of most hard tissues of human bones and teeth. Calcium
phosphates of biological significance are summarized in
Table 1.1e5 Amorphous calcium phosphate (ACP) is the
initial solid phase that precipitates from a highly super-
saturated calcium phosphate solution, converting readily to
stable crystalline phases such as octacalcium phosphate
(OCP) or apatite products.

ACP is unique among the calcium phosphates. Its
morphologic form, structural models, and X-ray diffraction
patterns are typical of noncrystalline substances with
short-range periodic regularity. ACP has been shown to
have better in vivo osteoconductivity than hydroxyapatite
(HAP) and better biodegradability than tricalcium phos-
phate (TCP). In addition, it has no cytotoxicity and good
bioactivity. These excellent biocharacteristics explain why
ACP has potential for wide application in oral biology,
dentistry, orthopedic biomechanics, materials, and medi-
cine. This review provides an account of the first detection,
structure, composition, and morphologic characterization
of ACP, as well as its phase transformation and biomedical
applications, especially in dentistry.
First detection of ACP

Generally, it is believed that ACP was first described by
Aaron S. Posner6 in the mid 1960s. He obtained an amor-
phous precipitate by accident when mixing high concen-
trations (�30 mM) of calcium chloride and sodium acid
phosphate (�20 mM) in buffer. X-ray diffraction revealed
the pattern of this rapidly precipitated phase as showing
only two very broad and diffuse peaks, with maxima at 25�

2q with no features, and it was clearly not apatite. This
diffraction pattern is typical for substances that lack long-
range periodic regularity. Immediately after being mixed,
the spontaneously formed precipitate was a noncrystalline,
Table 1 Summary of biologically significant calcium phosphate

Compound Acronym

Monocalcium phosphate, monohydrate MCPM
Monocalcium phosphate, anhydrous MCPA or MCP
Dicalcium phosphate dihydrate, mineral
brushite

DCPD

Dicalcium phosphate anhydrous, mineral
monetite

DCPA or DCP

Octacalcium phosphate OCP
a-tricalcium phosphate a-TCP
b-tricalcium phosphate b-TCP
Amorphous calcium phosphate ACP

Calcium-deficient hydroxyapatite CDHA or Ca-def HA
Hydroxyapatite HA, Hap, or OHAp
Fluorapatite FA or FAp
Oxyapatite OA, OAp, or OXA
Tetracalcium phosphate, mineral
hilgenstockite

TTCP or TetCP
or amorphous, calcium phosphate with calcium-to-
phosphorus molar ratio (Ca/P) of 1.50, while after several
hours, upon aging, it could convert to poorly crystalline
apatite. Afterward, this solid in contact with the precipi-
tating solution converts slowly to crystalline apatite (Ca/
P Z 1.67) through an autocatalytic mechanism.

Actually, another report appeared in Nature in 1965, in
which Eanes7 identified ACP as a bone component. It
seemed plausible to Posner that such an amorphous mate-
rial called ACP was present in bone, and along with the
apatite, might account for the broad diffraction pattern of
bone mineral and for its variable composition. Posner and
his staff8,9 also described an age-dependent change in the
ACP content of bone, with the proportion of ACP decreasing
with age. In 1975, ACP was identified as the mineral in the
hepatopancreas of the blue crab.10 X-ray diffraction
revealed that the mineralized cytoplasmic structure iso-
lated from the hepatopancreas of the blue crab is very
similar in short-range atomic structure to synthetic amor-
phous calcium phosphate.
Structural studies

After detection of amorphous calcium phosphate, further
experiments focused on its structure. It was proposed that
synthetic amorphous calcium phosphate particles, which
appear as 300e1000 Å spheres in the electron microscope
(Fig. 1),6 the exact size depending on preparation condi-
tions, consist of a random assembly of ion clusters 9.5 Å in
diameter, dimensions consistent with the chemical
composition Ca9(PO4)6. The 15%e20% of water found in
synthetic amorphous calcium phosphate was shown to be
mostly in the interstices between, and not within, the
individual Ca9(PO4)6 clusters (Fig. 2).6,11,12,13 Aggregated
particles readily dissolve and crystallize to form apatite,
a thermodynamically stable phase, because the binding
effect of water is not strong. The typical radial distribution
s.1e5

Formula Ca/P
molar ratio

Ca(H2PO4)2$H2O 0.5
Ca(H2PO4)2 0.5
CaHPO4$2H2O 1.0

CaHPO4 1.0

Ca8(HPO4)2(PO4)4$5H2O 1.33
a-Ca3(PO4)2 1.5
b-Ca3(PO4)2 1.5
CaxHy(PO4)z$nH2O, n Z 3e4.5; 15%e20%
H2O

1.2e2.2

Ca10-x(HPO4)x(PO4)6-x(OH)2-x (0 < x < 1) 1.5e1.67
Ca10(PO4)6(OH)2 1.67
Ca10(PO4)6F2 1.67
Ca10(PO4)6O 1.67
Ca4(PO4)2O 2.0



Figure 1 Structural model of ACP.6 ACP Z amorphous
calcium phosphate.
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functions of noncrystalline ACP cluster structures, calcu-
lated from X-ray diffraction patterns, is only two very broad
and diffuse peaks showing the rapid drop-off of atomic
periodicity. Short-range order exists in these amorphous
structures but no long-range order, such as that found in
crystalline hydroxyapatite. Infrared analysis showed
a similar lack of crystalline order about the PO4 anions in
the ACP structure.14

It is now generally agreed that both in vitro and in vivo
precipitation reactions at sufficiently high supersaturation
and pH result in the initial formation of amorphous calcium
phosphate with a molar calcium/phosphate ratio of about
1.5, in the range of 1.34e1.50, with different pH and
1.50e1.67 when adding different amount of carbonates.15

However, Wuthier et al16 reported that ACP, with a Ca/
PO4 molar ratio as low as 1.15, precipitated at more acidic
preparative pHs, e.g., 6.9.

More importantly, it has actually been proven that ACP
particles are a nanometer particle. Primary practical sizes
of ACP are about 20e300 nm. The morphology of ACP solids
appears to include a curvilinear aspect when viewed by
Figure 2 The relationship between ACP and HA. The circle
shows the amorphous cluster corresponding to Ca9(PO4)6
cluster.6,11,12 ACP Z amorphous calcium phosphate;
HA Z hydroxyapatite.
TEM, rather than the faceted, angular shape of crystalline
calcium phosphates.17 However, this curvilinear appear-
ance has only been clearly established for dried ACP.12 The
initial flocculates collected immediately after precipitation
of highly hydrated ACP have a low-contrast disk-shaped
appearance. High-contrast spherical particles begin to
appear as ACP suspensions age, and become the dominant
shape with time.18

Its disordered structure means ACP has high reactivity
with body fluid, causing substantial dissolubility and fast
apatite reprecipitation. Accordingly, ACPhas been proven to
have better in vivo osteoconductivity than hydroxyapatite
and better biodegradability than tricalcium phosphate.12

The ACP precipitate, with little long-range order, is a highly
unstable phase and hydrolyzes almost instantaneously into
more stable phases. In the presence of other ions or under
in vivo conditions, ACP may persist for appreciable periods
due to kinetic stabilization.19 Although the exactmechanism
of stabilization of amorphous calcium phosphate is not
understood, the presence of Mg2þ, F�, carbonate, pyro-
phosphate, diphosphonate, polyphosphorylated metabo-
lites, or nucleotides, in sufficient quantity will prevent the
transformationof synthetic amorphous calciumphosphate to
hydroxyapatite.1,20
ACP as precursor in biomineralization
and preparation

It has been stated that ACP likely plays a special role as
a precursor to bioapatite and as a transient phase in bio-
mineralization. In solutions, ACP is converted readily to
stable crystalline phases such as octacalcium phosphate or
apatite products. One biomineralization strategy that has
received significant attention in recent years is minerali-
zation via transient precursor phases.21 Transient amor-
phous mineral phases have been detected in biomineral
systems in different phyla of the animal kingdom.22,23 ACP
has been previously reported in the otoliths of blue sharks
and also shown to form as a precursor phase of carbonated
hydroxyapatite in chiton teeth.24 The presence of an
abundant ACP phase has also been demonstrated in newly
formed zebrafish fin bony rays.25 The disordered phase is
a precursor of crystalline carbonated hydroxyapatite. The
initially extracted amorphous mineral particles transform
into a crystalline mineral phase with time, and the
proportion of crystalline mineral increases during bone
maturation. The transient ACP phase may conceivably be
deposited directly inside the gap regions of collagen fibrils,
but it may also be delivered as extrafibrillar particles.25

This may be consistent with a study showing that collagen
mineralization via a transient ACP precursor phase in vitro
can produce aligned intrafibrillar carbonated apatite
crystals.26

Several animal studies carried out in different systems
in vivo also have reported the presence of transient
precursor calcium phosphate phases in the deposition of
carbonated hydroxyapatite. Beniash, for example, per-
formed a comprehensive analysis of the mineral phases in
the early secretory enamel of mouse mandibular incisors
using four methods of physical characterization. That study
proposed that the outer, younger, early secretory enamel
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contains a transient disordered ACP phase, which trans-
forms with time into the final apatite crystalline mineral.22

A variety of proteins and ions have been proposed as
involved in the biomineralization of ACP to HAP.27,28 Dentin
matrixprotein1 (DMP1) is oneof these.A reportbyHeshowed
that two peptide motifs identified in DMP1 [motif-A (ESQES)
and motif-B (QESQSEQDS)] enhanced in vitro HAP formation
when immobilized on a glass substrate.29 Similarly, another
experiment found that the synthesized artificial protein
composed of these peptide motifs of DMP1 facilitated reor-
ganization of the internal structure of amorphous particles
into ordered crystalline states, i.e., the direct trans-
formation of ACP to HAP, thereby acting as a nucleus for
precipitation of crystalline calcium phosphate.30

Studies on the preparation of hydroxyapatite
[Ca10(PO4)6-(OH)2], the synthetic prototype of bone
mineral, showed that the initial solid phase that precipi-
tates from a calcium phosphate solution depends on the
degree of its supersaturation.15 A noncrystalline ACP
precursor approximating Ca9(PO4)6 in composition appears
under conditions of high supersaturation.6,21 This precursor
ACP, unless stabilized in some way, transforms to the
thermodynamically more stable calcium phosphate phases,
or leads to an autocatalytic solution-mediate crystallization
process.

On the other hand, the first solid to form in low super-
saturated solutions is hydroxyapatite, with Ca/P ratio of
1.67 obtained without precursor phases, so ACP is consid-
ered as a “mandatory precursor to apatite,” and may be
used in dilute solutions to form apatite without going
through this precursor.21 The pH value also affects the
initial solid phase in the precipitation of calcium and
phosphate ions. OCP is the crystalline phase that initially
forms when the reaction pH is less than 9.25, whereas
apatite preferentially forms at higher pHs.31 As we know, at
neutral pH and moderate supersaturation, ACP is often the
first deposit to form in vitro.32 Transformation mechanisms
of ACP to apatite at physiological pH have been described
as follows: first ACP dissolution, then a transient OCP solid
phase reprecipitation through nucleation growth, finally
hydrolysis of the transient OCP phase into the thermody-
namically more stable apatite by a topotactic reaction,
which usually takes more than 10 hours.32

Based on the analysis of measured precipitate induction
times and the structure of the developing solid phase,
Feenstra33 proposed OCP might be an intermediate stage in
the conversion of ACP to apatite calcium phosphate. Since
OCP or apatite crystals were generally found in association
with the ACP spherules, it is possible that ACP acts as
a template for the growth of these crystal phases. Their
formation, however, appears to take place by consuming
ions largely supplied from the surrounding solution, rather
than from direct hydrolysis of the solid amorphous mate-
rial. Transformation experiments of ACP at pH 10 showed
that transformation of ACP to poorly crystalline HAP might
proceed without change in the local calcium environment,
but with the development of longer-range order in the
structure.

However, by contrast to the results obtained at pH 10,
under physiologic conditions the picture is quite different.
Tung used a titration method to study the conversion of
high-concentration ACP slurry to an apatite. A typical
conversion kinetics clearly indicated two processes: the
first process consumes acid with the conversion of ACP to an
OCP-like intermediary, and the second process consumes
base with the conversion of the OCP-like intermediate to
apatite or, possibly, direct conversion of ACP to apatite.
Now, it is proposed that a stoichiometric HAP is formed
when there is no OCP-like intermediate phase, and a non-
stoichiometric apatite product is formed when an OCP-like
intermediate phase is involved.34
Application to oral science

ACP has been widely applied in dental or oral science due to
its excellent bioactivity, high cell adhesion, adjustable
biodegradation rate and good osteoconduction.15,35e37 As
we mentioned above, the first quantitative studies on
synthetic ACP were done in the mid 1960s.6 From then on,
increasing attention has been attracted in the development
and the application of the ACP-containing products, espe-
cially in the dental and orthopedic industry. It is also used
as filler in ionomer cements to fill carious lesions or as
a colloidal suspension in toothpastes, chewing gums or
mouthwashes to promote remineralization of carious
lesions and/or to prevent tooth demineralization.13
Carrier in dental prophylaxis

Casein phosphopeptides (CPPs) contain the cluster
sequence of -Ser (P)-Ser (P)-Ser (P)-Glu-Glu from
casein.38,39 Through these multiple phosphoseryl residues,
CPP have a remarkable ability to stabilize clusters of
amorphous calcium phosphate into a state-forming CPP-
ACP complex, preventing their growth to the critical size
required for nucleation, phase transformation and precip-
itation. In the United States, up to now, this product is
primarily used in abrasive prophylaxis pastes, and second-
arily for treatment of tooth sensitivity, especially after in-
office bleaching procedures, ultrasonic scaling, hand
scaling or root planing. However, its use for remineralizing
dentin and enamel and preventing dental caries is an off-
label application. Outside the United States, the products
are marketed as GC Tooth Mousse.40e42

Moreover, the results from a clinical trial of a mouth-
wash used thrice daily containing CPP-ACP showed that the
calcium and inorganic phosphate content of supragingival
plaque increased after use of the mouthwash over a three-
day period.43 Rose measured the affinity and capacity of
Streptococcus mutans for CPP-ACP, demonstrating that
CPP-ACP binds with about twice the affinity for calcium of
the bacterial cells, up to a value of 0.16 g/g wet weight
cells. Hence, CPP-ACP binds well to plaque, providing
a large calcium reservoir within plaque and slowing diffu-
sion of free calcium.44 Additional evidence also reported by
Rose indicates that CPP-ACP would compete with calcium
for plaque Ca binding sites. This will reduce the amount of
calcium bridging between the pellicle and adhering cells
and between cells themselves.45 This is likely to restrict
mineral loss during a cariogenic episode and provide
a potential source of calcium for the inhibition of demin-
eralization and assist in subsequent remineralization.45,46
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A human in situ caries model has been used by Reynolds
to study the ability of the 1.0% CPP, 60-mM CaCl2 and 36-mM
sodium phosphate, pH 7.0 solution to prevent enamel
demineralization. Two exposures of CPP-ACP solution per
day to one side of the enamel slabs produced 51 � 19%
reduction in enamel mineral loss compared to the control
side. Plaque exposed to CPP-ACP had 2.5 times more Ca and
phosphorus than control plaque.47 Reynolds also conducted
an experiment using an in vitro model system to study the
effects of CPP-ACP solutions on remineralization of artifi-
cial lesions in human third molars. After a 10-day remi-
neralization period, all solutions deposited mineral into the
bodies of the lesions, with the 1.0% CPP-calcium phosphate
(pH 7.0) solution replacing 63.9 � 20.1% of mineral lost at
an average rate of 3.9 � 0.8 � 10�8 mol hydroxyapatite/
m2/s. The remineralizing capacity was greater for the
solutions with higher levels of CPP-stabilized free calcium
and phosphate ions.48

The CPP-ACP and fluoride were shown to have additive
effects in reducing caries incidence,49,50 so CPP-ACFP may
be added into current fluoride-containing toothpastes as an
additive to improve efficacy. Furthermore, recent studies
indicate that CPP-ACP can be incorporated into confec-
tionery and drinks without adverse organoleptic effects.51

CPP-ACP is a natural derivative of milk, and therefore
could have an important role as a food additive for the
control of dental caries.52 However, in 2008 Azarpazhooh39

systemically reviewed 98 articles on the clinical efficacy of
casein derivatives and concluded that there is insufficient
evidence in clinical trials (in quantity, quality or both) to
make a recommendation regarding the long-term effec-
tiveness of casein derivatives, specifically CPP-ACP, as
preventing caries in vivo and treating dentin hypersensi-
tivity or dry mouth.
Filler in polymeric composites

ACP, a postulated precursor in the formation of biological
hydroxyapatite, has been evaluated as a filler phase in
bioactive polymeric composites.53 During the last decade,
Skrtic2,54e56 has been developing unique biologically active
restorative materials containing ACP as filler encapsulated
in a polymer binder, which may stimulate the repair of
tooth structure because of releasing significant amounts of
calcium and phosphate ions in a sustained manner. In
addition to excellent biocompatibility, the ACP composites
release calcium and phosphate ions into saliva milieus,
especially in the oral environment caused by bacterial
plaque or acidic foods. Then these ions can be deposited
into tooth structures as apatite mineral, which is similar to
the hydroxyapatite found naturally in teeth and bone.57,58

However, it has been reported that orthodontic ACP-
containing adhesive appears to lower bond strength.
Dunn59 conducted an in vitro study to compare it with the
conventional resin-based orthodontic adhesive. Foster
also compared the shear bond strength (SBS) of ortho-
dontic brackets using ACP-containing adhesive to
a conventional adhesive and a resin-modified glass ion-
omer. In these experiments, ACP-containing adhesive was
demonstrated to possess low, but satisfactory, bond
strength needed to function as an orthodontic adhesive.60
When comparing four new ACP-containing bonding
systems, including Aegis Ortho, with a conventional
bracket bonding system (Transbond XT), it was found that
the traditional bonding systems achieved greater bond
strength than the newer ones. However, Aegis Ortho had
bond strength sufficient to be useful for orthodontics at
24-hour postcure time, but the bracket might drift
because of the low viscosity of the material during labo-
ratory bonding.61 The authors also found that Aegis Ortho
had lower flexural strength, which would explain the
material failure at the adhesive-bracket interface rather
than at the enamel adhesive interface.61

Compared with the more commonly used silanated glass
or ceramic filler, the more hydrophilic and biodegradable
ACP-filled composites exhibit inferior mechanical proper-
ties, durability, and water sorption characteristics.62 The
uncontrolled aggregation of ACP particulates along with
poor interfacial interaction plays a key role in adversely
affecting their mechanical properties.63 Their clinical
applicability may be compromised by relatively poor filler/
matrix interfacial adhesion and also by the excessive water
sorption that occurs in both the resin and filler phases of
these composites.49,54,64,65

In addition, it is possible to improve the remineralizing
potential of ACP composites by introducing Si or Zr
elements during the low-temperature synthesis of the filler.
Si- and Zr- ACPs enhanced the duration of mineral ion
release through their ability to slow down the intra-
composite ACP to HAP conversion.2 Antonucci66 also
stated the possible role on nonionic and anionic surfactants
and poly (ethylene oxide; PEO) introduced during the
preparation of ACP on the particle size distribution and
compositional properties of ACP fillers. The hydrophilic PEO
is widely used in water compatible polymer systems
because of its proven ability to undergo multiple hydrogen
bonding interactions and stabilize cations through multiple
chelation. Incorporating PEO in ACP fillers would also be
expected to affect not only the tendency of ACPs to form
aggregates but also the water content of the ACP.67 These
properties would finally affect both ion release kinetics and
the mechanical stability of composites. According to this
study, surfactants introduced during the precipitation of
ACP stabilized the amorphous solid phase against conver-
sion to apatite. The particle size of ACP was moderately
reduced because of the introduction of the anionic
surfactant. Addition of PEO resulted in more pronounced
ACP agglomeration but no changes in ACP water content.
Both surfactants and PEO lead to no improvement in the dry
biaxial flexure strength of composites compared with the
control Zr-ACP composites. However, their strength after
prolonged exposure to aqueous milieus was reduced dras-
tically in contrast to the controls.66
Scaffold in bone tissue engineering

Various compounds from the calcium phosphate family have
been extensively investigated as hard tissue repair mate-
rials due to their excellent biocompatibility.68 It has been
shown that the rate of new bone formation coincides more
closely with the resorption rate of poorly crystalline
apatites and ACP.69 Additionally, ACP shows better
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osteoconductivity in vivo than apatite, and its biodegrad-
ability is higher than that of tricalcium phosphate.31

Clinically, ACP is widely accepted for autografts and
allografts to repair fractures and other bone defects.
Recently, materials with ACP, hydroxyapatite and other
calcium phosphate family members have been extensively
investigated for alternative bone repair, due to the limi-
tations of traditional materials, including potential immu-
nogenicity, insufficient supply, and so on.3,4 ACP and even
ACP/biopolymer composites have received intense atten-
tion because of their applications as a bone tissueeengin-
eering scaffold. The good properties of these materials,
such as biocompatibility and osteoconductibility, and their
ready conversion to bone apatite formation in vivo make
them a seemingly perfect class emerging materials for bone
substitution and reparation.

Studies have shown that bone-like apatite shows appro-
priate surfacecharacteristics forosteoblast cells toadhereand
grow, and, as a result, facilitates bone formation, and regen-
eration. Ambrosio synthesized an amorphous carbonated
calciumphosphateceramicencapsulatedwithinbioresorbable
PLAGA microspheres. A bioresorbable, highly porous, three-
dimensional scaffold may be produced after sintering the
composite microspheres together. These noncrystalline and
carbonated materials may be ideal for tissue ingrowth and
potentially suitable for bone repair applications.70

ACP also has been incorporated into porous poly (L-lactic
acid; PLLA) to create a desired pore wall surface within bone
tissue engineering scaffolds.71 After being soaked in PBS, the
ACP aggregates in the composite experienced a fast and in
situ transformation into bone-like apatite. The cell culture
results also evidenced that the ACP/PLLA composite had
enhanced cytocompatibility. It has been demonstrated that
ACP/PLLA material, which can experience morphologic
variations in itsmicrostructure, is also a suitable candidate to
serve as scaffold for cartilage tissue engineering.

Moreover, another experiment has been done to explore
the feasibility of restoring periodontal defects with dental
follicle cells (DFCs)-b-TCPcomplex. It hasbeenproposed that
DFCs combined with b-TCP bioceramics could offer a novel
therapeutic strategy for restoring periodontal defects.72

In summary, ACP is usually formed in a meta-stable
phase when calcium ions and phosphate ions in aqueous
solution react to precipitate. The X-ray diffraction pattern,
structure, morphology and infrared analysis results show
ACP solids have typical noncrystalline character with short-
range order, instead of long-range periodic regularity. ACP
can act as an important intermediate product for apatite
formation in vitro and in vivo. It converted to apatite in
water, and a variety of proteins and ions can increase the
stability of ACP. ACP is becoming increasingly significant in
oral biology, dentistry, orthopedic biomechanics materials
and medicine because of its excellent biocharacteristics.
We believe that ACP has prospects for wider application
due to the fast development of tissue engineering tech-
nique and applied material science.
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