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Abstract

We show that it is possible to introduce the confining hidden sector gauge group SU(5)′ with the chiral matter 10′
0 plus 5̄′

0, which are neutral
under the standard model gauge group, toward a gauge mediated supersymmetry breaking (GMSB) in a Z12−I orbifold compactification of
E8 × E′

8 heterotic string. Three families of MSSM result without exotics. We also find a desirable matter parity P (or R-parity) assignment. We
note that this model contains the spectrum of the Lee–Weinberg model which has a nice solution of the μ problem.
© 2007 Elsevier B.V.
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1. Introduction

The supersymmetric (SUSY) extension of the Standard
Model (SM) encounters a few naturalness problems, the SUSY
flavor problem [1], the little hierarchy problem [2], the μ prob-
lem [3], etc. The hierarchical magnitude is worst in the μ prob-
lem but here there are nice solutions [4]. The little hierarchy
problem has weakened the nice feature of the SUSY solution
of the gauge hierarchy problem and we hope that it will be un-
derstood somehow in the future. On the other hand, the SUSY
flavor problem seems to require family independence of the in-
teractions at the GUT scale. The attractive gravity mediation
scenario for transmitting SUSY breaking down to the observ-
able sector probably violate the flavor independence of interac-
tions violently. This observation has led to the gauge mediated
supersymmetry breaking (GMSB) [5]. However, the superstring
attempt toward a GMSB model has not been successful phe-
nomenologically, even though the possibility of SUSY breaking
spectra was pointed out [6].

Recently, dynamical SUSY breaking (DSB) at an unstable
minimum at the origin of the field space got quite an inter-
est following Intrilligator, Seiberg and Shih (ISS) [7–9], partly
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because it has not been successful in deriving a phenomeno-
logically attractive model in the stable vacuum. Among the
results on SU(N), SO(N) and Sp(2n) groups, the result is espe-
cially simple for SU(Nc) with Nf flavors, showing an unstable
minimum for Nc + 1 � Nf < 3

2Nc . This mechanism is easily
applicable to SU(5)′ models with 6 or 7 flavors, which can be
realized in string compactifications [6]. Nevertheless, it is bet-
ter to realize a phenomenologically successful SUSY breaking
stable minimum, not to worry about our stability in a remote fu-
ture. In this Letter, therefore, we look for a GMSB spectrum
in the orbifold compactification of the E8 × E′

8 heterotic string
with three families, trying to satisfy all obvious phenomenolog-
ical requirements.

The well-known DSB models are an SO(10)′ model with
16′ or 16′ + 10′ [10], and an SU(5)′ model with 10′ + 5̄′
[11]. It is known that GMSB with 16′ + 10′ can be obtained
from heterotic string [12], but the beta function magnitude is
too large (in the negative) so that SO(10)′ confines somewhat
above 1013 GeV against a meaningful GMSB. If the hidden
sector gauge group is large, the content of matter representa-
tion is usually small and the beta function magnitude (in the
negative) turns out to be too large to implement the GMSB
scenario. If the confining group is SU(4)′ or smaller, it is not
known that one can obtain a SUSY breaking stable minimum.
Thus, SU(5)′ is an attractive choice for the GMSB [6]. To solve
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the SUSY flavor problem along this line of the GMSB, we
require two conditions: relatively low hidden sector confining
scale (� 1012 GeV) and appearance of matter spectrum allow-
ing SUSY breaking.

A nice feature of the ISS type model at an unstable vacuum
toward model building is that the SUSY breaking can be medi-
ated through dimension-4 superpotential given in1

W ∼ 1

M
QQ̄f f̄ ,

where Q is a hidden sector quark and f is a messenger. It is
possible because the vectorlike representations, for example six
or seven (Q + Q̄), are present and the QQ̄f f̄ interaction is
suppressed by one power of mass parameter. So this mass para-
meter can be raised up to the GUT scale.

On the other hand, the uncalculable model with 10′ + 5̄′ of
SU(5)′ does not have such a simple singlet direction in terms of
chiral fields. For example, the term εijklm10ij 10kl10mn5̄n = 0
since taking n = 1 without generality it is proportional to
ε1jklm101j 10kl10m15̄1 which can be shown to be vanishing us-
ing the antisymmetric symbol ε. The singlet combination is
possible in terms of the chiral gauge field strength, W ′αW ′

α .
It is pointed out that the F -term of this singlet combination can
trigger the SUSY breaking to low energy [13],

L=
∫

d2θ

(
1

M2
f f̄W ′αW ′

α + Mf f f̄

)
+ h.c.,

where the effective parameters of M and Mf can be lower than
the GUT scale.

The GMSB problem in string models is very interesting.
For example, quite recently but before ISS, it has been re-
viewed [14], but the phenomenological requirements toward the
minimal supersymmetric standard model (MSSM) have made it
difficult to be found in string models. The three family condi-
tion works as a strong constraint in the search of the hidden
sector representations. If we require the exotics free condition,
the possibility reduces dramatically.

In a Z12−I orbifold compactification, we find a model
achieving the GMSB at a stable vacuum together with three
families of quarks and leptons without any exotics. Since there
is no exotics, it is hoped that the singlet VEVs toward successful
Yukawa couplings have much more freedom, most of which are
set at the string scale. We find a successful embedding of matter
parity P and a nice solution of the μ problem. One unsatisfac-
tory feature is that sin2 θW is not 3

8 . Thus, to fit the weak mixing
angle to the observed value, we must assume intermediate state
vectorlike particles. Anyway, another kind of intermediate state
particles is needed also for a successful messenger mass scale.

2. A Z12−I model

The twist vector in the six-dimensional (6d) internal space is

(1)Z12−I shift: φ =
(

5

12

4

12

1

12

)
.

1 This form has been considered by many [9], in particular in [8].
We obtain the 4D gauge group by considering massless condi-
tions satisfying P ·V = 0 and P ·a3 = 0 in the untwisted sector
[15]. We embed the discrete action Z12−I in the E8 × E′

8 space
in terms of the shift vector V and the Wilson line a3 as

(2)V = 1

12
(6 6 6 2 2 2 3 3)(3 3 3 3 3 1 1 1)′,

(3)a3 = 1

3
(1 1 2 0 0 0 0 0)(0 0 0 0 0 1 1 − 2)′.

(a) Gauge group: The 4D gauge groups are obtained by
P 2 = 2 vectors satisfying P · V = 0 and P · a3 = 0 mod in-
teger,

SU(3)c × SU(3)W × SU(2)n × U(1)a × U(1)b × U(1)c

(4)×[
SU(5)′ × SU(3)′ × U(1)′2].

The gauge group SU(3)W will be broken down to SU(2)W by
the vacuum expectation value (VEV) of 3 and 3̄ of SU(3)W .
Then, the simple roots of our interest SU(3)c , SU(2)W , and
SU(2)n are

(5)SU(3)c:

{
α1 = (1 −1 0 0 0 0 0 0),

α2 = (0 1 1 0 0 0 0 0),

(6)SU(2)W : {α1 = (0 0 0 1 − 1 0 0 0),

(7)SU(2)n: α1 = (0 0 0 0 0 0 1 − 1).

The hypercharge direction is the combination of U(1)s of
Eq. (4) and some generators of non-Abelian groups

Y = YAbel + 1√
3
W8 + F3 − 1√

3
F8

(8)= Ỹ + F3 − 1√
3
F8,

where

(9)YAbel = Y8 + Y ′
8,

and W8,F3,F8 are non-Abelian generators of SU(3)W and
SU(3)′. We define Ỹ = YAbel + 1√

3
W8 by including the U(1)

generators of SU(3)W and SU(2)V (by VEVs of scalar fields).
Y8 and Y ′

8 are a linear combination of three U(1) genera-
tors in E8 and a linear combination of two U(1) generators
in E′

8, respectively. W8 is the eighth generator of SU(3)W ,
( 1

2
√

3
, 1

2
√

3
,− 1√

3
), and F3 and F8 are the third and the eighth

generators of SU(3)′, ( 1
2 ,− 1

2 ,0) and ( 1
2
√

3
, 1

2
√

3
,− 1√

3
), respec-

tively. We find that exotics cannot be made vectorlike if we do
not include Y ′. Ỹ is defined as

Ỹ = YAbel + 1√
3
W8

(10)=
(

1

6

1

6

−1

6
0 0

−1

2

−1

2

−1

2

)(
1

2

1

2

1

2

1

2

1

2

−1

6

−1

6

−1

6

)′
.

We included the SU(3)′ generators in Y of (8) so that there does
not appear exotics.

The five U(1) generators of (4) are defined as

Q1 = (6 6 −6 0 0 0 0 0)(0 0 0 0 0 0 0 0)′,
Q2 = (0 0 0 6 6 6 0 0)(0 0 0 0 0 0 0 0)′,
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Q3 = (0 0 0 0 0 0 2 2)(0 0 0 0 0 0 0 0)′,
Q4 = (0 0 0 0 0 0 0 0)(4 4 4 4 4 0 0 0)′,

(11)Q5 = (0 0 0 0 0 0 0 0)(0 0 0 0 0 4 4 4)′.

(b) Matter representations: Now there is a standard method
to obtain the massless spectrum in Z12−I orbifold models. The
spectra in the untwisted sectors U1,U2, and U3, and twisted
sectors, T 10,+,−, T 20,+,−, T 3, T 40,+,−, T 50,+,−, and T 6, are
easily obtained [16]. The representations are denoted as

(12)
[
SU(3)c,SU(2)W ;SU(5)′,SU(3)′

]
Ỹ
,

where we already use the broken SU(3)W and Ỹ = YAbel +
1√
3
W8 given in Eq. (10). For obvious cases, we will use the

abbreviated notation

(13)
(
SU(3)c,SU(2)W

)
Y
.

But when SU(3)′ triplets or anti-triplets are involved, the hy-
percharge is Ỹ . We list all matter fields below,

U1: (1,2)1/2,2 · (1,2)−1/2,11,2 · 10,

U2: (1,2)−1/2,10,

U3: (1,2)−1/2,2 · (1,2)1/2,2 · 11,

T10 : (3̄,1)1/3, (1,2)1/2, 3 · 11, 2 · 10,

T1− : (1; 5̄′,1)0, (1;1,3′)1/3,2 · 1−1,

T20 : (3̄,1)1/3, (1,2)−1/2,3 · 10,

T2+ : (1;10′,1)0, (1;1,3′)1/3,4 · 10,

T3: 2 · (1;5′,1)0,2 · (1; 5̄′,1)0,

(2L + 1R)(1,2)1/2, (1L + 2R)(1,2)1/2,

(2L + 1R)11,3 · 10, (6L + 6R) · 11,

T40 : 3 · (1,2;1, 3̄′)1/6,3 · (1;1, 3̄′)−1/3,

T4+ : 5 · (1;1,3′)1/3,2 · (1;1,3′)−2/3,

T4− : 3 · (3,2)1/6,2 · (3̄,1)−2/3,5 · (3̄,1)1/3,3 · (3,1)−1/3,

5 · (1,2)−1/2,2 · (1,2)1/2,2 · 11,12 · 10,12 · 10,

T70 : (1; 5̄′,1)0, (1;1,3′)−2/3,

T7+ : (3̄,1)−2/3, (3,1)−1/3,2 · (1,2)−1/2,10,3 · 1−1,

T7− : (1;5′,1)0, (1;1, 3̄′)−1/3,2 · 11,

T6: 3 · (1;5′,1)0,3 · (1; 5̄′,1)0,2 · (1;5′,1)1,

(14)2 · (1; 5̄′,1)−1,

where 1 = (1,1,1;1,1). Breaking SU(3)′, we assign

(15)F3 =
(

1

2
,−1

2
,0

)
,

1√
3
F8 =

(
1

6
,

1

6
,−1

3

)
.

Then 3′ has extra entries of 2
3 ,− 1

3 ,− 1
3 , and 3̄′ has extra entries

of − 2
3 , 1

3 , 1
3 . Thus, SU(3)′ (anti-)triplets of T1− , T2+ , T40, T4+ ,

T70 and T7− are

T1− : (1;1,3′)1/3 → 11, 10, 10,

T2+ : (1;1,3′)1/3 → 11, 10, 10,

T40 : 3 · (1,2;1, 3̄′)1/6 → 3 · (1,2)−1/2, 3 · (1,2)1/2,
3 · (1,2)1/2,

3 · (1;1, 3̄′)−1/3 → 3 · 1−1, 3 · 10, 3 · 10,

T4+ : 5 · (1;1,3′)1/3 → 5 · 11, 5 · 10, 5 · 10,

2 · (1;1,3′)−2/3 → 2 · 10, 2 · 1−1, 2 · 1−1,

T70 : (1;1,3′)−2/3 → 10, 1−1, 1−1,

(16)T7− : (1;1, 3̄′)−1/3 → 1−1, 10, 10.

Eq. (14) with (16) gives the SM quantum numbers. From these,
we note that there is no exotics. Other exotics free orbifold com-
pactifications [6,16] have E′

8 sector contribution to Y as in the
present case. But, we do not know whether this is a necessary
condition for exotics free models or not.

2.1. Three families with no exotics

Removing vectorlike representations and neutral singlets,
we obtain the following chiral representations,

T4−,7+,10 : 3 · (3,2)1/6,3 · (3,1)−2/3,

(17)3 · (3,1)1/3,3 · (1,2)−1/2,3 · 11,

(18)T2+,70 : 10′
0, 5̄′

0,

where 10′
0 = (1;10′,1)0 and 5̄′

0 = (1; 5̄′,1)0. In Table 1, we
list three families except the charged lepton singlets. Note
that SU(3)c triplets with underlined entries mean, for exam-
ple, (−1

3
−1
3

−2
3 ) = (−1

3
−1
3

−2
3 ), ( 2

3
−1
3

1
3 ), (−1

3
2
3

1
3 ), and ( 1

6
1
6

5
6 ) =

( 1
6

1
6

5
6 ), ( 1

6
−5
6

−1
6 ), (−5

6
1
6

−1
6 ). This is because of the asymmetri-

cal simple roots of SU(3)c in Eq. (5).

2.2. Matter parity

Let us define the U(1)Γ charge as a linear combination of
Q1−5 of Eq. (11) and W8. We choose its generator Γ such
that the light quarks carry odd U(1)Γ charges while Higgs dou-
blets carry even U(1)Γ charges. This is necessary to remove the
baryon number violating ucdcdc term. For the lepton number
violation, the condition is not so strong and furthermore in our
model there are so many possibilities in choosing the charged
singlets ec, and here we do not discuss them. Then, one suc-
cessful choice of Γ is

(19)Γ = 1

3
Q2 + Q3 + W̃8,

where

W̃8 = (
0311 − 2 02)(08)′

.

The Γ quantum numbers are also listed in Table 1. Breaking
U(1)Γ by VEVs of even integer SM singlets, a discrete sym-
metry Z2, which is called matter parity P , survives,

(20)U(1)Γ → P.

Thus, looking at the light quarks only the dangerous term
ucdcdc is not allowed. However, we have to consider mixing
of light quarks with heavy quarks which can be dangerous in
principle [16]. In our model, there are ten quark flavors: six SM
quarks and four extra Qem = − 1 quarks denoted as 3 · (D + D̄)
3
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Table 1
Three families of quarks and leptons and a pair of Higgs doublets. We do not list singlet leptons since there are many possibilities

P + [kV + ka] No.×(Repts.)Y [Q1,Q2,Q3,Q4,Q5] Γ Label

(−1
3

−1
3

−2
3

2
3

−1
3

−1
3 00)(08)′

T4−
3 · (3,2)L1/6[0,0,0;0,0] 1 q1, q2, q3

( 1
6

1
6

5
6

1
6

1
6

1
6

1
2

1
2 )(08)′

T4−
2 · (3̄,1)L−2/3[−3,3,2;0,0] 3 uc, cc

(−1
3

−1
3

−2
3

1
3

1
3

1
3

−1
4

−1
4 )( 1

4
5 1

12
1

12
1
12 )′

T7+
(3̄,1)L−2/3[0,6,−1;5,1] 1 tc

( 1
2

1
2

1
2

−1
6

−1
6

−1
6 00)(05 −1

3
−1
3

−1
3 )′

T20
(3̄,1)L1/3[3,−3,0;0,−4] −1 dc

( 1
6

1
6

5
6

1
6

1
6

1
6

−1
2

−1
2 )(08)′

T4−
2 · (3̄,1)L1/3[−3,3,−2;0,0] 1 sc, bc

(−1
3

−1
3

1
3

2
3

−1
3

2
3 00)(08)′

T4−
(1,2)L−1/2[−6,6,0;0,0] 1 l1, l2, l3

(0 0 0 2
3

−1
3

2
3

−1
4

−1
4 )( 1

4
5 1

12
1

12
1
12 )′

T10
(1,2)L1/2[0,6,−1;5,1] 0 Hu

(−1
3

−1
3

1
3

1
3

−2
3

1
3

−1
4

−1
4 )( 1

4
5 1

12
1

12
1
12 )′

T7+
(1,2)L−1/2[−6,0,−1;5,1] −2 Hd
and (D′ + D̄′). For quark mixing, we need to consider D̄s and
D̄′ only. In Eq. (14), three D̄s (three out of five (3̄,1)1/3s) in
T4− appear as (3̄,1)1/3[6,−6,0;0,0] carrying Γ = −2 and D̄′ in
T10 appears as (3̄,1)1/3[3,3,1;5,1] carrying Γ = 2. Therefore, if
P is not broken, light dc and heavy D̄s and D̄′ can never mix
and we achieve an exact matter parity P . But a successful mat-
ter parity assignment should not be in conflict with other phe-
nomenological requirements. The most severe constraint comes
from making exotic particles massive [16]. In passing, we point
out that the other vectorlike particles, such as D − D̄,D′ − D̄′,
doublet pairs, and unit charge lepton pairs E− − Ē+, are not so
dangerous as exotics. Since our model does not include any ex-
otics, we do not need VEVs of any odd Γ singlets for obvious
phenomenological reasons. A detailed study of singlet VEVs is
outside of the scope of the present discussion, and will be pre-
sented elsewhere.

2.3. Higgs doublets

In Table 2, we list all color singlet doublets, where we in-
cluded lepton doublets in the last row. Higgs doublets form a
vectorlike representation under the SM gauge group. So, they
can be removed at the GUT scale in principle. One vectorlike
pair Hu + Hd is kept light for breaking the SU(2) × U(1)Y
gauge symmetry at the electroweak scale. We choose the starred
doublets to give large masses to t and b quarks. We choose Hu

such that the sum of the sector numbers in q3t
cHu adds up to 0

mod 12. Then, Hu is chosen from T10 . For b quark, a similar ar-
gument chooses one (1,2)−1/2 in T4− as Hd . These Hu and Hd

are starred in Table 2. However, note that this is just one illus-
tration and another choice may well be possible depending on
the Yukawa couplings and magnitudes of singlet VEVs.

2.4. The Lee–Weinberg model

This model is basically a string realization of the Lee–
Weinberg model based on SU(3)c × SU(3)W × U(1) [17]. In
the Lee–Weinberg model, one quark family consists of

(21)3W,q =
(

d u

D

)
, dR, uR, DR.
L

Thus, our model realizes just three left-handed quark triplets
with no extra 3W − 3̄W quark pairs, and hence it is a minimal
kind of Lee–Weinberg type models. Out of 21 left-handed 3W s
and 21 left-handed 3̄W s, 12 pairs form a vectorlike represen-
tations under the Lee-Weinberg gauge group.2 This is gleaned
from the chiral representation (17) that there remain three pairs
of (3c,3W). Thus, for SU(3)W anomaly cancellation, there
must be nine 3̄W s, and the remaining 3W − 3̄W pairs must form
a vectorlike representation. [We include the odd Γ Higgs pairs
of Table 2 in the vectorlike representation.] Nine color-singlet
3̄W s contain three lepton doublets and three pairs of Higgs dou-
blets. The electromagnetic charges of nine 3̄W s contain three
3̄W,+ and six 3̄W,0, where

3̄W,+ =
(

ψ+
1

ψ0 ψ+
2

)
L

,

(22)3̄W,0 =
(

ψ0
1

ψ− ψ0
2

)
L

,

where ψ sign denotes the integer electromagnetic charge of the
field ψ . In Eqs. (21) and (22), SU(2)W doublets are pairs of
u−d,ψ+

2 −ψ0, and ψ0
2 −ψ−. Obviously, three lepton doublets

of (17) must come from three 3̄W,0s, and we are left with three
pairs of 3̄W,0 − 3̄W,+.

2.5. The μ term

A possible large μ term arises from the coupling between
three pairs of 3̄W,0 − 3̄W,+ as εαβγ 3̄α

W 3̄β
W 3̄γ

W where α,β, γ

are SU(3)W indices. Suppose that SU(3)W is broken by VEVs
(typically of order V ) of ψ0

1 in 3̄W,0 (and also by 3W,0 in the
removed vectorlike representation toward a D-flat condition).

2 The breaking scale of SU(3)W can be very low in principle, because
the discrepancy in the numbers of multiplets between SU(3)c (ten flavors)
and SU(3)W (twenty-one flavors) enables one to lower the breaking scale of
SU(3)W while generating the difference of gauge couplings of SU(3)c and
SU(3)W . But, we will not consider this possibility here.
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Table 2
Thirty-three color-singlet SU(2)W doublets which contain the leptons (the last row) and Higgs particles. The MSSM pair is starred

P + n[V ± a] Γ No.×(Repts.)Y [Q1,Q2,Q3,Q4,Q5]
( 1

2
1
2

−1
2

1
2

−1
2

1
2

−1
2

−1
2 )(08)′

U1
−2 (1,2)L1

2 [9,3,−2;0,0]
(0 0 010010)(08)′

U1
4 (1,2,2)L− 1

2 [0,6,2;0,0]
(0 0 010100)(08)′

U2
3 (1,2)L− 1

2 [0,12,0;0,0]
( 1

2
1
2

−1
2

1
2

−1
2

1
2

1
2

1
2 )(08)′

U3
2 (1,2)L− 1

2 [9,3,2;0,0]
(0 0 0 0 − 100 − 1)(08)′

U3
−4 (1,2,2)L1

2 [0,−6,−2;0,0]
(0 0 0 2

3
−1
3

2
3

−1
4

−1
4 )( 1

4
1
4

1
4

1
4

1
4

1
12

1
12

1
12 )′

T10
0 
 (1,2)L1

2 [0,6,−1;5,1]
(0 0 0 1

3
−2
3

1
3

1
2

1
2 )(05 −1

3
−1
3

−1
3 )′

T20
1 (1,2)L− 1

2 [0,0,2;0,−4]
(0 0 0 0 − 10 1

4
1
4 )( 1

4
1
4

1
4

1
4

1
4

−1
4

−1
4

−1
4 )′

T3
−2 (2L + 1R) · (1,2)L1

2 [0,−6,1;5,−3]
(0 0 0 0 − 10 −1

4
−1
4 )(−1

4
−1
4

−1
4

−1
4

−1
4

1
4

1
4

1
4 )′

T3
−4 (2L + 1R) · (1,2)L− 1

2 [0,−6,−1;−5,3]
(0 0 0 2

3
−1
3

−1
3 00)(05 −2

3
1
3

1
3 )′

T40
1 6 · (1,2)L1

2 [0,0,0;0,0]
(−1

3
−1
3

1
3

2
3

−1
3

2
3 00)(08)′

T4−
1 
 3 · (1,2)L− 1

2 [−6,6,0;0,0]
( 1

6
1
6

−1
6

1
6

−5
6

1
6

1
2

1
2 )(08)′

T4−
0 2 · (1,2)L− 1

2 [3,−3,2;0,0]
( 1

6
1
6

−1
6

1
6

−5
6

1
6

−1
2

−1
2 )(08)′

T4−
−4 2 · (1,2)L1

2 [3,−3,−2;0,0]
(−1

3
−1
3

1
3

1
3

−2
3

1
3

−1
4

−1
4 )( 1

4
1
4

1
4

1
4

1
4

1
12

1
12

1
12 )′

T7+
−2 (1,2)L− 1

2 [−6,0,−1;5,1]
( 1

6
1
6

−1
6

5
6

−1
6

−1
6

1
4

1
4 )( 1

4
1
4

1
4

1
4

1
4

1
12

1
12

1
12 )′

T7+
3 (1,2)L− 1

2 [3,3,1;5,1]
(0 0 0 2

3
−1
3

−1
3 00)(05 −2

3
1
3

1
3 )′

T40
1 3 · (1,2)L−1

2 [0,0,0;0,0]
Then, the Hu − Hd type couplings arise from3

(23)εαβγ 3̄α
W,I 3̄β

W,J 3̄γ

W,KεIJK ∼ V εαβ 3̄α
W,I 3̄β

W,J εIJ ,

where I, J,K are the Higgs family indices. For a general fam-
ily coupling gIJK , due to εαβγ the symmetric part does not give
an Hu − Hd coupling because it gives, ∝ 3̄W,1̄3̄W,2̄ − 3̄W,2̄ ×
3̄W,1̄ = 0. Because of εIJ , the same Higgs family does not have
the coupling and the Hu − Hd mass matrix of the 3 × 3 form is
an antisymmetric one whose determinant is zero. Therefore, we
obtain two massive Higgs doublet pairs and one massless Higgs
doublet pair. Thus, there remains only one massless Higgs dou-
blet pair, achieving the MSSM spectrum at low energy. In this
scheme also, there are methods to generate an electroweak scale
μ term [3,4].

3. Hidden sector SU(5)′, gauge mediation and messengers

As shown in Table 3, there are SU(5)′ fields. But some of
these obtain masses by Yukawa couplings at the string scale.
Below the string scale vectorlike pairs become massive by
VEVs of singlets, and hence we consider only the chiral rep-
resentations. We need the mass scale of the vectorlike pairs are
much above the SU(5)′ confining scale so that the SUSY break-
ing by 10′ and 5̄′ is intact.

3 Note that 3W − 3̄W coupling is not generating Hu − Hd terms since both

Hu and Hd belong to 3̄W .
In Table 3, we list all the SU(5)′ non-singlet fields. From
these, one can easily check that SU(5)′ gauge anomaly is ab-
sent. One conspicuous feature is that we obtained one 10′. Ex-
cept 10′ of T2− and 5̄′ of T70 , the rest 8 flavors form a vectorlike
representation under SU(5)′ ×SU(2)n ×U(1)Y . Removal of the
eight flavors much above the SU(5)′ confining scale is achieved
by VEVs of SM gauge singlet fields, breaking extra gauge sym-
metries. It has been known that 10′ + 5̄′ of a confining SU(5)′
breaks SUSY [11] and we achieve the GMSB if the confining
scale is below 1012 GeV. Note that 10′

0 and 5̄′
0 do not carry any

SU(3)c × SU(2)W × U(1)Y charge (which is emphasized by
the subscript 0) and DSB by 10′

0 and 5̄′
0 does not break the SM

gauge group.
Note that the singlet combination 10′10′10′5̄′ is not possible

with one 10′. The SU(5)′ singlet combination in this uncalcula-
ble model can be parameterized by the gauge field strength field
W ′αW ′

α as discussed in [13]. The interaction between the mes-
senger f and the hidden sector gauge fields can appear from
string compactification as

L=
∫

d2θ
[
ξ(S1, S2, . . .)f f̄W ′αW ′

α

(24)+ η(S1, S2, . . .)f f̄
] + h.c.,

where we have in general the holomorphic functions ξ and
η of singlet chiral fields, S1, S2, . . . . The quantum number
of ξ(S1, S2, . . .)f f̄ is the same as that of dilaton, where the
H -momentum of dilaton is (0,0,0). On the other hand, the
H -momenta of the superpotential term η(S1, S2, . . .)f f̄ should
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Table 3
Hidden sector SU(5)′ representations under SU(2)n × SU(5)′ × SU(3)′ . After removing vectorlike representations by Γ = even integer singlets, the starred repre-
sentations remain

P + n[V ± a] Γ No.×(Repts.)Y [Q1,Q2,Q3,Q4,Q5]
( 1

6
1
6

−1
6

1
6

1
6

1
6

1
4

1
4 )(−3

4
1
4

1
4

1
4

1
4

−1
4

−1
4

−1
4 )′

T 1− 2 (1; 5̄′,1)L0[3,3,1;1,−1]
( 1

6
1
6

−1
6

−1
6

−1
6

−1
6 00)( 1

2
1
2

−1
2

−1
2

−1
2

−1
6

−1
6

−1
6 )′

T 2+ −1 
(1;10′,1)L0[3,−3,0;−2,−2]
(06 1

4
−3
4 )( 3

4
−1
4

−1
4

−1
4

−1
4

1
4

1
4

1
4 )′

T 3 −1 (2n;5′,1)L0[0,0,−1;−1,3]
(06 3

4
−1
4 )(−3

4
1
4

1
4

1
4

1
4

−1
4

−1
4

−1
4 )′

T 9 1 (2n; 5̄′,1)L0[0,0,1;1,−3]
(03 −1

3
−1
3

−1
3

1
4

1
4 )(−3

4
1
4

1
4

1
4

1
4

1
12

1
12

1
12 )′

T 70
−1 
(1; 5̄′,1)L0[0,−6,1;1,1]

( 1
6

1
6

−1
6

1
6

1
6

1
6

−1
4

−1
4 )( 3

4
−1
4

−1
4

−1
4

−1
4

1
4

1
4

1
4 )′

T 7− 0 (1;5′,1)L0[3,3,−1;−1,3]
(06 −1

2
−1
2 )(−10000000)′

T 6 −2 3 · (1; 5̄′,1)L0[0,0,−2;−4,0]
(06 −1

2
−1
2 )(10000000)′

T 6 −2 2 · (1;5′,1)L1[0,0,−2;4,0]
(06 1

2
1
2 )(−10000000)′

T 6 2 2 · (1; 5̄′,1)L−1[0,0,2;−4,0]
(06 1

2
1
2 )(10000000)′

T 6 2 3 · (1;5,1)L0[0,0,2;4,0]
be (−1,1,1). The H -momenta of the twisted sectors are given
by [16,18,19]

U1: (−1,0,0), U2: (0,1,0), U3: (0,0,1),

T1:

(−7

12
,

4

12
,

1

12

)
, T2:

(−1

6
,

4

6
,

1

6

)
,

T3:

(−3

4
,0,

1

4

)
, T4:

(−1

3
,

1

3
,

1

3

)
,

T5:

(
1

12
,
−4

12
,
−7

12

)
, T6:

(−1

2
,0,

1

2

)
,

(25)T7:

(−1

12
,

4

12
,

7

12

)
, T9:

(−1

4
,0,

3

4

)
.

The Yukawa coupling η(S1, S2, . . .)f f̄ and the coefficient of
W ′αW ′

α must satisfy the modular invariance rule for the
twisted sector fields(z) multiplication,

(26)
∑

z

k(z) = 0 mod 12,
∑

z

[kmf ](z) = 0 mod 3.

Consider, for example, the vectorlike colored particles appear-
ing only in T4− with Qem = ∓ 1

3 : f3 = D, f̄3 = D̄, viz. Eq. (14).
We can consider the following gauge singlet combination mul-
tiplied to W ′αW ′

α , for example,

T4−T4−T10T7+T4−T4− ∼ f̄3f3〈T10T7+T4−T4−〉
(27)∼ D−1/3D̄1/3.

Similarly, SU(2)W doublet coupling W ′αW ′′
α can be con-

sidered. The product in (27), T4−T4−T10T7+T4−T4− , has the
H -momentum (−2,2,2), and hence we must multiply further
singlets to make the sum of H -momenta be (0,0,0). As shown
in [16], usually we can achieve this, but here we do not elab-
orate the details. In this model, f3 and f2 denote the mes-
senger through SU(3)c and the messenger through SU(2)W ,
respectively. If needed, we can also consider f1 (the messen-
ger through U(1)Y ). Below, f represents f3, f2, or f1.

From the above discussion, the fields of f, f̄ and W ′αW ′
α

can have the following tree level Lagrangian,

(28)L=
∫

d2θ

[
1

2
f f̄W ′αW ′

α + Mf f f̄

]
+ h.c.,
M

which is perturbative in origin. Here M and Mf are determined
by the strength of coupling constant and VEVs of singlet fields
appearing in ξ and η of Eq. (24). Both of these parameters are
assumed to be somewhat less than the string scale. The SUSY
breaking through Eq. (28) has been discussed in [13] by intro-
ducing the messenger mass- and F-parameters

(29)Mmess ≈ Mf + Λ3
h

M2
, Fmess ≈

Λ4
h

M2
.

With this GMSB scenario, firstly the observable sector gaugino
obtains mass of order

(30)m̃SUSY ∼ g2

16π2

Λ4
h

M2Mmess
,

while the gravitino mass is around m3/2 ≈ Λ3
h/M

2
P l . To obtain

1 TeV gluino mass (but much smaller gravitino mass of order
0.2 GeV) with α = 1

25 and Λh = 1012 GeV, for example, we
need (M2Mmess)

1/3
≈ 1.5 × 1014 GeV.

This leads us to consider the W ′αW ′
α couplings to HuHd

and the observable sector Yukawa couplings WY ∼ Huqiu
c
j +

Hdqid
c
j . Let us focus on the HuHd coupling. From the dis-

cussion with (23), the three pairs of Higgsinos form an an-
tisymmetric mass matrix parametrized by A,B and C which
are assumed to be large. The

∫
d2θ HuHdW ′αW ′

α term would
contribute to the Higgsino mass matrix and also to the soft B

parameter matrix. The heavy pairs of Hu and Hd act as f2 and
f̄2. We are interested in the light Hu and Hd pair. The Higgsino
mass matrix and the B matrix take the following form,

(31)MHiggsino =
( 0, A + a, B + b

−A − a, 0, C + c

−B − b, −C − c, 0

)
,

(32)Bsoft = μ

( 0, a, b

−a, 0, c

−b, −c, 0

)
,

where the parameters a, b, c in (31) get contribution from the
hidden-sector gluino condensation while μ(a,b, c) in (32) get
contribution from the F -term of W ′αW ′

α . If a : b : c = A :
B : C, then the light Higgsinos and light Higgs bosons are
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paired to constitute the Higgs multiplets of the MSSM. This
proportionality can be achieved if the same singlet combination
is multiplied to the six nonvanishing superpotential terms im-
plied in (31) comprised of the H -momentum (−1,1,1) to make
the H -momentum (0,0,0) of ξf f̄ in (24). One may choose a
vacuum so that such a condition is satisfied. The interaction∫

d2θ ( 1
m3 Huquc + · · ·)W ′αW ′

α can be within a safe region
of the gauge hierarchy solution. For example, the A-term es-

timated from this is A ≈

Λ4
h

m3 which can be of order 10−2 GeV –

106 GeV for Λh ∼ 1010−12 GeV and m ∼ 1014 GeV.
Finally, we comment on possible higher order terms in the

Kähler potential. Even though all the important hidden sec-
tor matter 10′ does not appear in the superpotential, it can
appear in the Kähler potential. Possible terms of the form
10′10′ ∗ff ∗/M2

K might appear. The higher order Kähler terms
was calculated for the compactification T 6 = (T2)

3 (with the
volume moduli T s and the complex structure moduli Cs) in
Ref. [20] for two matter fields Qα ,

Kmatter =
3∏

i=1

(Ti + T̄i )
ni

α

h(2,1)∏
m=1

(Cm + C̄m)lα |Qα|2,

where ni
α and h2,1 = 1 (for our Z12−I ) are the modular weight

and a Hodge number, respectively. Also, lα is an integer. The
term 10′10′ ∗ff ∗/M2

K is not appearing in the above expression,
and at present there does not exist a Kmatter calculation for four
matter fields of our interest. Even if it appears, the mass sup-
pression scale MK is expected to be of order the string scale
and hence is much larger than M appearing in Eq. (28) toward
the GMSB scenario. However, if it appears with the same or-
der of the suppression factor as in Eq. (28), the idea of our
GMSB is not successful phenomenologically. We may need
M2/M2

K < 0.03 [21].

4. Conclusion

We have shown that there exists a possibility of the hidden
sector SU(5)′ with 10′

0 plus 5̄′
0 matter below the GUT scale so

that a GMSB at the stable vacuum is successful. Toward achiev-
ing the needed coupling constant α′

5 of the hidden sector at the
GUT scale, we may need different compactification radii for the
three tori [6]. The model is very interesting in that it contains
three MSSM families without any exotics. We find a desirable
U(1)Γ gauge symmetry whose Z2 discrete group can be a mat-
ter parity P or R-parity. Due to our Lee–Weinberg type model,
there remains only one light pair of Higgs doublets, achieving
the MSSM spectrum. On the other hand, the weak mixing angle
at the unification scale is not 3

8 . Various mass scales in addi-
tion to the different compactification radii may enable us to fit
the mixing angle to the observed one at the electroweak scale.
A detail analysis of the model for the R-parity problem, weak
mixing angle, compactification radii, D and F flat directions,
and Yukawa couplings will be discussed elsewhere.
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